
 

An Effective Optimization Method for Integrated Scheduling of
Multiple Automated Guided Vehicle Problems
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Abstract: Automated  Guided  Vehicle  (AGV)  scheduling  problem  is  an  emerging  research  topic  in  the  recent

literature. This paper studies an integrated scheduling problem comprising task assignment and path planning

for  AGVs.  To  reduce  the  transportation  cost  of  AGVs,  this  work  also  proposes  an  optimization  method

consisting of the total running distance, total delay time, and machine loss cost of AGVs. A mathematical model

is formulated for the problem at hand, along with an improved Discrete Invasive Weed Optimization algorithm

(DIWO). In the proposed DIWO algorithm, an insertion-based local search operator is developed to improve the

local  search  ability  of  the  algorithm.  A  staggered  time  departure  heuristic  is  also  proposed  to  reduce  the

number  of  AGV  collisions  in  path  planning.  Comprehensive  experiments  are  conducted,  and  100  instances

from actual factories have proven the effectiveness of the optimization method.
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1　Introduction

As  an  important  part  of  industrial  automation,
transportation  has  been  widely  investigated  over  the
years.  In  particular,  Automated  Guided  Vehicles
(AGV)  are  considered  an  indispensable  part  of  the
industrial  transportation  system[1].  With  the  increasing
demand  for  flexible  manufacturing  systems  for
AGVs[2],  research  on  AGV  scheduling  in  production
workshops  has  great  value.  The  present  paper  mainly
investigates  the  problem  of  task  assignment  and  path
planning  of  AGVs  in  matrix  production  workshops,
while  considering  three  factors,  namely,  capacity
constraints,  time  constraints,  and  collision  avoidance.
This  paper  aims  to  improve  the  transportation
efficiency  of  AGVs  in  the  production  workshop,

reduce the transportation cost of AGVs, and ultimately
improve the transportation safety of AGVs.

Considering  the  transportation  cost  of  AGV,
including total running distance, time penalty, and loss
cost  of  AGV,  Zou  et  al.[3−5] studied  AGV  task
assignment for Foxconn’s matrix production workshop.
Task assignment is an NP-hard problem of constrained
optimization[6].  Through  heuristic[7−8] and  meta-
heuristic  algorithms[9−13],  a  better  scheduling  scheme
can  quickly  be  found.  The  task  assignment  stage
contains two important attributes: divisibility and fault
tolerance,  both  of  which  ensure  that  tasks  can  be
effectively  assigned  to  multiple  AGVs,  while
improving  resource  utilization  efficiency.  Typically,
the  task  assignment  stage  should  follow  certain
constraints below:

(1)  Capacity  constraint: The  carrying  capacity  of
each  AGV  has  a  fixed  upper  limit,  and  the  redundant
tasks  need to  be  transported  by  other  AGVs when the
tasks transported by AGVs exceed the upper limit.

(2)  Time  constraint: The  tasks  to  be  delivered
should be delivered within the specified time. Often, a
penalty  time  is  imposed  if  the  delivery  is  carried  out
too early or too late.
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Scholars  used  accurate  algorithms  in  the  early  stage
to solve the problem of task assignment[14−16]. Accurate
algorithms can obtain accurate solutions for small cases
in  a  short  period;  however,  the  solution time for  large
cases  is  too  long.  For  large-scale  instances,  scholars
use  heuristic  and  meta-heuristic  algorithms  to  solve
such problems[17−27].

The  current  literature  only  considers  the  assignment
of  tasks,  and does  not  consider  the  integration of  path
planning[28−32].  The  reduction  of  AGV  transportation
costs and the improvement of transportation efficiency
rely  on  a  good  scheduling  scheme.  However,  the
scheduling  strategy  cannot  guarantee  that  there  would
be  no  collision  in  the  actual  production  if  it  only
considers  the  assignment  of  tasks.  Therefore,
considering  path  planning  with  a  collision  is  of  great
significance.

Path planning serves to find the shortest path without
collisions.  The  current  path-planning  methods  are
divided  into  single  AGVs,  multiple  AGVs,  and  other
situations[33]. De Ryck et al.[1] explained a graph search
algorithm  for  a  single  AGV.  Unlike  a  single  AGV,
deadlock  and  collision  must  be  considered  in  the  path
planning problem of multiple AGVs. Thus far, scholars
have used deadlock-free or collision-free strategies for
path planning[34−38].

In multi-AGV scheduling, collision always occurs in
the  operation  of  AGVs.  Thus,  in  the  path  planning  of
two  AGVs,  when  a  collision  occurs  in  the  generated
path, it can be considered to regenerate the path of one
AGV  to  avoid  the  collision[39].  However,  when  the
number  of  AGVs  is  larger,  the  effect  of  regenerating
the  AGV  path  becomes  worse  and  worse.  Given  that
there  is  a  high  probability  of  AGV  collision  at  this
time, it  is difficult to find a path without the collision.
Furthermore,  to  avoid  the  collision,  the  transportation
cost  of  the  generated  path  will  increase.  AGVs  can
effectively  avoid  collision  when  the  number  of  AGVs
is not large[40].

