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ABSTRACT In the pursuit of enhancing harmonic detection precision within microgrids, this paper intro-
duces a pioneering algorithm, VMD-DCHHO-HD, which amalgamates Variational Mode Decomposition
(VMD) with an advanced Harris Hawk Optimization algorithm characterized by dynamic opposition-based
learning and Cauchy mutation (DCHHO). This study establishes a fitness function based on Shannon
entropy, thereby minimizing the Local Minimum Entropy (LME) as the optimization objective for DCHHO.
Building upon this, the VMD crucial parameters are efficiently identified using the enhanced HHO algorithm
(DCHHO), enabling precise decomposition of complex voltage signals. The proposed method effectively
addresses issues commonly encountered in traditional Empirical Mode Decomposition (EMD) during
harmonic analysis, such as mode mixing, endpoint effects, and significant errors. Notably, it adeptly
captures harmonic components spanning diverse frequencies, offering a nuanced solution to common
pitfalls in traditional methodologies. In simulation experiments, VMD-DCHHO-HD showcases remarkable
proficiency in extracting microgrid voltage signals, excelling at discerning high-order, low-amplitude
harmonic components amid noise. The algorithm’s superior precision and heightened reliability, as affirmed
by comparative analyses against existing methods, position it as an advanced tool for precise and robust
harmonic analysis in microgrid systems.

INDEX TERMS Variational modal decomposition (VMD), harmonic detection, Harris Hawks optimization
(HHO) algorithm, function optimization.

I. INTRODUCTION
With the ongoing development of the global economy and
society, the escalating environmental challenges associated
with fossil fuel usage have propelled a continual rise in
demand for various forms of distributed renewable energy
sources. The traditional centralized power supply model is
increasingly unable to meet the current societal requirements
for flexible, environmentally friendly, and efficient electricity
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transmission. In response to these challenges, microgrid tech-
nology has emerged, overcoming the drawbacks of traditional
power supply models by offering a flexible power supply
mode and effectively enhancing the overall resilience and
robustness of the power system [1], [2], [3], [4], [5].
While microgrids present various advantages, it is crucial

to tackle the related power quality challenges emerging
during their development. On the one hand, the increasing
incorporation of nonlinear loads into the grid has become
a prevailing trend. On the other hand, the utilization of
inverter control technology for diverse distributed energy
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sources within microgrids introduces a substantial array of
power electronic devices. This presence contributes to dis-
tortions in voltage waveforms and an increase in harmonic
current levels. Moreover, compared to traditional grid struc-
tures, the network framework of microgrids is inherently
more fragile, highlighting the significance of harmonic issues
[6], [7], [8], [9].

Analyzing harmonic content is not only the starting point
for studying harmonic issues but also a crucial basis for
formulating harmonic mitigation strategies [10]. Therefore,
finding a suitable and efficient algorithm to precisely analyze
harmonics in microgrids plays a pivotal role in enhancing
the quality of power supply in microgrids. In the quest
for effectively extracting features from harmonic signals in
microgrids, numerous efficient methods have been proposed,
with Fast Fourier Transform (FFT), Wavelet Transform
(WT) [11], and Empirical Mode Decomposition (EMD) [12]
standing out as chief among them.

FFT [13] is a widely employed and classical tool in time-
frequency analysis. However, the traditional FFT falls short
in capturing the local properties of signals in the time domain
and exhibits reduced effectiveness when dealing with sig-
nals characterized by abrupt changes or non-stationarities.
Unlike the Fourier Transform, which employs monotonic
sine waves, the basis functions used for signal decompo-
sition in WT are diverse, featuring finite durations, abrupt
changes in frequency and amplitude, and the ability to scale
and shift. On one hand, the flexibility of these basis func-
tions equips the WT to handle abrupt signal changes and
perform time-frequency analysis. However, from another
perspective, the effectiveness of WT heavily relies on the
selection of basis functions. Currently, there is no universally
accepted quantifiable method for selecting wavelet bases, and
it predominantly depends on the experiential judgment of
researchers.While theWavelet Packet Transform (WPT) [14]
surpasses the limitation of the WT by decomposing signals
beyond the low-frequency band, it remains powerless in
addressing the inherently subjective process of basis function
selection. In contrast to WT and WPT, which require the
pre-selection of wavelet basis functions, EMD [15] is an
adaptive signal analysis method. However, it is imperative
to acknowledge the presence of mode mixing and endpoint
effect [16]. To address these challenges, a series of refined
algorithms based on EMDhas emerged, including the Ensem-
ble Empirical Mode Decomposition (EEMD) [17] and the
Complementary Ensemble Empirical Mode Decomposition
(CEEMD) [18]. However, it is noteworthy that these algo-
rithms incorporate white noise into the signal as a means
of mitigating mode mixing, inadvertently leading to an
expansion of errors.

