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Abstract—Collaborative representation (CR) models have been
widely used in hyperspectral image (HSI) classification tasks. How-
ever, most CR classification models lack stability and generalization
when targeting small samples as well as spatial homogeneity and
heterogeneity problems. Therefore, this article proposes a mean-
weighted CR classification model (MWCRC) based on the joint
spatial-spectral data. It imposes mean and weighted constraints on
the representation coefficients based on CR, which attenuates the
noise effect and increases the distinguishability between classes.
Second, a sample augmentation method based on the principle of
minimizing the representation residuals is proposed. Sample aug-
mentation is realized through initial classification and calculation
of representation residuals to achieve the objective of consolidating
model stability and improving classification accuracy. Meanwhile,
in order to alleviate the problem of spatial homogeneity and hetero-
geneity, the extended morphological profile (EMP) and the stacking
approach are utilized to construct the joint spatial-spectral data
for the classification of MWCRC. The superiority of the proposed
method is demonstrated by experimental validation using a small
number of training samples in three real datasets.

Index Terms—Collaborative representation (CR), hyperspectral
image (HSI) classification, sample augmentation, spatial-spectral
joint.

I. INTRODUCTION

HYPERSPECTRAL remote sensing has been widely used
in many industries [1], [2], [3], [4], [5], [6], [7], [8],

and the main challenges still faced by hyperspectral remote
sensing image classification [9], [10], [11], [12], [13] as one
of the main applications are the high dimensionality of the data
[14], the small number of labeled samples and the difficulty
of their collection [15], [16], [17], and the problem of spatial
homogeneity and heterogeneity of classification results [18],
[19], [20], [21], [22], [23].

In order to solve these problems, there are three main hyper-
spectral image (HSI) classification methods as follows.
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1) Statistical learning classification algorithms based on ker-
nel transform technology. This type of method utilizes a
kernel transform to map a linearly indivisible problem in
the original space, into a high-dimensional space where
classes can be separable. The most typical classification
method is support vector machine [24] with a specific ker-
nel function. However, it is still difficult for them to select
optimal kernel functions and parameter combinations.

2) Deep learning based classification algorithms [25]. They
realize accurate classification by building network models
in multiple layers and extracting features layer by layer.
They include stacked autoencoder, deep belief network,
convolutional neural network (CNN), etc. [26], [27], [28].
Although this class of algorithms can achieve better clas-
sification performance, they tend to have complex tuning
parameters, time-consuming training, and poor physical
interpretability.

3) Classification algorithms based on representation learn-
ing. The methods of this type are all based on a known
dictionary to represent testing pixels, which in turn de-
termines the predicted class labels based on the dis-
criminative criterion of representation residuals. Sparse
representation classification (SRC) [29] and collaborative
representation classification (CRC) [30] are the two most
classical approaches. They impose sparse constraints on
the representation coefficients through different lp norm,
so that the coefficients mainly contribute values from the
true class. These algorithms are computationally simple
and interpretable, but the strength of the constraint on
sparsity affects the flexibility of the algorithms.

The analysis shows that classification methods based on repre-
sentation models have been rapidly developed in the hyperspec-
tral field with its advantages. SRC [31], [32] is the most primitive
classification model for representation learning. Chen et al. [29]
proposed a joint sparse representation classification (JSRC) us-
ing simultaneous orthogonal matching tracking solving, which
mainly incorporates the spatial context information of the testing
pixels into the solving process. Zhang et al. [33] proposed a
nonlocally weighted joint sparse representation classification
method (NLW-JSRC) based on JSRC by considering the simi-
larity problem of neighboring pixels to testing pixels. However,
SRC, while exhibiting strong robustness, has high computational
complexity and is difficult to solve. Zhang et al. [34] discussed

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-8991-8568
https://orcid.org/0009-0005-6189-4217
https://orcid.org/0000-0001-6253-2967
https://orcid.org/0000-0001-8354-7500
mailto:hjsu@hhu.edu.cn


SU et al.: MEAN-WEIGHTED CR-BASED SPATIAL-SPECTRAL JOINT CLASSIFICATION FOR HYPERSPECTRAL IMAGES 10159

identified that the main contribution in the representation model
comes from the collaborative representation (CR) of the training
samples and thus proposed the l2 norm-constrained collaborative
representation classification (CRC). Various improved models
based on collaborative representation classification emerged. Li
et al. [35] proposed a nearest regularized subspace classification
method based on CRC, which utilizes Tikhonov regularization
to construct distance weighting matrices between testing pixels
and each class to enhance the similarity discrimination between
samples. Li et al. [36] considered incorporating the idea of joint
representation into collaborative representation classification,
thus suggesting an adaptive dictionary-based nonlocal joint
collaborative representation classifier. Li et al. [37] proposed
a Tikhonov regularized kernel collaborative representation clas-
sifier, which utilizes the kernel idea to project the original data
into a high-dimensional kernel space, thus improving the class
separability. Su et al. [38] proposed a band-weighted relaxation
collaborative classification method based on superpixel segmen-
tation on the basis of RCR, which fully considered the differ-
ences and similarities between features, and at the same time
incorporated spatial information using superpixel segmentation.
However, with the above multiple variants based on CR, the
models tend to lack flexibility, especially under small sample
conditions, where the classification results are susceptible to
noise, and when the types of features are more complex, the gen-
eralization performance of the models is poor; and the enhance-
ment of the generalization has to be at the expense of algorithm
complexity.

In order to improve the generalization capability, many meth-
ods impose constraints on representation coefficients in the field
of face recognition, e.g., competitive collaborative representa-
tion classification [39], probabilistic collaborative representa-
tion classification (ProCRC) [40], etc.; the main purpose of
all these methods is to make representation coefficients to be
clustered in the correct class. Recently Gou et al. [41] proposed
a CR model based on mean vector and weighted competition
for face recognition, which adds competition, mean vector, and
weighting three items as constraints of the objective function to
the CRC, and considers the similarity between testing samples
and the dictionary in many aspects, thus showing better clas-
sification results. Considering that too many constraints may
bring a large number of too many model hyperparameters, a new
classification model can be constructed for the classification of
HSIs by creating suitable constraint terms.

When the feature types in the classification scenario are very
complex, the classification results often have the problem of spa-
tial homogeneity and heterogeneity, for which many solutions
have been proposed to incorporate spatial information in the
classification [42], [43], [44]. Su et al. [45] proposed a collab-
orative representational classification model with multifeature
fusion dictionary learning, which simultaneously considers the
spectral, local, global, and morphological features of the data and
morphological features, which in turn yields the representation
coefficients to determine the predicted class. Gao et al. [46]
combined the method of multifeature dictionary learning with
relaxation collaborative representation (RCR) and suggested a
RCR method based on self-balancing dictionary learning. Su

et al. [47] proposed a kernel probabilistic CR integrated learn-
ing method based on a spatial augmentation dictionary, which
incorporates spatial information into the integrated learning
classifier by means of a morphological augmentation dictionary.
Hu et al. [48] utilized the method of combining local and global
texture information to achieve sample augmentation and pro-
posed extended subspace projection classification based on the
augmentation of samples with global spatial and local spectral
similarity. Although all of the above-mentioned methods con-
sider spatial information, when the extracted spatial features are
more complex, it may include information redundancy imposed;
when the extracted spatial features are relatively simple, it cannot
solve the problem of spatial homogeneity and heterogeneity very
well.

The above-mentioned analysis shows that the classification
algorithm based on representation learning is simple in method,
efficient in operation, and meaningful in interpretation. How-
ever, under small sample conditions, affected by the complex
spectral and spatial information, the model often lacks a certain
degree of generalization, and the enhancement of the general-
ization capability often increases model complexity. Therefore,
under small sample conditions, how to alleviate the problems of
spatial homogeneity and heterogeneity based on the represen-
tation model while making the model have ideal flexibility and
computational complexity is a key issue to be solved.