There  are  many  other  ways  to  avoid  collisions,
including  the  use  of  the  vector  field  histogram
method[41],  the  dynamic  windows  approach[42],  and
Optimal  Reciprocal  Collision  Avoidance  (ORCA)[43].
The vector field histogram method solves the problem
of obtaining the AGV path between two close obstacles
by calculating the obstacle density. By establishing the
solution  space  for  the  AGV  feasible  vector,  the
dynamic  windows  approach  provides  AGVs  with  the
driving direction and distance without collision in unit

time.  In  ORCA,  multiple  AGVs perceive  each  other’s
positions  and  calculate  the  collision  boundary.
Furthermore,  the  AGV  does  not  touch  the  collision
boundary to avoid a collision.

Considering  the  path  planning  problem  with
collision, three problems must be solved:

(1)  How  should  the  specific  route  be  represented?
Only when the route is represented can the collision be
detected by comparison or judgment.

(2)  How  to  detect  collisions?  The  representation  of
the  path  can  demonstrate  the  action  track  of  AGV  on
the  map.  However,  whether  to  pass  through  the
intersection at the same time should also be considered
apart from the coincidence of the action trajectories of
different AGVs.

(3)  How  to  reduce  collision  and  solve  collision
problems? Collisions will  always occur when multiple
AGVs  are  running  in  the  same  matrix  workshop.
Reducing  collisions  can  mitigate  the  computational
complexity  of  AGV  path  planning.  Related  to  this,
solving the collision problem is the basis for the normal
operation of multiple AGVs.

Although scholars have conducted numerous studies
on  the  scheduling  problem  of  AGVs,  few  have
considered  task  assignment  and  path  planning
simultaneously. Considering that task assignment alone
cannot  avoid  the  collision  in  the  actual  operation  of
AGV.  Similarly,  considering  path  planning  alone
cannot  meet  the  constraints  existing  in  actual
production,  such  as  time  constraints  and  capacity
constraints.  The following are  the  practical  limitations
of  studying  the  task  allocation  and  path  planning
problems of AGV separately.

(1) Studying the assignment problem of AGVs alone
can maximize AGVs for transportation and increase the
transportation  efficiency  of  AGVs.  However,  in  the
production  workshop,  collisions  are  inevitable  when
the  number  of  AGVs  increases.  Thus,  AGVs  cannot
achieve  the  transportation  effect  studied  in  actual
production  if  only  the  task  allocation  of  AGVs  is
considered and not the accompanying collision issues.

(2) Ensuring the transportation efficiency of AGVs is
difficult  by  simply  solving  the  path  planning  problem
through  classical  optimization  algorithms.  Current
research  on  path  planning  for  AGVs  rarely  considers
that  these  are  responsible  for  multiple  tasks
simultaneously.  Thus,  when  there  are  many  AGVs  in
the  workshop,  classical  path  planning  algorithms  are
difficult to solve in a short time.
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The  present  paper  investigates  the  integrated
scheduling of the task assignment problem and the path
planning  problem  of  collision  avoidance.  Taking  a
matrix  workshop  of  Foxconn  as  the  research
background,  the  route  is  initialized  using  the
Manhattan  distances  method.  In  the  task  assignment
stage,  we  use  the  mathematical  model  established  by
Zou et al.[3] to optimize the scheduling scheme.

In  the  path  planning  stage,  we  consider  path
generation, collision detection, and collision avoidance.
In  path  generation,  the  path  is  represented  by  a  set  of
coordinate  points.  In  collision  detection,  we  can
determine  whether  there  is  a  collision  by  comparing
potentially  similar  coordinate  points  in  the  paths  of
different AGVs simultaneously. In collision avoidance,
we propose an AGV running direction priority strategy
to effectively reduce the occurrence of AGV collision.
At the same time, we establish a stacked time departure
heuristic to reduce the time of vehicle collisions.

The main  contributions  of  this  paper  are  as  follows.
First, this paper proposes a joint scheduling method for
AGV task allocation and path planning, which is unlike
the classical  AGV scheduling problem. Second,  in  the
case  of  multiple  AGVs  driving  in  the  workshop,
common  path-planning  algorithms  are  no  longer
applicable.  To  solve  this  problem,  the  present  paper
proposes a path generation rule that establishes priority
for  driving  directions  to  effectively  reduce  collisions.
Finally,  this  paper  reduces  the  number  of  AGVs
present  in  the  workshop  simultaneously  by  delaying
departure,  effectively  reducing  collisions  and
eliminating the difficulty of path planning.

The remainder of the article is organized as follows.
In  Section  2,  the  specific  problem  of  the  matrix
workshop  is  described,  and  a  mathematical  model
based on this problem is established in Section 3.  The
referenced  Discrete  Invasive  Weed  Optimization
(DIWO) algorithm, as well as a heuristic, are proposed
in  Section  4.  Section  5  presents  and  analyzes  the
computational results. The conclusions are provided in
Section 6.