In 2014, Konstantin et al. introduced Variational Mode
Decomposition (VMD), an adaptive and non-recursive vari-
ational mode decomposition method [19]. VMD operates by
constructing and solving a variational problem, enabling the
decomposition of signals into modes with different central

frequencies. Unlike traditional methods like EMD, VMD
autonomously determines the number of decomposition
modes and adaptively matches optimal central frequencies
and finite bandwidths for each mode. VMD effectively sep-
arates Intrinsic Mode Functions (IMFs), partitions signals
in the frequency domain, and yields efficient decomposed
components. It ultimately provides an optimal solution to
the variational problem, overcoming issues such as endpoint
effects and mode mixing present in methods like EMD.
Notably, VMD allows arbitrary specification of parameters
like the number of modes; however, imprudent parameter
settings can impact decomposition effectiveness in practical
applications.

To efficiently and precisely determine the optimal parame-
ters for VMD, maximizing its superiority in harmonic detec-
tion, this paper combines an optimization algorithm with
VMD. Below are concise descriptions of widely-used opti-
mization algorithms. Compared to traditional gradient-based
optimization algorithms, which suffer from both low effi-
ciency and accuracy, Swarm Intelligence (SI) algorithms
have proven effective and robust [20], [21]. The Ant Colony
Optimization (ACO) [22] algorithm draws inspiration from
the foraging behavior of ants to find the optimal path. While
robust, the algorithm suffers from slow convergence. Another
classic optimization method, the Particle Swarm Optimiza-
tion (PSO) [23] algorithm, simulates the collective behavior
of bird or fish swarms. It excels in requiring minimal param-
eter configuration and boasts a simple algorithmic structure,
but it tends to get stuck in local optima. The Artificial Bee
Colony (ABC) [24] algorithm simulates honeybees’ foraging
behavior, offering high flexibility. However, its processing
speed often disappoints when addressing specific problems.
Moreover, in recent years, several intriguing optimization
algorithms have emerged, including the GreyWolf Optimiza-
tion (GWO) [25] algorithm, the Firefly Algorithm (FA) [26]
and the Bat Algorithm (BA).While these algorithms offer dis-
tinct advantages, they share common limitations, including
challenges in handling complex scenarios and issues related
to global exploration.

In 2019, the Harris Hawk Optimization (HHO) algorithm
was introduced by the Iranian scholar Heidari et al. [27].
This nature-inspired swarm intelligence approach, emulating
the hunting behavior of Harris hawks, is relatively straight-
forward compared to other optimization algorithms. The
HHO algorithm adopts a parallel search strategy, significantly
accelerating the convergence speed. Additionally, the HHO
algorithm introduces competitive and search mechanisms,
allowing for adaptive adjustment of algorithm parameters,
showcasing high adaptability and robustness. Leveraging
these advantages, this paper opts to employ the HHO to
optimize the VMD. Furthermore, additional enhancements to
theHHOalgorithm are discussed later in the paper, improving
algorithm performance.

This paper delves into the harmonic analysis of microgrids,
introducing the innovative VMD-DCHHO-HD algorithm to
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overcome existing method limitations. This novel harmonic
detection algorithm effectively tackles the parameter selec-
tion challenge in VMD. Importantly, it excels in extracting
harmonic signal characteristics within microgrid scenarios,
surpassing the performance of previous mainstream algo-
rithms and pushing the boundaries of the field. The primary
contributions of the paper can be summarized as follows:

1) Introduced an enhanced algorithm, DCHHO, based on
Harris Hawk Optimization, aiming to comprehensively
rectify its deficiencies and meticulously adapt it for
the determination of optimal algorithm parameters. The
detailed optimization strategy is outlined as follows:

• Introduced Cauchy mutation to enable the HHO
algorithm to escape local optima during the
optimization process.