Therefore, this article first proposes the mean-weighted
constraint-based CRC (MWCRC) for HSI classification, so as to
alleviate the problem that the classification accuracy is affected
by noise under small sample conditions. Second, to further
improve the classification accuracy and alleviate the classifica-
tion problem caused by small samples, a sample augmentation
method based on the principle of minimizing the representa-
tion residual is suggested. Meanwhile, to solve the problem of
spatial homogeneity and heterogeneity, extended morphological
profile (EMP) and direct stacking are used to construct joint
spatial-spectral data for MWCRC classification. The technical
contributions can be summarized as follows.

1) The constructed MWCRC employs a mean vector term
with a representation weighting term to constrain the
coefficients. Among them, the representation weighting
term is different from the common distance weighting, the
weights are not easily affected by the sample noise, and it
works together with the mean vector term to improve the
flexibility of the model under small samples.

2) A sample augmentation method based on the principle
of minimizing the residual of representation is proposed.
Through the two steps of MWCRC’s initial classification
and subspace representation to find the residuals, the
augmented samples with the highest confidence level are
determined, which realizes the doubling of the training
samples.

The rest of the article is organized as follows. Section II
describes the basic principles of representation learning and
EMP. The detailed description of the proposed spatial-spectral
joint-based MWCRC (JMWCRC) principle as well as the sam-
ple augmentation method is given in Section III. Experiments
and results analysis are given in Section IV. Section V discusses
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the relevant parameters. Finally, conclusions are drawn in
Section VI.

II. RELATED WORK

A. SRC and CRC

In the representation learning-based classification model,
the spectral features of a testing pixel can be approxi-
mated by a dictionary composed of labeled pixels. Assum-
ing that the number of feature classes is C, D = [d1,d2,
. . . ,dN ] = [D1,D2, . . . ,DC ] ∈ RB×Ndenotes a dictionary
consisting of N training samples, where each dictionary atom
is a B-dimensional vector. Also, the whole dictionary can be
divided into subdictionaries of C classes, and each subdictionary
can be denoted as Di = [di

1,d
i
2, . . . ,d

i
Ni
], where Ni denotes

the number of dictionary atoms corresponding to the ith class
and

∑C
i = 1 Ni = N . Y = {yi}ni=1 is defined as the testing

set consisting of the testing samples y. The common objective
function for SRC and CRC models is as follows:

argmin
α

(
‖y −Dα‖22 + λ‖α‖lp

)
. (1)

When p = 0 or 1, the model is SRC [49], where λ is the
balance parameter. SRC mainly imposes the sparsest possible
constraints on the representation coefficients to determine the
optimal solution, but it is clear that (1) at p = 0 is an NP-hard
combinatorial search problem, and at p = 1, it needs to be
solved by a greedy tracking algorithm. In short, the SRC is more
complicated to solve.

When p = 2, the model becomes CRC [50]. Studies have
shown that the main contribution of the representation model
comes from synergy without overemphasizing the sparsity of the
coefficients, so the use of l2 norm instead of l0 or l1 norm makes
the model easier to solve while achieving better classification
results. The solution to the model is as follows:

α =
(
DTD + λI

)−1
DTy (2)

where I is an identity matrix. After obtaining the representa-
tion coefficients a, an approximate representation of the testing
sample is obtained

y ≈ Dα = D1α1 + · · ·+Diαi + · · ·+DCαC . (3)

Finally, the residuals are derived using the resulting approx-
imation with the real sample, and the predictive labels of y are
determined by a certain discriminant criterion. Based on the fact
that the probability of y belonging to each class is proportional
to the contribution of each class in the representation coefficient,
the discriminant criterion can be defined as

class (y) = arg min
i=1,2,...,C

(
‖y −Diαi‖22

‖αi‖22

)
. (4)

B. Extended Morphology Profile

Extended morphological profile (EMP) [51] is a method for
extracting multiscale spatial information from each single-band
grayscale image one by one using grayscale morphological
operations. First, expansion and erosion are two basic mor-
phological operations on which other morphological composite

Fig. 1. SEs in 3 × 3 size. (a) Square. (b) Discoidal.

operations are based. By defining the structural element (SE) of
the morphological operation, the morphological opening is the
process of first performing the corrosion operation on the image
through the SE and then performing the expansion operation;
conversely, the morphological closing is the process of first
performing the expansion operation on the image through the
SE and then performing the corrosion operation. The opening
suppresses bright details smaller than the SE, while the closing
suppresses dark details, so they are often combined for image
smoothing and denoising.

Morphological profile (MP) is the process of obtaining mul-
tiple spatial feature images at different scales by performing
multiple opening and closing operations simultaneously on a
single grayscale image. At this point, the difference between
different scales of opening and closing is the size of the sliding
subwindow, i.e., the size of the SE. Common types of SEs are
square SEs and disk SEs, as shown in Fig. 1 for two types
of SEs of 3 × 3 size. The connectivity components that are
smaller than the size of the SE and brighter than the neighboring
regions can be removed by the opening operation; conversely,
the dark connectivity components can be removed by the closing
operation. The specific implementation of MP is as follows:

Πγ (z) =
{
Πγλ : Πγλ = γ∗

λ (z) , ∀λ ∈ [0, x]
}

(5)

Πϕ (z) =
{
Πϕλ : Πϕλ = ϕ∗

λ (z) , ∀λ ∈ [0, x]
}

(6)

whereΠγ andΠϕ denote the opening profile and closing profile,
respectively, z is a pixel of the single-band image I, λ denotes
the defined SE size, and x denotes the size of the largest SE.
γ∗

λ(z)/ϕ
∗
λ(z) denotes the execution of the opening/closing oper-

ation on the pixel z by utilizing the defined SE. MP is the series
connection of Πγ and Πϕ. The corresponding equation can be
expressed as

MPx (I) = {ϕ∗
1 (I) , . . . , ϕ

∗
x (I) , I, γ

∗
1 (I) , . . . , γ

∗
x (I)} .

(7)

According to (7), it can be seen that if there are m SEs
between [0, x], the MP operation is to utilize the m SEs to
perform opening/closing profiles on the single-band image to
obtain (2m+1) spatial images of the bands, and then connect
them in series.

The EMP operation, on the other hand, is to first perform an
MP operation on multiple single-band images of the same scene,
and then concatenate the obtained results. The specific operation
formula is as follows:

EMP = {MPx(I1),MPx(I2), . . . ,MPx(In)} . (8)
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Each MP can extract 2m+1 spatial feature images, so n(2m+1)
stacks of data containing multiple spatial features can be finally
obtained by EMP operation.

III. PROPOSED METHODS

A. MWCRC Model

Due to the influence of imaging conditions, hyperspectral
remote sensing images are highly susceptible to noise, especially
when the number of training samples is small. The traditional
classification models based on representation learning have poor
stability. Considering that fine classification under small sam-
ples cannot be achieved by only relying on the two conditions
of CR among training samples and sparsity of representation
coefficients, this article adopts the mean vector term and the
representation weighting term to constrain the representation
coefficients on the basis of CRC, thus constructing the MWCRC
model. The main idea of the model is to enhance stability to
the model while forcing the main contributing values of the
representation coefficients to be more concentrated in the true
class in the case of small samples. The objective function of the
model is as follows:

α = argmin
α

(
‖y −Dα‖22 + λ

C∑
i=1

‖vi −Diαi‖22

+γ

C∑
i=1

ωi ‖αi‖22
)

(9)

where the representation coefficient α can be denoted as α =
[a1,a2, . . . ,aN ]T = [α1;α2; . . . ;αC ] ∈ RN×1, λ and γ are
both balance parameters,

∑C
i = 1 ‖vi −Diαi‖22 is called the

mean vector term, and
∑C

i = 1 ωi‖αi‖22 is called the representa-
tion weighting term.