2　Integrated Scheduling Problem

The layout of the Foxconn matrix production workshop
consists  of  multiple  independent  workstations  and
AGVs.  Workstations  are  distributed  throughout  the
workshop  in  a  matrix  manner.  An  AGV  is  used  to
distribute  the  materials  required  for  production  to  the
workstation  for  processing,  after  which  the  AGV

returns to  the depot  and waits  for  the next  instruction.
Figure 1 depicts the matrix workshop.

The  working  mode  of  an  AGV  in  the  matrix
workshop is described as follows. The workshop has a
total  of  10  rows,  each  consisting  of  10  workstations.
Each  workstation  consists  of  multiple  Computer
Numerical  Control  (CNC)  machines  and  a  material
buffer.  CNC  machines  are  used  for  processing,  while
the  material  buffer  is  used  to  store  the  materials
required for processing. Each workstation is set up next
to the aisle to facilitate the transportation of materials.
When  the  workstation  is  short  of  materials,  it  sends  a
call  to  request  the  distribution  of  materials.  This  kind
of  workstation  is  called  a “task”.  When  an  AGV
receives  a  call,  it  carries  materials  from the  depot  and
drives on the aisle. The AGV returns to the depot once
the  requested  material  is  sent  to  the  designated
workstation.

2.1　Capacity and time constraints

In  relation  to  the  multi-AGV  integrated  scheduling
problem,  the  AGV  distribution  problem  should  be
considered  first.  Here,  certain  constraints  must  be
satisfied to be able to assign multiple tasks to multiple
AGVs.  This  paper  mainly  considers  the  capacity
constraint of AGVs and the latest delivery constraint of
tasks.

There is a fixed upper limit on the transport capacity
of an AGV, and tasks are randomly sorted and assigned
to the AGVs.  Here,  the system tries  to  assign the first
task  to  the  first  AGV,  and  assesses  whether  the
materials  carried  by  the  AGV  exceed  the  capacity.  If
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Fig. 1    Matrix workshop.
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the  capacity  is  not  exceeded,  the  second  task  will  be
assigned  to  the  AGV,  and  the  capacity  will
continuously  be  checked.  When  the i-th  task  is
assigned to the j-th AGV and the capacity is exceeded,
the i-th  task  will  be  assigned  to  the  (j+1)-th  AGV.  In
this  way,  multiple  tasks  can  be  assigned  to  multiple
AGVs to meet capacity constraints.

In  actual  production,  the  call  time  and  the  latest
delivery  time  are  different  for  each  task.  In  a  multi-
AGV  scheduling  problem,  each  AGV  must  be
responsible  for  the  distribution  of  multiple  tasks.
Certain  constraints  must  be  met  when  assigning  tasks
in  order  to  ensure  that  each  task  can  be  delivered  on
time.  When  the i-th  task  is  assigned  to  the j-th  AGV,
and  if  the  AGV  cannot  meet  the  requirement  that  the
i-th  task  be  delivered  on  time,  the i-th  task  will  be
assigned  to  the  (j+1)-th  AGV.  Thus,  using  the  above
method, the constraint of the latest delivery time of the
task can be met.

In  the  scheduling  process,  it  is  obvious  that
considering  the  above  two  constraints  separately
cannot achieve the purpose of optimization. Therefore,
this paper considers two constraints simultaneously. In
the process of task assignment, if any constraint cannot
be met, the task will be assigned to a new AGV.

2.2　Collision constraint

In  the  matrix  production  workshop,  the  aisle  between
two  adjacent  workstations  only  runs  AGVs  with  the
same  driving  direction  at  the  same  time.  When  two
AGVs  in  different  directions  appear  on  this  aisle
simultaneously, a collision is likely to occur.

To consider the collision constraint, we must first be
able to judge the collision.  We express the path in the
form  of  a  coordinate  point  set  by  taking  the  matrix
workshop as the coordinate system and the workstation
as  the  coordinate  point.  Here,  (2,  3,  0,  21,  1)  is  a
coordinate point in the path, where 2 and 3 represent X
and Y coordinates,  respectively;  0  indicates  that  the
running  direction  of  AGV  is  upward,  down,  left,  and
right  as  represented  by  1,  2,  and  3,  respectively;  21
represents the moment when AGV runs to the specified
coordinates;  and  1  indicates  that  this  coordinate  point
belongs to the driving path of the first AGV. The path
of each AGV can be represented through the collection
of coordinate points. Using this method, we can easily
detect the collision by comparing the paths of different
AGVs to determine whether two AGVs are traveling in
different directions on the same aisle at a certain time.

3　Mathematical Model

This part introduces the establishment of a multi-AGV
integrated scheduling model in the matrix workshop.

3.1　AGV task assignment model

We have established the mathematical model with time
and  capacity  constraints,  as  described  above.  The
parameters and decision variables are as follows.

(1) K: It represents the set of AGVs.
(2) T:  It  represents  the  set  of  tasks.  Notably, t ∈ T;

tcall and tlatest represent  the  call  time  and  the  latest
delivery  time  of  the  task,  respectively;  and tnum

represents the number of materials called.
(3) L:  It  represents  the  location  of  the  task.  Each

location li ∈ L contains xi and yi coordinates that can be
recorded as li = (xi, yi).