• Introduced dynamic opposition-based learning to
enhance the optimization efficiency of the HHO
algorithm.

2) Incorporated DCHHO into VMD, adeptly identifying
the optimal combination of crucial parameters for
VMD. This integration resulted in the demonstra-
tion of superior modal decomposition, highlighting its
effectiveness in harmonic detection within microgrid
scenarios.

3) Simulated a microgrid system in MATLAB, conducted
analysis and comparative experiments using the simu-
lated voltage signals, demonstrating the effectiveness
and engineering applicability of the proposed novel
algorithm.

II. PRINCIPLES OF MATHEMATICS
A. VMD
The VMD decomposition can be conceptually framed as an
optimization process for solving the following constrained
variational problem [28], as illustrated in (1).{∑

k

∥∥∥∥∂t [(δ(t) +
j

π t
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]
e−jωk t
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where, {uk} = {u1, · · · , uk} symbolizes the decomposed
Intrinsic Mode Function (IMF) component, while {ωk} =

{ω1, · · · , ωk} represents the central frequency of each con-
stituent part. Here, δ(t) denotes the Dirac distribution, and
the symbol ∗ corresponds to the convolution operator.

By introducing the Lagrange multiplier operator λ, trans-
forming the constrained variational problem into an uncon-
strained one. The augmented Lagrange expression is obtained
as (2):
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where, α serves as the quadratic penalty factor designed to
mitigate the interference of Gaussian noise. Subsequently,
utilizing the Alternating Direction Method of Multipliers
(ADMM), each component and its corresponding central fre-
quency are iteratively updated. Ultimately, this process yields
the saddle point of the unconstrained model, representing the
optimal solution to the original problem. The specific steps
and formulas are described as follows.

After initializing parameters û1k , ω
1
k , λ

1, iterative updates
are systematically carried out in accordance with (3), (4)
and (5).
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Repeating the steps until the iterative stopping condition∑
k

∥∥∥ûn+1
k − ûnk

∥∥∥2
2
/
∥∥ûnk∥∥22 < ε.

B. HHO
TheHarris HawkOptimization (HHO) algorithm is renowned
for robust global search and strong optimization performance,
organized into three distinct stages.

1) EXPLORATION PHASE
In this phase, the Harris hawks utilize two strategies for
the random search of prey within the spatial range [lb, ub].
Throughout iterations, the positions undergo updates guided
by q, as (6):

X (t + 1)

=

{
Xrand − r1|Xrand (t) − 2r2X (t)|, q ≥ 0.5

(Xrabbit (t) − Xm(t)) − r3 (lb+ r4(ub− lb)) , q < 0.5

(6)

where Xrabbit (t) represents the prey’s position, X (t) denotes
the Harris hawk’s position, Xrand (t) signifies the randomly
selected individual’s position, Xm(t) is the mean position of
individuals, q, r1, r2, r3, r4 are random numbers within the
range (0,1).

2) TRANSITION PHASE
In this phase, the escape energy equation for prey is defined,
as illustrated in (7), facilitating a suitable transition between
exploration and exploitation through the utilization of (7).

E = 2E0

(
1 −

t
T

)
(7)

where E represents the escape energy of the prey, with E0
being the initial energy level. When |E| ≥ 1, the Harris Hawk
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algorithm conducts global exploration. Once |E| < 1, the
algorithm transitions into the local exploitation phase.

3) EXPLOITATION PHASE
In this phase, the algorithm employs four strategies to
simulate attacking behavior. Tab.1 outlines these strategies
employed by Harris hawks for capturing prey under different
conditions, providing a detailed description of their respective
position iteration equations.

TABLE 1. The harris hawk position iteration equation under different
conditions.

III. ALGORITHMIC IMPROVEMENT MOTIVATIONS
While VMD andmodal decomposition algorithms like EMD,
EEMD, and CEEMD share a common purpose, they exhibit
fundamental differences. VMD, in contrast to EMD and its
derivatives, offers the advantage of pre-specifying the number
of modes and the penalty parameter α. However, due to the
intricate nature of real-world signals, improper settings for
parameters k and α can potentially negate this advantage.
An excessively large k may result in over-decomposition
problem, while an excessively small one may lead to under-
decomposition problem. Similarly, an overly large α could
cause the loss of frequency band information, while an overly
small α may result in information redundancy [29], [30].
Presently, the widely adopted method involves using the

central frequency observation approach to determine suitable
values for k and α. However, this method is highly subjec-
tive, diminishing the VMD algorithm’s fault tolerance and
providing insufficient determination of the penalty parame-
ter α. Consequently, the selection of an optimal parameter
combination is a critical and challenging aspect in applying
the VMD algorithm for harmonic information extraction.