In the mean vector term, vi denotes the vector mean of all
samples from the ith class, estimated as

vi =
1

Ni

Ni∑
j=1

di
j . (10)

First, the use of the mean vector in this item reduces the noise
influence in the case of a small number of training samples;
second, the use of the difference between the mean vector of each
class and the corresponding reconstructed value of the subdic-
tionary to sum up, and make the sum approach the minimum as
the final constraint, which excludes the possibility of the main
values of the representation coefficients being clustered in an
erroneous class that is dissimilar to the real class, and thus forces
the main values of the representation coefficients to be clustered
towards the real class.

The representation weighting term uses the residuals from
the best reconstruction of the testing sample in each subspace as
the weights in the coefficients. The constrained weights for the
coefficients in class i are as

ωi = ‖y −Diα̂i‖22 , i = 1, 2, . . . , C (11)

where α̂i is obtained when y is optimally reconstructed via a
subdictionary from class i, i.e., the

α̂i = min
αi

(
‖y −Diα̂i‖22

)
. (12)

Representation weighting is distinguished from the common
distance-based weighting, both of which exploit the degree
of similarity between training and testing samples, but the
distance-based weighting is susceptible to noise in small-sample
conditions, such as the CRT model utilizing Tikhonov regular-
ization [52]. As can be seen from (11) and (12), the smaller
the representation residuals (weights), the higher the degree
of similarity between the samples, and the larger the value
obtained by the representation coefficients of the corresponding
class, thus increasing the strength of the constraints on the
representation coefficients clustered in a particular class, making
the classification model more discriminative.

MWCRC, like CRC, has a corresponding closed-form solu-
tion. For ease of solving, (9) is reorganized as follows:

α = argmin
α

(
‖y −Dα‖22 + λ

C∑
i=1

∥∥∥vi − D̂iα
∥∥∥2
2

+γ

C∑
i=1

‖Wα‖22
)

(13)

where D̂i and W are defined as

D̂i = [0,0, . . . ,Di, . . . ,0,0] ∈ RB×N (14)

W =

⎡⎢⎣W 1 · · · 0
...

. . .
...

0 · · · WC

⎤⎥⎦ W i=

⎡⎢⎣
√
ωi · · · 0
...

. . .
...

0 · · · √
ωi

⎤⎥⎦. (15)

The closed-form solution to the model is obtained by taking
a partial derivative of α as

α =
(
DTD + λM + γW TW

)−1 (
DTy + λV

)
(16)

where M and V are defined as

M =
C∑
i=1

D̂i

T
D̂i (17)

V =

C∑
i=1

D̂i

T
vi. (18)

In order to fully utilize the discriminative information, the
classification guidelines used in this article are as follows:

class (y) = arg min
i=1,2,··· ,C

(
‖y −Diαi‖22

‖αi‖22

)
. (19)

Algorithm 1 gives the detailed MWCRC pseudocode.

B. Spatial-Spectral Joint-Based MWCRC

Due to the imaging conditions, the spectra of the same kind
of features often show certain differences [53]; meanwhile, the
spectra between different classes of features can have strong
similarities in complex scenes. These effects cause the intraclass
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Fig. 2. Results of EMP operation based on square SEs. The SE sizes are 3, 5,
and 7.

Algorithm 1: MWCRC.
Input: HSI data: Y

Training samples set: D
Balance parameters: λ, γ

For each testing sample y in Y
1. Calculate the weighting matrix W of the coefficients

by (11), (12), and (15)
2. Calculate the block diagonal matrix M by (14) and (17)
3. Calculate the column vector V by (10), (14), and (18)
4. Calculate the coefficient of representation α by (16)
5. Classify the testing sample y by (19) and predict its

label class(y)
End
Output: Classification result of HSI: class(Y)

distance of feature spectra to increase and the interclass distance
to decrease, making it difficult to improve the classification
accuracy. Meanwhile, CR-based classification methods are all
forced constraints [54], i.e., all bands of the training samples
share the same coefficients, so the classification accuracy is
affected. In this article, in order to fully utilize the advantages
of the MWCRC model, the data preprocessing method is used
to extract the spatial information in the original data, and the
JMWCRC is constructed to solve the above-mentioned prob-
lems.

Considering that EMP can extract the spatial features of many
images from multiple scales, the original hyperspectral data are
first subjected to principal component analysis (PCA), and the
first K principal components (PCs) associated with the K largest
eigenvalues of the data covariance matrix are selected according
to the principle of PCA, so that multiple single-band images
of the same scene are obtained. They are subjected to EMP
operation to obtain spatial cube data with multiscale spatial
information.

According to the operation principle of EMP, using such
features can increase the interclass distance and reduce the intr-
aclass distance. Specifically, in hyperspectral imagery, there are
many anomalous pixels interspersed in the connectivity region
of a certain class of features, and this manifests itself in a certain
single-band image as light/dark details (noise) within the region,
which can be smoothed well after MP operation. Fig. 2 shows

Fig. 3. Spatial-spectral features of similar features in the Salinas.

the effect of MP operation on the first two PC, with the original
PC image in the center and the results of closing/opening at
different scales on the left and right, respectively. It can be seen
that, after the opening/closing operation, the light/dark details
of the discrete or small connected areas within the connected
areas of the same class of features are well eliminated.

According to Fig. 2, the resultant maps obtained from the
opening/closing operations performed with different sizes of
SEs are also significantly different from each other, mainly
due to the interaction between the size of the features in the
image and the size of the SEs. Therefore, a single size of SEs
for information extraction is very likely to lead to the problem
of insufficient information extraction or excessive smoothing.
Meanwhile, when classifying HSI images, it is often unclear
about the regional size of the feature, so EMP can effectively
solve the above problems by stacking the results of the operation
after opening/closing the SEs of different scales. When the
feature size is small, the single-channel image obtained by the
small-scale SE can constrain the large-scale image, thus pre-
venting the missing boundary of the classification result caused
by the transitional smoothing, whereas when the feature size is
large, the large-scale SE can directly carry out the extraction of
spatial features. Thus, the method can have the effect of reducing
the parameter adjustment.

In order to fully utilize the spectral information, this article
adopts the direct stacking method to combine the original spec-
tral data with the spatial data extracted by EMP to construct the
spatial-spectral joint cube data for JMWCRC classification. The
construction formula of the spatial-spectral joint data is

EMP = {MPx (PC1) ,MPx (PC2) , . . . ,MPx (PCK)}
(20)

HSE = {HSI; EMP} . (21)

The method maintains the advantages of the original hy-
perspectral data while increasing the interclass distance of the
features and decreasing the intraclass distance of the features
through spatial data. As shown in Fig. 3 , the spectral-spatial
features of two similar classes of features in the Salinas HSI are
visualized, and it can be seen that the difference in the original
spectral information of the two classes of features is very small,
but the difference in spatial information is obvious in the interval
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Fig. 4. Sample amplification process based on residual minimization.

Algorithm 2: JMWCRC.
Input: HSI data: Y

Balance parameters: λ, γ
Data preprocessing:

1. Extraction of K PCs of Y by PCA
2. Extraction of multiscale spatial information for K PCs

by (7)
3. Construct spatial cube data EMP by (20)
4. Construct spatial-spectral joint cube data HSE by (21)

Initiation Classification:
input: Training samples set D from HSE
for each testing sample y in HSE

Perform the MWCRC operation on the sample y by
Algorithm 1

end
Output: Classification result: class(Y)

around 204–330 from stacked spatial features. Algorithm 2 gives
the detailed JMWCRC pseudocode.

C. Sample Augmentation-Based JMWCRC

Considering that the improvement of classification accu-
racy is affected by the small number of training samples, in
order to further improve the classification accuracy and to
consolidate the stability of the model, this article proposes a
sample augmentation method using the principle of minimizing
the representational residuals (JMWCRC-SA) on the basis of
JMWCRC. Fig. 4 shows the exact process. The method takes
into account that if the augmented samples are misclassified,
the accuracy improvement will be hindered, so the highest
confidence samples need to be selected as augmented samples.
The method first preliminarily classifies the 3 × 3 domain pixels
of the initial training samples in the HSE based on the principle
of feature continuity, thus excluding the interfering pixels. Then
the initial classification results are represented in subspace, and
the sample with the smallest representation residual is used as
the augmentation sample. The specific realization process is as
follows.