(4) S: It represents the amounts of materials required
for the buffer.

(5) Decision variables:
xi jk xi jk = 1 (i, j) k:  if arc  is traveled by AGV , and 0

otherwise.  In  addition,  the  parameter  settings  are
shown in Table 1, and the constant settings are shown
in Table 2.

From the variables given above,  the problem can be
defined as follows:
 

di j =
∣∣∣xi− x j

∣∣∣+ ∣∣∣yi− y j
∣∣∣ (1)

 

ti j = di j/v (2)
 

Table 1    Parameters for AGV task assignment model.
Parameter Specific description

n Total number of tasks
m Total number of AGVs used

di j  (m) Distance between tasks i and j

ti j  (s) Travel time between tasks i and j
ca Loss cost per AGV
cd Distance cost per AGV
ct Time penalty cost per AGV

Wr
j Time when the AGV arrives at task j

 

Table 2    Constants for AGV task assignment model.
Constant Specific description
v (m/s) Speed of the AGV

Q Capacity of AGV
W0 Departure time of AGV
Wu Unloading time of AGV

Wp (s) Processing time required per unit of material
g Weight per unit of material
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Wr
j =Wr

i + ti j+Wu, i ∈ T, j ∈ T, i , j (3)
 

tnum
j =

[
S j+

⌈(
Wr

j − tcall
j

)⌉
/Wp

]
×g, j ∈ T (4)

Equation (1) is used to calculate the distance between
task i and  task j,  while  Eq.  (2)  is  used  to  obtain  the
travel time of AGV between tasks i and j. Furthermore,
Eq.  (3)  determines  when  the  AGV  arrives  at  task j,
while Eq. (4) determines the number of materials to be
delivered by AGV for task j.

3.2　AGV path planning model

The  modeling  of  path  planning  takes  the  matrix
workshop  as  the  background,  and  the  path  is  set  by
Manhattan  distances.  The  specific  parameters  and
decision variables are as follows.

px py

pk

pt

pw

(1) P: It represents the path point of AGVs. Notably,
p ∈ P;  and  represent the x and y coordinates of
the path point, respectively;  represents which AGV
the path point belongs to;  represents the time when
the AGV reaches the path point; and  represents the
direction of travel when the AGV passes the path point.

(2) Z t:  It  represents  the  time  required  for  the  next
AGV  to  avoid  the  first  AGV  when  the  collision  is
predicted.

Hk(3) :  It  represents  the  number  of  path  points  of
AGV k.

ck
h ck

h = 1(4) : It is a decision variable.  if AGV needs
to avoid the vehicle’s collision, and 0 otherwise.

The problem can be defined with the variables given
above:
 

pk = k, pk ∈ P (5)
 

0 ⩽ px ⩽ 10, px ∈ P (6)
 

0 ⩽ py ⩽ 10, px ∈ P (7)
 

pt
h ⩽ pt

h+1, pt
h ∈ P, pt

h+1 ∈ P (8)
 

0 ⩽ pw ⩽ 3, pw ∈ P (9)

Constraint  of  Eq.  (5)  ensures  that  the  route  points
belong to  the same AGV. Constraints  of  Formulas  (6)
and (7) ensure that the path point is within the specified
area  and  will  not  exceed  the  limit.  In  addition,
constraint  of  Formula (8)  ensures that  the sequence of
AGV  driving  on  the  path  point  will  not  be  confused,
while  constraint  of  Formula  (9)  ensures  that  the  AGV
will  only  run  in  four  directions:  0  for  upward,  1  for
down, 2 for left, and 3 for right.

3.3　Model objectives and constraints

The  main  objective  of  this  paper  is  to  reduce  the
transportation  cost  of  multi-AGV  scheduling  and
reduce the impact caused by potential AGV collisions.
The following equations can achieve those objectives:
 

Cd = cd

m∑
k=1

n∑
i=0

n∑
j=0

xi jk ×di j (10)

 

Ca = ca

m∑
k=1

n∑
i=0

x0ik (11)

 

Ct = ct




m∑
k=1

n∑
i=0

n∑
j=0

xi jk
(
tlatest

j −Wr
j

)+
m∑

k=1

Hk∑
h=1

ck
hZt

 (12)

 

min F (i, j, k, h) =Ca+Cd+Ct (13)

Equations  (10)−(13)  represent  the  traveling  cost  of
all  AGVs,  the  cost  of  all  AGV losses,  the  punishment
of  all  AGVs  for  violating  the  time  (including  the
punishment  of  early  arrival),  and  the  objective
function, respectively.

The additional constraints are as follows:
 

m∑
k=1

n∑
i=0

xi jk = 1, j ∈ T, i , j (14)

 

m∑
k=1

n∑
j=0

xi jk = 1, i ∈ T, i , j (15)

 

n∑
i=1

n∑
j=0

xi jk × tnum
j < Q, k ∈ K (16)

 

m∑
k=1

n∑
j=0

xi jk × tc <Wr
j <

m∑
k=1

n∑
j=0

xi jk × td (17)

Constraints of Eqs. (14) and (15) ensure that a task is
transported  by  only  one  AGV,  constraint  of  Formula
(16)  ensures  that  each  AGV  is  not  overloaded,  and
constraint of Formula (17) ensures that the arrival time
of  each  AGV  is  between  the  call  time  and  the  most
recent delivery time.