In light of this, the study seamlessly integrates optimization
algorithms with VMD to precisely define its critical param-
eters, effectively capitalizing on its strengths and mitigating
limitations for optimal performance in modal decomposition.
To better achieve this goal, this paper enhances the Harris
Hawk Optimization (HHO) algorithm, significantly address-
ing its susceptibility to local optima and thereby improving
both algorithm accuracy and optimization efficiency.

The overall system block diagram of the proposed
VMD-DCHHO-HD for microgrid harmonic detection is
illustrated in Fig.1.

IV. A NOVEL HARMONIC DETECTION METHOD BASED
ON VMD AND IMPROVED HHO ALGORITHM
(VMD-DCHHO-HD)
A. OPTIMIZATION OF THE HHO ALGORITHM
The Harris Hawk Optimization (HHO) algorithm, drawing
inspiration from the hunting behavior of Harris hawks,
is a nature-inspired swarm intelligence algorithm recognized
for its robust global search capabilities and optimization
performance. However, it encounters challenges such as sus-
ceptibility to local optima and low convergence accuracy.

This study enhances the HHO algorithm by introducing the
Cauchy operator and the dynamic opposition-based learning
strategy. The resulting refined algorithm exhibits improved
robustness and optimization performance, particularly prov-
ing beneficial for addressing complex harmonic problems.

1) CAUCHY MUTATION
To alleviate the susceptibility of HHO algorithm to local
optima, drawing inspiration from the work referenced in
[31] and [32], this study incorporates optimization by inte-
grating the Cauchy distribution function. Harnessing the
unique attributes of the Cauchy distribution function, char-
acterized by a smaller peak at the origin and an extended
distribution at both ends, the inclusion of the Cauchy operator
in the HHO algorithm amplifies mutation effects at both ends
during optimization, yielding enhanced performance.

f (x) =
1
π

(
1

x2 + 1

)
(8)

The update of the global optimum in each iteration of
HHO is determined using the standard Cauchy distribution
function (8), represented by (9). Leveraging the properties of
the Cauchy function, characterized by amoderate peak, effec-
tively reduces the exploration time spent by Harris hawks in
local intervals. Notably, the gradual decline at both ends of the
Cauchy function mitigates the algorithm’s constraint force on
local extreme points, facilitating escape from local optima.

Xnew_best = Xbest + Xbest × Cauchy(0, 1) (9)

2) DYNAMIC OPPOSITION-BASED LEARNING STRATEGY
Taking inspiration from prior studies [32], [33], this research
integrates the dynamic opposition-based learning strategy
to improve the efficiency of acquiring optimal solutions.
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FIGURE 1. Block diagram of the harmonic detection system.

The core principle of opposition-based learning entails gen-
erating a solution derived from the current one. Simultaneous
searches are conducted at the present position and its opposite
counterpart, heightening the probability of attaining superior
solutions. The dynamic opposition-based learning introduces
a variable, denoted as r , which undergoes nonlinear evolution
with each iteration, more effectively steering the genera-
tion of reverse solutions. This relationship is mathematically
expressed in (10) and (11).

X̃i(t) = lb+ ub− rXi(t) (10)

r = sin
(
t
T

)
(11)

In the search space [lb, ub], where t represents the iteration
time, Xi(t) denotes the position of individual i at time t ,
X̃i(t) represents its corresponding reverse solution, and r is
the dynamic coefficient.

B. CHOOSING THE FITNESS FUNCTION
In the process of optimizing the important parameters for
the VMD algorithm using the enhanced the Harris Hawk
Optimization algorithm, it is crucial to define a fitness func-
tion [34], [35]. This fitness function involves continuous
calculation and comparison of fitness values, leading to the
updating of the optimal position.