First, the first step in Fig. 4 is to select the initial training set
D in the HSE and then find the 3 × 3 neighborhood pixels where

Algorithm 3: JMWCRC-SA.
Input: HSI data: Y

Balance parameters: λ, γ
Data preprocessing:

HSE data and training sample set D are obtained by
Algorithm 2

Sample Augmentation:
for each training sample d in D
1. Find the 3 × 3 neighborhood pixels of d in HSE
2. Neighborhood pixels are classified by MWCRC

and pixels of the same class as d are selected.
3. Calculate the representation residual r of the

selected pixel by (22) and (23)
4. Determine the augmented sample yj by

r-minimizing and Di = [Di,yj ]
end
output: Augmented training sample set D′

Initiation Classification:
for each testing sample y in HSE

Perform the MWCRC operation on the sample y by
Algorithm 1

end
Output: Classification result of HSI: class(Y)

the training samples are located. The purpose of choosing the
3 × 3 neighborhood here is that, considering the continuity of
features, in the worst case, there is only one pixel of the same
class in the connected domain of the training sample, so choosing
the 3 × 3 neighborhood can get the augmented sample with the
highest confidence.

Second, the pixels in the neighborhood are initially classified
using MWCRC, and pixels of the same class as the center pixel
are selected from the classification results. The main consider-
ation of this process is to exclude the interfering pixels of other
classes as much as possible.

Finally, the selected pixels are represented subspace-
optimally one by one and the representation residuals are ob-
tained r. The formula is given by

rj =
∥∥yj −Diα̂j

∥∥2
2

(22)

α̂j= argmin
α

(∥∥yj−Diα
∥∥2
2

)
i.e. α̂j=

(
DT

i Di

)−1

DT
i yj (23)

where yj denotes the jth pixel selected in the second step and
Di denotes the subdictionary where the center pixel is located.
The pixel with the smallest residual is considered to be most
similar to the center pixel and is considered to have the highest
confidence level. Therefore the pixel with the smallest residual
r is selected as the augmented sample.

The above-mentioned process is performed on the training
samples in D one by one, thus doubling the number of training
samples i.e.,D′ ∈ RB×2N . After obtaining the augmented dic-
tionary, JMWCRC is then utilized to complete the classification.
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Fig. 5. Data flow of the proposed methods.

Algorithm 3 gives the detailed JMWCRC-SA pseudocode. Fig. 5
gives the detailed flow of the proposed method in this article.

IV. EXPERIMENTS AND RESULTS

In this section, three experimental datasets are introduced,
namely the Salinas dataset, which has more complex feature
classes, and two wetland datasets, i.e., Yangtze River Delta
and Dafeng Natural Reserve, which have more complex feature
scenarios. A series of experiments are conducted to evaluate
the performance of the proposed method. Salinas is a public
dataset.1 Yangtze River Delta and Dafeng Natural Reserve
from [11].

A. Dataset

1) Salinas: The first set of data was acquired from the Air-
borne Visible Infrared Imaging Spectrometer over the Salinas
Valley, California, United States of America, and the image
consists of 512 × 217 pixels covering 204 spectral bands except
for the water vapor absorption band. The region contains 16
feature classes, and the classes are complex, with a variety of
very similar classes. The sample information of the data is shown
in Table I. The false-color composite image and the distribution
of ground labels are shown in Fig. 6.

2) Yangtze River Delta: The second set of data was taken
by the AHSI on-board hyperspectral sensor. The sensor was
mounted on the GF-5 satellite for ground-based observation.
The area selected for data acquisition is located in the Yangtze
River Delta in the Nantong region of eastern Jiangsu Province,
China. The image size is 1160 × 1290, covering 268 spectral

1.[Online]. Available at: https://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes.

TABLE I
SIXTEEN GROUND-TRUTH CLASSES OF THE SALINAS DATASET

Fig. 6. Salinas dataset. (a) False color image. (b) Ground truth. (c) Legend.

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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TABLE II
NINE GROUND-TRUTH CLASSES OF THE YANGTZE RIVER DELTA DATASET

Fig. 7. Yangtze River Delta dataset. (a) False color image. (b) Ground truth.
(c) Zoom of part of (b) to highlight the distribution. (d) Legend.

bands except 62 noisy bands. The region contains nine classes
of features. The sample information of the data is shown in
Table II, and the false-color composite image and the distribution
of ground labels are shown in Fig. 7.

3) Dafeng Natural Reserve: The imaging equipment for the
third set of data is the same as that for the second set. The
area where the data were taken is located in the Dafeng Na-
ture Reserve in the coastal wetland of Yancheng City, Jiangsu
Province, China. The image size is 986 × 632, covering 256
spectral bands except 74 noise bands. The area contains nine
classes of features, and the scenes in the data are more complex.
The sample information of the data is shown in Table III, and
the false-color composite image and the distribution of ground
labels are shown in Fig. 8.

B. Experimental Setup

In order to fully verify the performance advantages of the
proposed method, the following representative classification
methods are selected for comparison. Among them, extreme
learning machine (ELM) [55], three-dimensional (3-D)-CNN
[25] are the more classical classification methods; CRC is
the classical representation model classifier; JCRC [56] is the

TABLE III
NINE GROUND-TRUTH CLASSES OF THE DAFENG NATURAL RESERVE DATASET

Fig. 8. Dafeng Natural Reserve dataset. (a) False color image. (b) Ground
truth. (c) Zoom of part of (b) to highlight the distribution. (d) Legend.

TABLE IV
OPTIMAL PARAMETER SETTING

CR model by combining spatial information; TCRC [57] and
KProCRC [58] are the more popular CR models at present;
KProCRC-LNSAE [47] is the latest classification method
that combines spatial information to augment the dictionary.
MWCRC, JMWCRC, and JMWCRC-SA are the three classi-
fication methods proposed in this article. In order to simulate
the classification performance under small samples, the training
sets in the experiments of this article are all set to ten training
samples per class. The optimal parameters of the three methods
proposed in this article are shown in Table IV, where x denotes
the maximum SE size and square SEs are chosen for all SEs. K
denotes the number of PCs selected after PCA processing, and
Bs denotes the dimension of the spatial data. The classification
results of the other methods are obtained under the optimal
parameters.
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TABLE V
CLASSIFICATION ACCURACY FOR THE SALINAS DATASET

TABLE VI
CLASSIFICATION ACCURACY FOR THE YANGTZE RIVER DELTA DATASET

For quantitative assessment, overall accuracy (OA), average
accuracy (AA), Kappa coefficient (Kappa), and class accuracy
are adopted. In order to consider the computational efficiency,
the running time to complete the classification of the testing
set is used as a criterion. To avoid bias, all experimental results
shown are the average of the results of ten runs of experiments.
All experiments were conducted in a MATLAB environment on
a 3.2-GHz CPU.

C. Classification Performance

The quantitative values of the classification results for the
three datasets are given in Tables V–VII. The corresponding
visualized classification result graphs are demonstrated in
Figs. 9–11.

For Salinas data, JMWCRC-SA has the highest classifica-
tion accuracy, and the OA value can reach 95.07%. Compared
with MWCRC, it is improved by 8.35%, which shows that the
incorporation of spatial information effectively improves the
classification accuracy. Compared to other methods, MWCRC
still has the highest classification accuracy, especially the OA is

improved by 2.35% compared to the new KProCRC-LNSAE.
According to Table V, it can be seen that the improvement in
the accuracy of the proposed method mainly comes from class
8 and class 15 (vineyards in different states). Combined with
Fig. 9, it can be seen that all the comparison methods have
more severe misclassification between these two features, such
as 3-D-CNN. While JCRC mitigates the problem by combin-
ing spatial information, it causes missing boundaries between
other features. KProCRC-LNSAE can well mitigate the above-
mentioned problem by augmenting the dictionary with spatial
information, but the classification effect is weaker than that of
the method presented in this article. From Fig. 9(j), it can be seen
that JMWCRC extracts spatial information from multiple scales,
which can distinguish similar features well without causing the
problem of missing boundaries among other features.