4　Proposed Optimization Method

This  section  introduces  the  optimization  method
proposed  for  AGV  integrated  scheduling.  The  DIWO
algorithm  used  will  be  introduced  first.  Then,  a
heuristic  is  explained  to  quickly  judge  the  feasible
solution. After that,  a running direction priority rule is
proposed,  along  with  a  stacked  time  departure
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heuristic.

4.1　DIWO algorithm

The DIWO algorithm shows good performance  in  our
previous  investigation  into  multi-AGV  task
assignments[44]. In the present paper, we once again use
the  DIWO  algorithm  to  solve  the  AGV  integrated
scheduling  problem.  The  detailed  procedure  of  the
DIWO algorithm is shown in Algorithm 1.

seed =
fcur− fmin

fmax− fmin
× (S max−S min)+S min

fmin fmax

fcur

S max

S min

During  initialization,  one  high-quality  individual  is
generated  by  the  Nearest-Neighbor-based  Heuristic
(NNH)[3],  and  the  rest  are  generated  randomly.  In  the
procedure,  the  number  of  new  individuals  is  obtained
based  on  the  objective  value  of  the  individual

population  ( ,
 and  represent  the  minimum  and  maximum

objective  function  value  of  population,  represents
the objective function value of current individual, 
and  represent  the  maximum  and  minimum
number of seeds, respectively).  Then, every individual
generates  a  corresponding  number  of  new  individuals
through insertion and exchange operators. The specific
details are porvided in Algorithm 2.

Local search is based on the insertion neighborhood,
in which a task is selected randomly and inserted in all
positions.  If  the  solution  obtained  is  better  than  the
current solution, then the current solution is replaced.

4.2　Heuristic  for  the  rapid  judgment  of  the
feasible solution

Due  to  time  and  capacity  constraints,  infeasible
solutions  are  inevitable.  The  rapid  detection  of
infeasible  solutions  can  effectively  improve
computational  efficiency.  A  heuristic  for  quickly
judging feasible solutions is introduced below.

In  constraint  of  Formula  (16),  each  AGV cannot  be

overloaded. Then, when the task changes, the reduction
of the task will not lead to the overloading of the AGV.
In  this  case,  the  increase  in  the  number  of  tasks  has
become the main reason for AGV overload.

In constraint of Eq. (4), the material demand of each
task  also  includes  the  part  consumed  by  the  machine
during transportation. This heuristic can judge whether
AGV  is  overloaded  in  most  cases,  after  which  the
system  assesses  whether  or  not  it  is  an  infeasible
solution.  The implementation of this  heuristic  is  given
in Heuristic 1.

4.3　Path generation

Current  research  on  path  planning  focuses  on
generating the shortest path to reach the target point on
the  map  and  avoiding  obstacles  in  the  process  of
traveling.  There  are  multiple  paths  to  ensure  the
shortest  driving  distance  of  AGV,  especially  in  the

 

Algorithm 1　DIWO
PS 0Initialization: population with  weeds

Procedure:
1: while (termination criterion)
2: 　Calculate the number of new individuals;
3: 　Generate new individuals;
4: 　Evaluate all new individuals;
5: 　Initiate a local search for the best new individual;
6: 　Poor individuals are competitively excluded;
7: 　Initiate a local search for the current best individual;
8: end while
9: Report the best solution found.

 

Algorithm 2　Local search
Procedure:

li  1: Set  the selected task and position p=0;
  2: for each position p in P

li  3: 　Set  to p in P;
  4: 　if the new solution meets the constraints
  5: 　　Calculate the objective value of the solution;
  6: 　　if the new solution is better
  7: 　　　Replace the old with the new solution;
  8: 　　end if
  9: 　end if
10: end for
11: Report the solution.

 

Heuristic 1　Rapid judgement
i Q′ = 0Initialization: , j, 

Procedure:
i  1: for task  in AGV j

tmi = S i ×g  2: 　 ;

Q′j = Q′j + tmi  3: 　 ;

Q′j < Q  4: 　if 
  5: 　　AGV j is not overloaded;
  6: 　　Continue;
  7: 　else
  8: 　　AGV j is overloaded;
  9: 　　break
10: 　end if
11: end for
12: Report the status.
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absence  of  obstacles.  There  are  two  shortest  paths,  as
shown in Fig. 2.

In  the  matrix  workshop,  the  time  calculation  cost
would  be  too  high  if  each  AGV  generates  the  path
through algorithms. In this paper, the path is generated
by  formulating  the  rules  of  AGV  driving  direction
priority,  effectively  reducing  the  time  and  calculation
cost. As shown in Fig. 2, the blue and yellow paths are
generated in a top-down priority and left-right priority
manner, respectively. Under the top-down priority rule,
the  AGV  drives  up  to  the  same  line  as  the  task  point
and then drives laterally. Given that AGVs traveling in
the  same  direction  will  not  collide  at  the  same  speed,
this  rule  can  also  effectively  reduce  the  number  of
collisions in multi-AGV scheduling.