Drawing inspiration from the literature [36], this study
employs Shannon entropy to assess the sparsity character-
istics of the signal. The magnitude of entropy reflects the
uniformity of the probability distribution, with the highest
entropy value associated with the most uncertain probability
distribution [37]. Following this principle, the envelope signal
obtained through signal demodulation undergoes processing
into a probability distribution sequence pj. The resulting
entropy value Ep calculated from this sequence effectively
captures the sparsity characteristics of the original signal.

For each individual’s position in the HHO algorithm, the
condition involves obtaining the envelope entropy values of
all IMF components after VMD processing. Among these
values, the minimum one is defined as the Local Minimum
Entropy (LME). Based on the definition of entropy, the less

noise contained in the IMF components, the more character-
istic information is present, and the signal exhibits stronger
sparsity characteristics, resulting in smaller envelope entropy
values. Therefore, this study minimizes the Local Minimum
Entropy value as the optimization objective, aiming to opti-
mize the values of k and α, as mathematically formulated
in (12).

L = minE IMFpmin (12)

C. SPECIFIC STEPS OF THE VMD-DCHHO-HD
The process diagram of the enhanced harmonic analysis
algorithm, VMD-DCHHO-HD, resulting from the aforemen-
tioned optimization innovations, is illustrated in Fig.2.

The specific steps of execution are outlined below:
Step 1: Initialization of the parameters to be determined in

the VMD algorithm, minimizing the local minimum entropy
as the optimization objective, and determining the fitness
function, as shown in (12).
Step 2: Initialize thewhole populationwith parameter com-

binations [k α] as individual positions, calculate the fitness
value for each individual, and determine the current optimal
individual.
Step 3: Calculate the initial energy and escape energy for

each individual, based onwhich determine whether the Harris
hawk individual is in the exploration phase or exploitation
phase. Continuously update individual positions accordingly.
Step 4: Apply Cauchy mutation to the optimal solution of

individuals in the capturing phase according to (9).
Step 5: Implement the dynamic opposition-based learning

operations on all individuals using (10). Combine the newly
acquired population with the original population, employing
the greedy strategy to select the top N individuals with the
highest fitness values for the new population.
Step 6: Continuously update the positions of Harris’s hawk

and the global optimal solution.
Step 7: Check for convergence: if the maximum number

of iterations is not reached, continue the iterative process;
otherwise, report the final global optimal solution [kbest αbest ]
and its corresponding best fitness value.
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FIGURE 2. The procedure for harmonic detection based on the
VMD-DCHHO-HD algorithm.

Step 8: Apply the values kbest , αbest to the VMD algorithm
and perform modal decomposition.

V. SIMULATIONS AND RESULTS
A. MICROGRID VOLTAGE SIGNAL SIMULATION
To evaluate the practical applicability of the proposed
algorithm, this paper implemented a three-phase AC circuit
using MATLAB. The circuit configuration, illustrated in
Fig.3, simulates a DC Microgrid for Wind and Solar Power
Integration, demonstrating significant growth potential and
versatile applications. The microgrid includes components
such as Wind Turbine (WT) system, Photovoltaic (PV) sys-
tem, and Supercapacitor Energy Storage (SCES) system.
These components are connected to the DC bus using a
DC-DC converter. The transformed and filtered AC power is
then supplied to loads through the inverter [38], [39], [40],
[41], [42]. Due to constraints on the length of this paper,
a detailed discussion of each module’s structure is beyond
the scope.

FIGURE 3. Simulation of DC microgrid for wind and solar power
integration system.

In traditional power systems, sources of pollution mostly
arise from harmonics generated internally during the pro-
cesses of generation, transmission, and distribution pro-
cesses, as well as the connection of nonlinear loads such
as inverters, rectifiers, etc. In contrast to traditional power
systems, microgrid systems on the source side incorporate
numerous power electronic devices, further contributing
to the degradation of power quality. Therefore, harmonic
management is a crucial technical focus in microgrid
planning.

1) SIMULATION PARAMETERS
To maximize the electric power generated from the wind,
the Wind Turbine (WT) system described in this paper is
designed based on the traditional Maximum Power Point
Tracking (MPPT) control strategy [43], [44]. The system
features a direct-drive structure, where there is no transmis-
sion system between the rotor and the generator, ensuring
higher transmission efficiency. Additionally, a Buck-Boost
converter is integrated before the load to address the low
amplitude of the AC voltage output. During operation, the
system initiates with a pitch angle set to 0 and a wind speed
of 8 m/s. Tuning is performed to validate the system’s ability
to swiftly attain the Maximum Power Point shortly after the
commencement of operation.