For Yangtze River Delta data, JMWCRC-SA has the highest
classification accuracy, and the OA value can reach 93.92%,
which is improved by 3.47% compared with MWCRC. As
KProCRC-LNSA combines spatial information, it has a better
classification effect for the topographically complex data, but
MWCRC is only considered from the spectral point of view, and
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Fig. 9. Classification maps of Salinas. (a) ELM. (b) 3-D-CNN. (c) CRC. (d) JCRC. (e) TCRC. (f) KProCRC. (g) KProCRC-LNSAE. (h) MWCRC. (i) JMWCRC.
(j) JMWCRC-SA.

Fig. 10. Classification maps of Yangtze River Delta. (a) ELM. (b) 3-D-CNN. (c) CRC. (d) JCRC. (e) TCRC. (f) KProCRC. (g) KProCRC-LNSAE. (h) MWCRC.
(i) JMWCRC. (j) JMWCRC-SA.
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TABLE VII
CLASSIFICATION ACCURACY FOR THE DAFENG NATURAL RESERVE DATASET

Fig. 11. Classification maps of Dafeng Natural Reserve. (a) ELM. (b) 3-D-CNN. (c) CRC. (d) JCRC. (e) TCRC. (f) KProCRC. (g) KProCRC-LNSAE.
(h) MWCRC. (i) JMWCRC. (j) JMWCRC-SA.

the classification accuracy is only second to KProCRC-LNSA,
which also shows that the model has a better differentiation for
spectra. Combined with Fig. 10, it can be seen that trees and
impervious surfaces are highly susceptible to misclassification
with bare land when classified using the classifiers ELM, 3-D-
CNN, CRC, JCRC, and TCRC. This is due to the complexity
of the features resulting in the extreme similarity between the
spectra. According to the classification graph of JMWCRC, it

can be seen that trees, impervious surface and bare land can be
well distinguished from each other.

For Dafeng Natural Reserve data, the overall classification
accuracy of MWCRC was 92.44%. The highest classification
accuracy was obtained by JMWCRC-SA with an OA value of
96.30%. Compared with MWCRC, the classification accuracy is
improved by 3.86%. MWCRC classification accuracy is slightly
lower than KProCRC and KProCRC-LNSAE, but compared
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Fig. 12. Classification OA versus λ and γ. (a) Salinas. (b) Yangtze River Delta. (c) Dafeng Natural Reserve.

with other classifiers such as ELM, 3-D-CNN, and TCRC, there
is a significant improvement in accuracy. This may be due to the
high spectral similarity between features, and it is more difficult
to rely only on spectral features for class separation. Combined
with Fig. 11(a)–(e), misclassification between buildings and
road and between aquaculture and lake are the main difficulties.
As can be seen in Fig. 11(j), the incorporation of multiscale
spatial information well increases the distinguishability between
similar features.

In this article, the running time required to classify the test-
ing samples has been calculated. Comprehensive Tables V–VII
show that the running time may be increased compared to
more traditional classifiers. However, compared to the more
popular classifiers, such as KProCRC, it has more desirable
classification results at almost the same running time. This
also corresponds to the advantage of the CR model, where
each pixel can be solved directly by a closed-form solution.
KProCRC-LNSAE, on the other hand, mainly adopts the idea
of ensemble learning, and thus its execution is more time-
consuming.

V. DISCUSSION

A. Analysis of Balance Parameters λ and γ

λ and γ are two hyperparameters in the MWCRC model,
which are used to balance the residual and coefficient terms.
The classification accuracy is optimized by manually tuning
their values. λ is used to regulate the mean vector term and
γ is used to regulate the weighted sparse term. These two
terms are based on the case where the residuals are minimized,
forcing the coefficients to have their main contribution come
from the true class while increasing the stability of the model.
In this article, the OA value of JMWCRC-SA is utilized as
the performance discriminant criterion. Based on the optimal
empirical parameters of the model known from Table IV, the
experimental results of three groups of experimental data are
generated using the grid search method, as shown in Fig. 12.
Each set of data is subjected to 7 × 7 experiments.

First, after the OA value reaches the highest, it shows smooth
fluctuation with the change of parameters in a certain region.
This means that the model has better stability and generalization.
Second, the model is slightly more sensitive to the parameters
in the Yangtze River Delta dataset compared to the other two

datasets. This may be related to the higher complexity of the
terrain in the data, when the optimal parameters are kept at
λ less than 1e-3 and γ greater than 1e-2. Finally, in all three
data sets, the classification accuracy first increases and then
smoothes as λ decreases, which may be due to the fact that the
mean vector term can be very sensitive to the parameters when
the strength of the sparse constraint is small. The classification
accuracy first increases and then smooths as γ increases. This
may be due to the fact that when the sparse constraints on the
coefficients are fixed, increasing with γ will rely on the mean
vector to attenuate the noise effect and further increase the sparse
strength. Based on the range of parameter adjustment of λ and
γ, it can be seen that the contribution of weighted sparse con-
straints in the model is slightly higher than that of mean vector
constraints.

B. SE Size Range

Fig. 13 shows the results of the variation of the overall
classification accuracy of JMWCRC-SA with the range of SE
sizes, where x denotes the maximum SE size when the EMP
operation is performed. Thus, the horizontal coordinates in the
figure indicate the size range of the SEs. For Salinas data, the
accuracy tends to grow steadily as the size range of the SEs
increases. When the size is larger than 23 (pixels), the accuracy
growth becomes slow. This is because the data contains a variety
of large-sized features, and as the SE size increases, it keeps
approaching the size of the features, which leads to increasing
accuracy. For the other two data sets, the significant increase
in accuracy is reflected in the SE size range in the interval of
3–7. As the size range continues to increase, the accuracy stays
within a certain level without significant fluctuations. This is
due to the small size of the features in these two data sets, with
matching SEs around 7 pixels. When the size of the SE continues
to increase, there is no significant decrease in accuracy. This
is due to the fact that the proposed method adopts multiscale
extraction of spatial information, and the multichannel mutual
constraints prevent the problem of missing boundaries caused
by too large SEs.

C. Performance on Small Size Samples Situation

In order to verify the classification performance of the pro-
posed method with small samples, a comparison test with
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Fig. 13. Classification OA versus x. (a) Salinas. (b) Yangtze River Delta. (c) Dafeng Natural Reserve.

Fig. 14. Classification OA versus number of samples per class. (a) Salinas. (b) Yangtze River Delta. (c) Dafeng Natural Reserve.

Fig. 15. Classification Accuracy versus model per class. (a) Salinas. (b) Yangtze River Delta. (c) Dafeng Natural Reserve.

the number of samples is designed. The OA value is used
as the performance discrimination criterion, and the num-
ber of samples in each class is set as {5,10,15,20,25}.
The experimental results are shown in Fig. 14. Combining
the results of the three sets of experiments, with the change in the
number of samples, the classification accuracies of JMWCRC
and JMWCRC-SA are higher than the other classifiers, which
also proves that the models have better stability and generaliza-
tion. Compared to CRC, TCRC, and JCRC, JCRC produces the
highest classification accuracy in Salinas data and Yangtze River
Delta data, but there is no performance significant difference
in Dafeng Natural Reserve data. Different spectral complexity
and spatial complexity in these data may result in unstable
classification results. Comparing the classification accuracies of
JMWCRC and JMWCRC-SA shows that sample augmentation
consolidates the stability of the model and further improves the
classification accuracy.

D. Ablation Study

The proposed JMWCRC-SA framework consists of three
main components: classification model, spatial information ex-
traction, and sample augmentation. To evaluate the contribu-
tion of each part, this section removes each component of the
JMWCRC-SA framework one by one for ablation experiments.
A total of four models were generated by ablation.