4.4　Stacked time departure heuristic

The  collision  of  multi-AGV  scheduling  in  matrix
workshops  occurs  between  AGVs.  Thus,  an  effective
way  to  avoid  collision  is  to  reduce  the  number  of
AGVs running in the workshop simultaneously. In this
paper,  taking  the  loss  cost  of  AGV  as  a  part  of  the
objective function can effectively reduce the number of
scheduled AGVs. We propose a stacked time departure
heuristic  to  further  reduce  the  number  of  AGVs
running  in  the  workshop  at  the  same  time.  This
heuristic  method  is  inspired  by  Ref.  [44].  The
implementation of this heuristic is given in Heuristic 2.

By  calculating  the  early  arrival  time  of  all  tasks
belonging  to  AGV k,  the  minimum  early  arrival  time
can  be  selected  as  the  delayed  departure  time.  As
shown in Eq. (4), the delay of departure will lead to an
increase  in  AGV  carrying  capacity.  Thus,  it  is
necessary  to  judge  whether  the  AGV  is  overloaded
after a delayed departure. In the case of overload, it  is

necessary to calculate the amount of overload and how
long  it  would  take  to  start  early  to  eliminate  the
overload.

4.5　Joint scheduling execution process

In the joint  scheduling problem, this  paper first  solves
the  assignment  problem  of  AGV.  In  particular,  this
paper  addresses  the  joint  scheduling  problem of  AGV
in two stages. First, we use the DIWO algorithm to find
a better task allocation solution for an AGV. A delayed
departure  heuristic  method  is  used  based  on  the
obtained  task  allocation  scheme  to  determine  the
departure  time  for  each  AGV.  Then,  the  number  of
AGVs  running  simultaneously  in  the  workshop  is
reduced by setting different departure times for AGVs.
Finally, specific driving routes are formulated for each
AGV  using  the  proposed  path  generation  method  and
directional  priority rules.  The process described above
is shown in Fig. 3.

5　Case Analysis

We  propose  an  optimization  method  and  some
optimization  strategies.  In  this  section,  we  will  verify
whether  or  not  the  optimization  method  under  the
model is effective.

First,  we  introduce  the  instances  collected  by  the
actual factory. Then, we compare the DIWO algorithm

 

 
Fig. 2    Path generation.

 

Heuristic 2　Stacked time departure
i t′ = 0Initialization: , j, k, , t''=∞

Procedure:
Hk  1: Let  be the number of tasks in AGV k;

i  2: for task  in AGV k

t′ = tdi −Wr
i  3: 　 ;

t′ < t′′  4: 　if 
t′′ = t′  5: 　　 ;

  6: 　else
  7: 　　Continue;
  8: 　end if
  9: end for

tmi =
[
S i +

⌈(
Wr

i − tcall
i + t′

)⌉
/Wp

]
×g10: ;(∑Hk

i=0
∑Hk

j=0 xi jk × tnum
i

)
11: if 
12: 　Continue;
13: else

t′ =
[(

Q−∑Hk

i=0
∑Hk

j=0 xi jk × tnum
i

)
/g×Wp

]
/Hk14: 　 ;

t′′ = t′′ − t′15: 　 ;
t′′16: Report .
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with and without the optimization method. Finally, we
compare  other  algorithms  used  for  similar  research
problems  to  further  verify  the  effectiveness  of  the
proposed method.

5.1　Instances and experimental results

According to Zou et al.[3], the matrix workshop can be
divided  into  countless  continuous  production  cycles,
and the tasks collected in each production cycle can be
scheduled for the next production cycle. The number of
tasks  collected  in  each  cycle  may  vary  and  can  be
divided into 10, 20, 30, 40, and 50 tasks. Therefore, the
experiments  are  carried  out  from  different  task
numbers.  The  first  and  second  experiments  compare
the DIWO algorithm with and without the optimization
strategies,  respectively.  An instance is  selected for  the
introduction,  and  its  specific  parameters  are  shown  in
Table 3. Each instance is collected in a Foxconn matrix
production workshop within 6 minutes.

In  the  second  part,  the  comparative  experiments  of
different  algorithms  are  shown.  The  comparison
algorithms are those with better current effects, such as

τ

Discrete  Artificial  Bee  Colony  (DABC)[3],  Artificial
Bee  Colony  (ABC)[45],  Harmony  Search  (HS)[38],  and
Iterative  Greedy  (IG)[46].  The  specific  parameter
settings  of  the  algorithm are  shown in Table  4,  where
PS denotes  population  size; l denotes  a  predetermined
number of trials; r denotes a predetermined number; 
denotes  the  number  of  replications;  HMS  denotes
harmony  memory  size;  HMCR  denotes  harmony
memory  considering  rate; d denotes  the  number  of
deletion  tasks;  OperIter  denotes  the  number  of
iterations in the local search phase.