The PV system in this study employs the constant-step
Perturbation and Observation (P&O) MPPT algorithm [45].
Similarly, a Buck-Boost converter is introduced between the
output and the load. The system operates under a set solar irra-
diance of 1200W/cm2, showcasing commendable response
speed following tuning [46].

The energy storage system utilizes a supercapacitor to out-
put a vector containing measurement signals. Facilitated by
a bidirectional Buck-Boost converter, the energy storage sys-
tem achieves bidirectional charging and discharging control
of the supercapacitor. Integration of a Proportional-Integral
(PI) control system ensures the stable voltage and current
operation of the energy storage system [47], [48].
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2) SIMULATION RESULTS OF THE VOLTAGE SIGNAL
The load side hasR = 0.02� and L = 0.1mH, and a 5 kWAC
load is connected before the system is operated. The output
three-phase AC voltage signals are shown in Fig.4.

FIGURE 4. Simulation results of three-phase AC voltage signals at the
load side of the microgrid.

From Fig.4, it can be observed that the simulated voltage
signals of the microgrid contain numerous harmonic compo-
nents with unknown frequencies and amplitudes. To facilitate
further analysis, the next step will involve harmonic detection
on the single-phase voltage signals extracted from these
signals.

B. ANALYSIS OF THE VMD PERFORMANCE OPTIMIZED BY
DCHHO
Setting the maximum iteration count to 30, using the mini-
mum envelope entropy as the fitness function, the DCHHO
algorithm efficiently obtains the optimal solution for the
important parameters of VMD. The optimization process is
illustrated in Fig.5.

FIGURE 5. The iterative process of utilizing the DCHHO algorithm to find
the optimal parameters for VMD.

In Fig.5, it is evident that, with an increase in the number
of iterations, the optimal combination of [k α] stabilizes at
[9 669]. This indicates that the optimal number of modes
obtained through DCHHO is 9, with the optimal penalty
parameter being 669. The corresponding optimal fitness
value for this combination is 6.2633. The decomposition

result of VMD-DCHHO-HD based on this optimal parameter
set is illustrated in Fig.6.

FIGURE 6. Results of modal decomposition of microgrid output voltage
signal using VMD-DCHHO-HD algorithm.

Observing the IMFs depicted in Fig. 6, it is evident
that VMD-DCHHO-HD excels in achieving a remarkable
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modal decomposition for the intricate voltage signals in
the microgrid. The algorithm precisely isolates harmonic
signals spanning various frequencies, effectively suppress-
ing modal aliasing and thereby facilitating a simplified yet
comprehensive harmonic analysis. To underscore the supe-
rior performance of our novel harmonic detection algorithm,
the following section conducts a comparative analysis with
several widely adopted harmonic detection algorithms.

C. COMPARISONS AND ANALYSIS OF EXPERIMENTAL
RESULTS
Building upon the research content and objectives outlined
in the preceding section, this segment employs various
decomposition algorithms—EMD, EEMD, CEEMD, and
VMD-DCHHO-HD—to analyze the steady-state single-
phase voltage signals obtained from the simulation in
Section A of Phase V. The ensuing discussion involves a com-
parative analysis of the effectiveness of these algorithms. Due
to constraints in space, a detailed presentation of the IMFs
obtained by each algorithm is omitted. Given that the spec-
trogram provides ample information and visual clarity, this
paper will integrate the spectrogram along with metrics such
as Mutual Information (MI) and Root Mean Square Error
(RMSE) to illustrate the effects of modal decomposition.

Fig.7 illustrates the spectrograms of decomposition results
obtained by each algorithm. Based on Fig.7 (a), it is evident
that the EMD algorithm, applied to the voltage signal with
complex harmonic information obtained from the microgrid
simulation in this study, adaptively decomposes it into five
IMFs. However, the effectiveness of this decomposition is
suboptimal. The spectrogram clearly indicates a substantial
loss of high-frequency information after signal decomposi-
tion, retaining only harmonic signals below 10f0 and the
fundamental frequency signal. Furthermore, the IMFs exhibit
pronounced mode mixing and noticeable endpoint effects,
highlighting the subpar performance of EMD in harmonic
analysis for the simulated voltage signal.