1) MWCRC: contains only the classification model.
2) MWCRC-SA: spatial information is removed.
3) JMWCRC: sample augmentation is removed.
4) JMWCRC-SA.
The experimental results for the ablation models are given

in Fig. 15, each using the average of the 10 sets of OA and
Kappa as the performance discriminant criterion. As can be seen
from the figure, the classification performance of JMWCRC-
SA is significantly better than other variants. The joint use
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of spatial and spectral data has the highest contribution in all
three data sets, and the improvement in accuracy is particu-
larly evident in the Salinas data, which has a large feature
size. By comparing (1) with (2) and (3) with (4), it can be
found that the sample augmentation method improves both OA
and Kappa, indicating that the stability of the model has been
consolidated.

VI. CONCLUSION

This article proposed MWCRC and JMWCRC-SA methods
for HSI classification. MWCRC constrains the CRC by mean
vector and representation weighting to increase the generaliza-
tion of the model. To alleviate the small sample problem, the
EMP method is introduced into MWCRC, and a sample augmen-
tation method based on residual minimization is designed. The
experimental results show that the classification performance
of JMWCRC-SA under small sample conditions has desirable
superiority.

Since the distribution of augmented samples is limited by
the training samples, the improvement in classification accuracy
after sample augmentation is not significant. Therefore, both the
highest confidence level and the spatially uniform distribution
of samples will be considered in future studies to obtain a more
effective sample augmentation effect.

REFERENCES

[1] H. Su, Z. Wu, H. Zhang, and Q. Du, “Hyperspectral anomaly detection:
A survey,” IEEE Geosci. Remote Sens. Mag., vol. 10, no. 1, pp. 64–90,
Mar. 2022, doi: 10.1109/MGRS.2021.3105440.

[2] B. Tu, X. Yang, C. Zhou, D. He, and A. Plaza, “Hyperspec-
tral anomaly detection using dual window density,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 12, pp. 8503–8517, Dec. 2020,
doi: 10.1109/TGRS.2020.2988385.

[3] Y. Yang, H. Su, Z. Wu, and Q. Du, “Saliency-guided collaborative-
competitive representation for hyperspectral anomaly detection,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16, pp. 6843–6859,
2023, doi: 10.1109/JSTARS.2023.3296876.

[4] Y. Peng, M. Fan, J. Song, T. Cui, and R. Li, “Assessment of plant species
diversity based on hyperspectral indices at a fine scale,” Sci. Rep., vol. 8,
no. 1, pp. 1–11, 2018, doi: 10.1038/s41598-018-23136-5.

[5] L. Sun, S. Khan, and P. Shabestari, “Integrated hyperspectral and geo-
chemical study of sediment-hosted disseminated gold at the Goldstrike
district, Utah,” Remote Sens., vol. 11, no. 17, 2019, Art. no. 1987,
doi: 10.3390/rs11171987.

[6] X. Wang and W. Yang, “Water quality monitoring and evalua-
tion using remote-sensing techniques in China: A systematic re-
view,” Ecosyst. Health Sustainability, vol. 5, no. 1, pp. 47–56, 2019,
doi: 10.1080/20964129.2019.1571443.

[7] B. Du et al., “Mapping wetland plant communities using unmanned aerial
vehicle hyperspectral imagery by comparing object/pixel-based classifi-
cations combining multiple machine-learning algorithms,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 8249–8258, 2021,
doi: 10.1109/JSTARS.2021.3100923.

[8] Y. Liang, H. Zheng, G. Yang, Q. Du, and H. Su, “Superpixel-based
weighted sparse regression and spectral similarity constrained for hyper-
spectral unmixing,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 16, pp. 6825–6842, 2023, doi: 10.1109/JSTARS.2023.3298491.

[9] B. Tu, X. Zhang, X. Kang, G. Zhang, and S. Li, “Density peak-
based noisy label detection for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 3, pp. 1573–1584, Mar. 2019,
doi: 10.1109/TGRS.2018.2867444.

[10] J. Yang, B. Du, and L. Zhang, “From center to surrounding: An interac-
tive learning framework for hyperspectral image classification,” ISPRS
J. Photogrammetry Remote Sens., vol. 197, no. 9, pp. 145–166, 2023,
doi: 10.1016/j.isprsjprs.2023.01.024.

[11] H. Su, W. Yao, Z. Wu, P. Zheng, and Q. Du, “Kernel low-rank representa-
tion with elastic net for China coastal wetland land cover classification us-
ing GF-5 hyperspectral imagery,” ISPRS J. Photogrammetry Remote Sens.,
vol. 171, no. 11, pp. 238–252, 2021, doi: 10.1016/j.isprsjprs.2020.11.018.

[12] H. Su, Y. Yu, Z. Wu, and Q. Du, “Random subspace-based k-nearest class
collaborative representation for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 8, pp. 6840–6853, Aug. 2021,
doi: 10.1109/TGRS.2020.3029578.

[13] H. Su, Y. Yu, Q. Du, and P. Du, “Ensemble learning for hyperspectral
image classification using tangent collaborative representation,” IEEE
Trans. Geosci. Remote Sens., vol. 58, no. 6, pp. 3778–3790, Jun. 2020,
doi: 10.1109/TGRS.2019.2957135.

[14] K. Abend and T. J. Harley, “Comments ‘on the mean accuracy of statistical
pattern recognizers’,” IEEE Trans. Inf. Theory, vol. IT- vol. 15, no. 3,
pp. 420–423, May 1969, doi: 10.1109/TIT.1969.1054314.

[15] Y. Wang, D. Li, H. Wu, X. Li, F. Kong, and Q. Wang, “Multiple spectral-
spatial representation based on tensor decomposition for HSI anomaly
detection,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15,
pp. 3539–3551, 2022, doi: 10.1109/JSTARS.2022.3170057.

[16] A. C. Karaca, “Spatial aware probabilistic multi-kernel collaborative
representation for hyperspectral image classification using few labelled
samples,” Int. J. Remote Sens., vol. 42, no. 3, pp. 839–864, 2021,
doi: 10.1080/01431161.2020.1823516.

[17] C. Zheng, N. Wang, and J. Cui, “Hyperspectral image classification
with small training sample size using superpixel-guided training sam-
ple enlargement,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 10,
pp. 7307–7316, Oct. 2019, doi: 10.1109/TGRS.2019.2912330.

[18] F. Fang et al., “Spatial context-aware method for urban land use classifica-
tion using street view images,” ISPRS J. Photogrammetry Remote Sens.,
vol. 192, no. 12, pp. 1–12, 2022, doi: 10.1016/j.isprsjprs.2022.07.020.

[19] H. Liu, W. Li, X. G. Xia, M. Zhang, C. Z. Gao, and R. Tao, “Central
attention network for hyperspectral imagery classification,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 34, no. 11, pp. 8989–9003, Nov. 2022,
doi: 10.1109/TNNLS.2022.3155114.

[20] B. Tu, C. Zhou, X. Liao, Q. Li, and Y. Peng, “Feature extraction via 3-D
block characteristics sharing for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 12, pp. 10503–10518, Dec. 2021,
doi: 10.1109/TGRS.2020.3042274.

[21] J. Peng, W. Sun, and Q. Du, “Self-paced joint sparse represen-
tation for the classification of hyperspectral images,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 2, pp. 1183–1194, Feb. 2019,
doi: 10.1109/TGRS.2018.2865102.

[22] J. Peng, L. Li, and Y. Y. Tang, “Maximum likelihood estimation-based
joint sparse representation for the classification of hyperspectral remote
sensing images,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 6,
pp. 1790–1802, Jun. 2019, doi: 10.1109/TNNLS.2018.2874432.

[23] W. Li and Q. Du, “A survey on representation-based classification and
detection in hyperspectral remote sensing imagery,” Pattern Recognit.
Lett., vol. 83, pp. 115–123, 2016, doi: 10.1016/j.patrec.2015.09.010.