A total of 100 instances are used as the objects of the
experiment.  Each  instance  is  replicated  10  times  and
compared  with  the  average  value  to  avoid  the
contingency of the experiment and to make the results
more realistic.  The execution time for each instance is
5 seconds. The experiment is conducted on an Intel (R)
Core (TM) i7-8550U CPU @ 1.80 GHz with 8.00 GB
RAM  in  a  Windows  10  Operation  System.  The
experimental  results  are  compared  by  the  Relevant
Percentage Decrease (RPD) as follows:
 

RPD =
(

fcur− fmin

fmin

)
×100 (18)

The  final  results  are  analyzed  by  multi-factor
analysis of variance.

5.2　Results and discussion

In  this  section,  we  present  the  optimization  results  of
the  previously  mentioned  instances  in  the  form  of
graphs  and  tables.  First,  the  effectiveness  of  the
optimization  strategies  is  verified  and  analyzed.  Then,
we  compare  the  proposed  method  with  other  heuristic
optimization  algorithms  and  analyze  the  performance
of different algorithms. Based on the above results, we
present  a  summary  of  the  performances  of  the  multi-

 

Call the DIWO algorithm to allocate tasks

Set departure time for each AGV through delayed 
departure method

Develop specific driving routes for each AGV based 
on the principle of direction priority.

 
Fig. 3    Joint scheduling execution process.

 

Table 3    Task properties.
Task Station number Coordinate X Coordinate Y Call time (s) Material required Latest delivery time (s)

1 69 7 9 14 28 614
2 10 1 10 70 29 700
3 35 4 5 97 28 697
4 45 5 5 115 28 715
5 59 6 9 136 30 796
6 47 5 7 190 28 790
7 19 2 9 230 30 890
8 61 7 1 263 30 923
9 54 6 4 310 28 910
10 77 8 7 348 30 1008
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AGV integrated scheduling optimization methods.
5.2.1　Verification of optimization strategies
The experimental  results  of the optimization strategies
mentioned  in  Section  4  are  shown  in Table  5.  The
results  show  the  DIWO  algorithm  with  the
optimization  method  and  the  DIWObas algorithm
without  the  optimization  method.  The  first  column
represents the number of tasks, each with 20 instances.
The  average  values  of  RPD  and  number  of  collisions
(COL) of instances with the same number of tasks are
listed subsequently.

To  verify  the  effectiveness  of  the  strategies,  this
paper  conducts  experimental  comparisons  by
combining  the  strategies  separately.  DIWO1  includes
all optimization methods, DIWO2 does not include the
stacked  time  departure  heuristic,  DIWO3  excludes
local  search,  and  DIWO4  excludes  the  stacked  time
departure heuristic and local search.

Table 5 also shows the specific data for each DIWO,
while Figs.  4 and 5 present  the  comparative  trends  of
RPD  and  collision  frequency,  respectively.  As  shown
in Figs. 4 and 5 and Table 5, DIWO3 with the stacked
time  departure  heuristic  is  closer  to  DIWO1,  while
DIWO2 without the stacked time departure heuristic is
worse  than  DIWO3,  thus  proving  that  this  heuristic
plays  a  major  role  in  the  optimization.  Similarly,
DIWO2 and DIWO4 validate the effectiveness of local
search.

Overall, in the AGV scheduling process, the stacked
time  departure  heuristic  can  reduce  the  punishment  of
AGVs  by  controlling  the  departure  time  of  different

AGVs,  while  simultaneously  reducing  the  number  of
AGVs  in  the  workshop.  Doing  so  drastically  reduces
the possibility of collisions.

In Table  6,  it  is  apparent  that  the  DIWO  algorithm
with  the  optimization  method  performs  better  in  all
instances.  In  terms  of  RPD  value,  DIWO  obtains  a
better  value  than  DIWObas.  According  to  the
experimental  results,  under  the  condition  of  meeting
the  capacity  and  time  constraints  simultaneously,  an
AGV can  be  responsible  for  about  9  tasks.  Therefore,
when the instance contains 10 tasks, the probability of
collision is relatively small because there are only two
AGVs  in  the  workshop  for  transportation.  Thus,  the
collision can be avoided when the optimization method
is implemented. When the task increases gradually, the
optimization method can reduce the  collision by 50%.
RPD and COL are shown in Figs. 6 and 7, respectively.

 

Table 4    Parameter settings.
Algorithm Parameter

DIWO PS0 = 50, PSmax = 70, Smax = 15, Smin = 1

DABC PS = 150, l = 800, r = 80, and τ = 20
ABC PS = 50 and l = 1200
IG d = 5 and OperIter = 60
HS HMS = 4, HMCRmin = 0.2, and HMCRmax =0.8
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Fig. 4    RPD comparison of the optimization methods.

 

Table 5    RPD of different strategies of DIWO algorithm.
Number of tasks DIWO1 DIWO2 DIWO3 DIWO4

10 0.64 11.21 0.69 11.19
20 6.50 21.54 11.76 25.10
30 2.99 24.43 14.72 29.19
40 2.60 24.61 20.02 33.56
50 2.51 28.24 24.74 36.72

Average 3.05 22.02 14.38 27.16
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Fig. 5    Collision comparison of the optimization methods.