As depicted in Fig.7 (b) and (c), the enhanced versions
of EMD, namely EEMD and CEEMD, exhibit improve-
ments in mitigating endpoint effects and reducing the loss
of high-frequency signals compared to the original EMD.
However, despite addressing these issues, both modified
algorithms still suffer from mode mixing problems. Addi-
tionally, the improvements come at a cost, as these enhanced
algorithms introduce white noise into the decomposition
process.While this helps suppress modemixing, it simultane-
ously results in the generation of numerous false components,
leading to an increase in errors.

In comparison to EMD, EEMD, and CEEMD, Fig.7(d)
distinctly reveals the superior performance of VMD-
DCHHO-HD in resolving mode mixing and endpoint effects.
This is particularly notable for harmonics within the 20f0
range, including 5f0, 7f0, 11f0, 13f0, 17f0, and 19f0, where
the algorithm exhibits exceptional separation capabilities.

To further elevate the precision of performance evalua-
tion in harmonic detection, this study introduces evaluation

metrics, including Mutual Information (MI) and Root Mean
Square Error (RMSE). Subsequently, a comparative table is
provided for a systematic analysis and comparison of these
algorithm.

Mutual Information (MI) serves as a non-parametric and
non-linear metric in information theory, offering a precise
quantification of the correlation between two random vari-
ables [49], [50]. In contrast to traditional correlation coef-
ficient methods, MI accurately reflects the coupling degree
between IMFs. Combining the analysis of MI and spectro-
grams provides a clearer and more intuitive understanding of
an algorithm’s ability to address mode mixing. MI is defined
by (13).

MI(yi,yj) = E
[
log

(
pyi,yj (yi, yj)
pyi (yi)pyj (yj)

)]
(13)

where yi represents the signal amplitude corresponding
to IMFi, yj represents the signal amplitude corresponding
to IMFj, pyi,yj(yi, yj) is the joint probability density func-
tion, pyi(yi) and pyj(yj) are the marginal probability density
functions.

Root Mean Square Error (RMSE) effectively reflects the
difference between the reconstructed signal and the initial
signal. A larger RMSE indicates a greater amount of error
introduced by the harmonic detection algorithm during the
modal decomposition process. RMSE is defined by (14).

RMSE(ŷ, y) =

√√√√ 1
N

n∑
i=1

(ŷ− y)2 (14)

where ŷ represents the amplitude of the reconstructed signal,
y represents the amplitude of the initial signal and N repre-
sents the number of sampling points.

Additionally, as the assessment of endpoint effects in the
initial signal decomposition process cannot be captured by a
specific metric, we will directly summarize based on spectro-
grams. The findings will be presented and compared in Tab.2.

Analyzing the metrics in Tab.2, it is evident that the
RMSE corresponding to VMD-DCHHO-HD is 0.6998, sig-
nificantly smaller than the other algorithms. This indicates

TABLE 2. Comparison of multiple metrics.
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FIGURE 7. Spectrograms of decomposition results for each algorithm.

that the algorithm introduces minimal error and demon-
strates high precision. Furthermore, the MI between adjacent
IMFs obtained through VMD-DCHHO-HD is closest to 0.
Combining this with the spectrogram in Fig.7, it is evident
that the proposed method effectively eliminates redundant
components in each IMF, successfully overcoming the mode-
mixing problem. Additionally, the algorithm almost perfectly
eliminates endpoint effects.

In conclusion, the algorithm exhibits outstanding per-
formance in balancing decomposition effectiveness and
precision. It outperforms traditional harmonic detection algo-
rithms in various performance indicators.

VI. CONCLUSION
This paper presents VMD-DCHHO-HD, a novel microgrid
harmonic detection algorithm integrating an improved HHO
algorithmwith VMD. Comparative analysis with well-known
algorithms, such as EMD, EEMD, and CEEMD, highlights
the superior performance of VMD-DCHHO-HD in overcom-
ing endpoint effects and mode-mixing issues, showcasing
remarkable precision. The algorithm excels in extracting
microgrid fundamental signals, accurately capturing high-
order, low-amplitude harmonics amid noise. Its effectiveness
positions VMD-DCHHO-HD as a superior choice for micro-
grid harmonic detection. Our future research will explore
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harmonic source identification and suppression strategies
using this innovative detection method.
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