[24] F. Melgani and L. Bruzzone, “Classification of hyperspectral re-
mote sensing images with support vector machines,” IEEE Trans.
Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004,
doi: 10.1109/TGRS.2004.831865.

[25] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson,
“Deep learning for hyperspectral image classification: An overview,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6690–6709, Sep. 2019,
doi: 10.1109/TGRS.2019.2907932.

[26] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing data: A
technical tutorial on the state of the art,” IEEE Geosci. Remote Sens. Mag.,
vol. 4, no. 2, pp. 22–40, Feb. 2016, doi: 10.1109/MGRS.2016.2540798.

[27] C. Wang and F. Wang, “GIS-automated delineation of hospital ser-
vice areas in Florida: From Dartmouth method to network commu-
nity detection methods,” Ann. GIS, vol. 28, no. 2, pp. 93–109, 2022,
doi: 10.1080/19475683.2022.2026470.

[28] Z. Liu, Y. Lin, J. Hoover, D. Beene, P. H. Charley, and N. Singer, “Individ-
ual level spatial-temporal modelling of exposure potential of livestock in
the Cove Wash watershed, Arizona,” Ann. GIS, vol. 29, no. 1, pp. 87–107,
2023, doi: 10.1080/19475683.2022.2075935.

[29] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image clas-
sification using dictionary-based sparse representation,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 10, pp. 3973–3985, Oct. 2011,
doi: 10.1109/TGRS.2011.2129595.

[30] B. Xie, S. Mei, G. Zhang, Y. Zhang, Y. Feng, and Q. Du, “Extended
collaborative representation-based hyperspectral imagery classification,”
IEEE Geosci. Remote Sens. Lett., vol. 19, 2022, Art. no. 6007905,
doi: 10.1109/LGRS.2022.3159280.

https://dx.doi.org/10.1109/MGRS.2021.3105440
https://dx.doi.org/10.1109/TGRS.2020.2988385
https://dx.doi.org/10.1109/JSTARS.2023.3296876
https://dx.doi.org/10.1038/s41598-018-23136-5
https://dx.doi.org/10.3390/rs11171987
https://dx.doi.org/10.1080/20964129.2019.1571443
https://dx.doi.org/10.1109/JSTARS.2021.3100923
https://dx.doi.org/10.1109/JSTARS.2023.3298491
https://dx.doi.org/10.1109/TGRS.2018.2867444
https://dx.doi.org/10.1016/j.isprsjprs.2023.01.024
https://dx.doi.org/10.1016/j.isprsjprs.2020.11.018
https://dx.doi.org/10.1109/TGRS.2020.3029578
https://dx.doi.org/10.1109/TGRS.2019.2957135
https://dx.doi.org/10.1109/TIT.1969.1054314
https://dx.doi.org/10.1109/JSTARS.2022.3170057
https://dx.doi.org/10.1080/01431161.2020.1823516
https://dx.doi.org/10.1109/TGRS.2019.2912330
https://dx.doi.org/10.1016/j.isprsjprs.2022.07.020
https://dx.doi.org/10.1109/TNNLS.2022.3155114
https://dx.doi.org/10.1109/TGRS.2020.3042274
https://dx.doi.org/10.1109/TGRS.2018.2865102
https://dx.doi.org/10.1109/TNNLS.2018.2874432
https://dx.doi.org/10.1016/j.patrec.2015.09.010
https://dx.doi.org/10.1109/TGRS.2004.831865
https://dx.doi.org/10.1109/TGRS.2019.2907932
https://dx.doi.org/10.1109/MGRS.2016.2540798
https://dx.doi.org/10.1080/19475683.2022.2026470
https://dx.doi.org/10.1080/19475683.2022.2075935
https://dx.doi.org/10.1109/TGRS.2011.2129595
https://dx.doi.org/10.1109/LGRS.2022.3159280


10172 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[31] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Ro-
bust face recognition via sparse representation,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009,
doi: 10.1109/TPAMI.2008.79.

[32] R. M. Willett, M. F. Duarte, M. A. Davenport, and R. G. Baraniuk, “Spar-
sity and structure in hyperspectral imaging : Sensing, reconstruction, and
target detection,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 116–126,
Jan. 2014, doi: 10.1109/MSP.2013.2279507.

[33] H. Zhang, J. Li, Y. Huang, and L. Zhang, “A nonlocal weighted joint sparse
representation classification method for hyperspectral imagery,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2056–2065,
Jun. 2014, doi: 10.1109/JSTARS.2013.2264720.

[34] L. Zhang, M. Yang, and X. Feng, “Sparse representation or collaborative
representation: Which helps face recognition?,” in Proc. IEEE Int. Conf.
Comput. Vis., 2011, pp. 471–478, doi: 10.1109/ICCV.2011.6126277.

[35] W. Li, E. W. Tramel, S. Prasad, and J. E. Fowler, “Nearest regularized sub-
space for hyperspectral classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 52, no. 1, pp. 477–489, Jan. 2014, doi: 10.1109/TGRS.2013.2241773.

[36] J. Li, H. Zhang, Y. Huang, and L. Zhang, “Hyperspectral image clas-
sification by nonlocal joint collaborative representation with a locally
adaptive dictionary,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6,
pp. 3707–3719, Jun. 2014, doi: 10.1109/TGRS.2013.2274875.

[37] W. Li, Q. Du, and M. Xiong, “Kernel collaborative representation
with Tikhonov regularization for hyperspectral image classification,”
IEEE Geosci. Remote Sens. Lett., vol. 12, no. 1, pp. 48–52, Jan. 2015,
doi: 10.1109/LGRS.2014.2325978.

[38] H. Su, Y. Gao, and Q. Du, “Superpixel-based relaxed collaborative rep-
resentation with band weighting for hyperspectral image classification,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5525416,
doi: 10.1109/TGRS.2022.3161139.

[39] H. Chi, H. Xia, L. Zhang, C. Zhang, and X. Tang, “Competitive and
collaborative representation for classification,” Pattern Recognit. Lett.,
vol. 132, pp. 46–55, Apr. 2020, doi: 10.1016/j.patrec.2018.06.019.

[40] Y. Xu, Q. Du, W. Li, and N. H. Younan, “Efficient probabilistic collabora-
tive representation-based classifier for hyperspectral image classification,”
IEEE Geosci. Remote Sens. Lett., vol. 16, no. 11, pp. 1746–1750, 2019,
doi: 10.1109/LGRS.2019.2906839.

[41] J. Gou, X. He, J. Lu, H. Ma, W. Ou, and Y. Yuan, “A class-specific
mean vector-based weighted competitive and collaborative representation
method for classification,” Neural Netw., vol. 150, pp. 12–27, Jun. 2022,
doi: 10.1016/j.neunet.2022.02.021.

[42] Z. Huang, H. Tang, Y. Li, and W. Xie, “HFC-SST: Improved
spatial-spectral transformer for hyperspectral few-shot classifica-
tion,” J. Appl. Remote Sens., vol. 17, no. 02, pp. 1–22, 2023,
doi: 10.1117/1.jrs.17.026509.

[43] H. Pan, M. Liu, H. Ge, and S. Chen, “Semi-supervised spatial–spectral
classification for hyperspectral image based on three-dimensional Gabor
and co-selection self-training,” J. Appl. Remote Sens., vol. 16, no. 02,
pp. 1–19, 2022, doi: 10.1117/1.jrs.16.028501.

[44] M. A. Moharram and D. M. Sundaram, “Spatial–spectral hyperspectral im-
ages classification based on krill herd band selection and edge-preserving
transform domain recursive filter,” J. Appl. Remote Sens., vol. 16, no. 04,
pp. 1–29, 2022, doi: 10.1117/1.jrs.16.044508.

[45] H. Su, B. Zhao, Q. Du, P. Du, and Z. Xue, “Multifeature dictionary
learning for collaborative representation classification of hyperspectral im-
agery,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 4, pp. 2467–2484,
Apr. 2018, doi: 10.1109/TGRS.2017.2781805.