 

Table 6    RPD  and  COL  of  the  proposed  DIWO  and  the
base DIWO.

Number of tasks
DIWO DIWObas

RPD COL RPD COL
10 0.63 0 11.05 0.35
20 5.81 0.67 20.67 1.49
30 2.99 2.08 24.85 5.35
40 2.62 4.77 25.44 9.61
50 2.40 7.74 28.49 16.09

Average 2.89 3.64 22.10 6.58
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5.2.2　Verification of the comparison algorithms
The  purpose  of  this  case  study  is  to  verify  the
effectiveness  of  the  proposed  DIWO  algorithm.  Thus,
to  fully  prove  its  effectiveness,  the  other  four
algorithms  that  perform  well  in  related  fields  are
compared, as shown in Figs. 8 and 9.

As  can  be  seen,  all  algorithms  generate  paths
according  to  the  rule  of  top-down priority  rule,  which
ensures that all  AGVs will not collide until  they reach
the  first  task  for  which  they  are  responsible.  This
section  will  no  longer  verify  the  effectiveness  of  the

top-down priority.  The experimental results are shown
in Table 7. From Table 7, it is obvious that the DIWO
algorithm obtains the minimum RPD in instances of all
sizes.  Similar  to  previous  cases,  the  DIWO  algorithm
also has excellent performance in reducing the number
of  collisions.  In  particular,  the  average  collision  times
of  the  DIWO  algorithm  is  one-third  that  of  the  worst
ABC  algorithm.  Furthermore,  its  average  number  of
collisions  is  nearly  40% less  than  the  second-best
DABC algorithm.

Table  8 shows  the  results  of  the  Wilcoxon  paired
signed test of the proposed DIWO algorithm compared
with  other  algorithms.  We  calculate  100  instances  for
10  times  and  got  1000  samples.  R+  represents  the
number  of  times  DIWO algorithm is  superior  to  other
algorithms in 1000 samples. R− represents the number
of  times  DIWO  algorithm  is  inferior  to  other
algorithms  in  1000  samples.  The  sum  of  Bonding
Value,  R+ and R− is  equal  to  1000.  The experimental
results  indicate  a  significant  difference  between  the
proposed and the comparative algorithms. Furthermore,
the  optimization  results  clearly  indicate  that  the
optimization  method  proposed  in  this  paper  can
effectively reduce the transportation cost of multi-AGV
scheduling,  reduce  the  number  of  collisions,  and
increase the safety of AGV operation.

6　Conclusion

This  paper  investigates  an  optimization  method  of
multi-AGV  integrated  scheduling  in  a  matrix
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Fig. 6    Collision comparison of the optimization methods.
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Fig. 7    Validation results of the optimization methods.
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Fig. 8    Validation results of the algorithms.
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Fig. 9    Collision comparison of the optimization algorithms.

 

Table 7    RPD amd COL of different optimization algorithms.

Instance
DABC ABC DIWO IG HS

RPD COL RPD COL RPD COL RPD COL RPD COL
T10I1 10.98 0.34 30.20 0.71 0.63 0 27.05 0.54 25.60 0.62
T10I2 15.39 0.95 49.63 3.21 5.86 0.74 30.65 1.62 41.15 2.71
T10I3 15.66 3.28 42.25 6.92 2.99 2.08 28.99 4.7 33.46 6.01
T10I4 19.40 6.35 50.24 13.87 2.62 4.77 32.57 8.89 33.29 10.05
T10I5 25.58 12.65 57.22 23.96 2.40 7.74 35.15 14.35 32.59 15.31

Average 17.40 4.71 45.91 9.73 2.90 3.06 30.88 6.02 33.22 6.94
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production  workshop.  The  goals  are  to  reduce  the
transportation  cost  and  AGV  collision  as  well  as  to
increase the security of multi-AGV scheduling. In this
method,  we  used  an  optimized  DIWO  algorithm  to
calculate  the  objective  function.  To  improve  the  local
search  ability  of  the  swarm intelligence  algorithm,  we
also used an insertion-based local search. In accordance
with the established mathematical model, a heuristic to
quickly  judge  the  feasible  solution  is  proposed.  In  the
process  of  path  generation,  we  established  a  direction
priority  rule  that  can  reduce  collision  to  a  certain
extent.  A  stacked  time  departure  heuristic  is  also
proposed to avoid collisions by reducing the number of
AGVs  in  the  matrix  workshop  at  the  same  time.
Finally,  we  proved  the  effectiveness  of  this
optimization  method  by  conducting  comprehensive
experiments.

The research of this paper has some limitations. First,
this  paper  studies  the  multi-AGV  scheduling  problem
based on a matrix workshop. In path planning, an aisle
is  restricted  to  AGVs  in  the  same  direction
simultaneously.  While  this  regulation  can  solve  the
collision problem to a great extent, it can also affect the
transportation efficiency of AGV to a certain extent. In
our  future  work,  we  will  consider  multi-AGV
scheduling  in  the  workshop  with  obstacles  along  with
deadlock constraints.
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