[46] Y. Gao, H. Su, H. Lu, and Q. Du, “Self-balancing dictionary learning for
relaxed collaborative representation of hyperspectral image classification,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5539918,
doi: 10.1109/TGRS.2022.3211209.

[47] H. Su, F. Shao, Y. Gao, H. Zhang, W. Sun, and Q. Du, “Probabilistic
collaborative representation based ensemble learning for classification
of wetland hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 61, 2023, Art. no. 5509517, doi: 10.1109/TGRS.2023.3267638.

[48] J. Hu, X. Shen, H. Yu, X. Shang, Q. Guo, and B. Zhang, “Extended
subspace projection upon sample augmentation based on global spatial and
local spectral similarity for hyperspectral imagery classification,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 8653–8664,
2021, doi: 10.1109/JSTARS.2021.3107105.

[49] C. Li, Y. Ma, X. Mei, C. Liu, and J. Ma, “Hyperspectral im-
age classification with robust sparse representation,” IEEE Geosci.
Remote Sens. Lett., vol. 13, no. 5, pp. 641–645, May 2016,
doi: 10.1109/LGRS.2016.2532380.

[50] X. Chen, S. Li, and J. Peng, “Hyperspectral imagery classifica-
tion with multiple regularized collaborative representations,” IEEE
Geosci. Remote Sens. Lett., vol. 14, no. 7, pp. 1121–1125, Jul. 2017,
doi: 10.1109/LGRS.2017.2699667.

[51] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification
of hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480–491,
Mar. 2005, doi: 10.1109/TGRS.2004.842478.

[52] Y. Ma, C. Li, H. Li, X. Mei, and J. Ma, “Hyperspectral image classification
with discriminative kernel collaborative representation and Tikhonov reg-
ularization,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 4, pp. 587–591,
Apr. 2018, doi: 10.1109/LGRS.2018.2800080.

[53] B. Xie, Y. Zhang, S. Mei, G. Zhang, Y. Feng, and Q. Du, “Spectral variation
augmented representation for hyperspectral imagery classification with
few labeled samples,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5543212, doi: 10.1109/TGRS.2022.3220579.

[54] M. Yang, L. Zhang, D. Zhang, and S. Wang, “Relaxed collabora-
tive representation for pattern classification,” in Proc. IEEE Com-
put. Soc. Conf. Comput. Vis. Pattern Recognit., 2012, pp. 2224–2231.
doi: 10.1109/CVPR.2012.6247931.

[55] H. Su, Y. Cai, and Q. Du, “Firefly-algorithm-inspired framework with
band selection and extreme learning machine for hyperspectral image
classification,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 10, no. 1, pp. 309–320, 2017, doi: 10.1109/JSTARS.2016.2591004.

[56] J. Yang and J. Qian, “Hyperspectral image classification via multiscale
joint collaborative representation with locally adaptive dictionary,” IEEE
Geosci. Remote Sens. Lett., vol. 15, no. 1, pp. 112–116, Jan. 2018,
doi: 10.1109/LGRS.2017.2776113.

[57] H. Su, B. Zhao, Q. Du, and Y. Sheng, “Tangent distance-based col-
laborative representation for hyperspectral image classification,” IEEE
Geosci. Remote Sens. Lett., vol. 13, no. 9, pp. 1236–1240, Sep. 2016,
doi: 10.1109/LGRS.2016.2578038.

[58] J. Liu, Z. Wu, J. Li, A. Plaza, and Y. Yuan, “Probabilistic-kernel collab-
orative representation for spatial-spectral hyperspectral image classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 4, pp. 2371–2384,
Apr. 2016, doi: 10.1109/TGRS.2015.2500680.

Hongjun Su (Senior Member, IEEE) received the
Ph.D. degree in cartography and geography infor-
mation system from the Key Laboratory of Virtual
Geographic Environment (Ministry of Education),
Nanjing Normal University, Nanjing, China, in 2011.

He is currently a Full Professor with the School of
Earth Sciences and Engineering, Hohai University,
Nanjing, China. His main research interests include
hyperspectral remote sensing dimensionality reduc-
tion, classification, and spectral unmixing.

Dr. Su is an Associate Editor of the IEEE JOURNAL

OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENS-
ING.

Dezhong Shi received the B.E. degree in surveying
and mapping engineering from the Shandong Uni-
versity of Science and Technology, Taian, China,
in 2022. He is currently working toward the M.E.
degree in surveying and mapping with the School of
Earth Sciences and Engineering, Hohai University,
Nanjing, China.

His research interests include hyperspectral remote
sensing image processing, collaborative representa-
tion, and hyperspectral machine learning classifica-
tion.

https://dx.doi.org/10.1109/TPAMI.2008.79
https://dx.doi.org/10.1109/MSP.2013.2279507
https://dx.doi.org/10.1109/JSTARS.2013.2264720
https://dx.doi.org/10.1109/ICCV.2011.6126277
https://dx.doi.org/10.1109/TGRS.2013.2241773
https://dx.doi.org/10.1109/TGRS.2013.2274875
https://dx.doi.org/10.1109/LGRS.2014.2325978
https://dx.doi.org/10.1109/TGRS.2022.3161139
https://dx.doi.org/10.1016/j.patrec.2018.06.019
https://dx.doi.org/10.1109/LGRS.2019.2906839
https://dx.doi.org/10.1016/j.neunet.2022.02.021
https://dx.doi.org/10.1117/1.jrs.17.026509
https://dx.doi.org/10.1117/1.jrs.16.028501
https://dx.doi.org/10.1117/1.jrs.16.044508
https://dx.doi.org/10.1109/TGRS.2017.2781805
https://dx.doi.org/10.1109/TGRS.2022.3211209
https://dx.doi.org/10.1109/TGRS.2023.3267638
https://dx.doi.org/10.1109/JSTARS.2021.3107105
https://dx.doi.org/10.1109/LGRS.2016.2532380
https://dx.doi.org/10.1109/LGRS.2017.2699667
https://dx.doi.org/10.1109/TGRS.2004.842478
https://dx.doi.org/10.1109/LGRS.2018.2800080
https://dx.doi.org/10.1109/TGRS.2022.3220579
https://dx.doi.org/10.1109/CVPR.2012.6247931
https://dx.doi.org/10.1109/JSTARS.2016.2591004
https://dx.doi.org/10.1109/LGRS.2017.2776113
https://dx.doi.org/10.1109/LGRS.2016.2578038
https://dx.doi.org/10.1109/TGRS.2015.2500680


SU et al.: MEAN-WEIGHTED CR-BASED SPATIAL-SPECTRAL JOINT CLASSIFICATION FOR HYPERSPECTRAL IMAGES 10173

Zhaohui Xue (Member, IEEE) received the Ph.D.
degree in cartography and geographic information
system from Nanjing University, Nanjing, China, in
2015.

He is currently a Professor with the School of Earth
Sciences and Engineering, Hohai University, Nan-
jing, China. He has authored more than 50 scientific
papers. His research interests include hyperspectral
image classification, time-series image analysis, pat-
tern recognition, and machine learning.

Dr. Xue was the recipient of the Best Reviewer for
the IEEE GEOSCIENCE AND REMOTE SENSING SOCIETY. He is an Editorial Board
Member with National Remote Sensing Bulletin (2020–2024).

Qian Du (Fellow, IEEE) received the Ph.D. degree in
electrical engineering from the University of Mary-
land, Baltimore, MD, USA, in 2000.

She is currently the Bobby Shackouls Professor
with the Department of Electrical and Computer En-
gineering, Mississippi State University, Starkville,
MS, USA. Her research interests include hyperspec-
tral image analysis and applications, pattern classifi-
cation, data compression, and neural networks.

Dr. Du is a Fellow of the SPIE-International Soci-
ety for Optics and Photonics. From 2016–2020, she

was the Editor-in-Chief of the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED

EARTH OBSERVATIONS AND REMOTE SENSING. She currently is a member of
IEEE Periodicals Review and Advisory Committee.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


