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ABSTRACT Network traffic classification plays a crucial role in detecting malware threats. However,
most existing research focuses on extracting statistical features from the network traffic, ignoring the rich
information contained within raw packet capture (pcap) files. To achieve higher accuracy in malware traffic
classification, a novel approach is proposed that fully utilizes the information contained in the pcap files by
representing them with images and then training deep Convolutional Neural Networks (CNN) to learn the
features automatically and classify them with higher accuracy. Selected fields of the IP headers in network
sessions are transformed into 50 × 50 RGB images. These images serve as input to CNN, and malware
samples are grouped by class or malware name. The model is initially trained and validated on the MCFP
dataset with more than 140 malware classes and subsequently tested on separate datasets, namely USTC-
TFC2016, Taltech.ee MedBIoT, and IEEE-Mirai. The macro F1 scores and accuracy of this method are
significantly higher than the baseline statistical-feature based approach both in the validation dataset and in
the test datasets from different sources. The results of this research have the potential to be extended beyond
malware classification to enable the classification of various types of network traffic data.

INDEX TERMS Malware classification, network traffic classification, deep learning, convolutional neural
network.

I. INTRODUCTION
The detection and classification of malware in network
traffic are crucial for ensuring the security and integrity of
computer networks. Traditional approaches often rely on
extracting specific features from network data, such as packet
statistics, flow characteristics, or payload content. However,
these methods may not fully exploit the valuable information
embedded in the raw packet capture (pcap) files. In this study,
we propose a unique approach for malware classification
using Convolutional Neural Networks (CNN).

The distinction of this work is attributed to the approach of
converting elements of the IP header from network sessions
in pcap files into binary data, which serves as the basis
for generating 50 × 50 RGB images. These images act as
visual representations of the raw network traffic, akin to item
barcodes found in retail or grocery stores. By transforming
the pcap data into a visual format, the potential of CNNs
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in image classification is leveraged to accurately classify
malware samples.

There are papers [1], [2], and [3] in the literature that
achieve 99% plus accuracy with various feature selection and
machine learning algorithms. It is very hard to distinguish
which approach is better. Several research showed that even
baselinemethods achieved near perfect accuracy [2], [3]. This
could be caused by the datasets used in these research that
makes the classification problem easy. Additionally, most of
the papers identified in the literature train and test on the same
dataset. It is unclear whether the model trained on one dataset
will work well on other datasets.

According to the research, there are datasets from different
sources with the same malware label. There was rarely any
attempt in testing the model trained on one dataset to other
datasets from different sources. In this paper, the Malware
Capture Facility Project dataset (MCFP) [4] was chosen as the
training and validation dataset. MCFP is the largest malware
dataset we could find. It contains more than 140 malware
classes and 460 gigabytes of packet capture (pcap) files. The
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distribution of samples over these malware classes varies
significantly. These factors make it much harder to achieve
high accuracies compared to the datasets used in literature.
Our test data come from three different sources: USTC-
TFC2016 [1], Taltech.ee MedBIoT [5], and IEEE-Mirai [6].
These dataset were chosen because they have overlapping
malware labels with MCFP dataset.

In this paper, a novel methodology for transforming
pcap data into visual representations is presented and its
effectiveness for malware classification is demonstrated. The
remainder of this paper is organized as follows: Section II
describes related work. Section III describes our methodol-
ogy including data collection, image generation, CNN model
creation, baseline method for comparison, training, and eval-
uation. Section IV describes detailed result on validation and
test datasets of our method and baseline method. Discussion,
conclusion, and future work are presented in Section V.

II. RELATED WORK
Most of the traffic classification research work in the
literature is based on selecting the best features from network
traffic data and use machine learning algorithms designed for
structured data [7], [8], [9], [10], [11], [12], [13]. Features
are usually statistical information about network flows or
sessions such as average packet sizes, number of packets
per second, and more advanced statistical features. Recently,
with success of deep neural networks in research work, new
approaches start to emerge.

Wang et al. [1] generated 28 × 28 grayscale images from
each network flow and network session. Their images include
data from the Ethernet layer header to the application layer.
They randomized the identifying information, such as IP
addresses and MAC addresses. However, these noise data
not only make the image contain a much smaller number of
packets, but also make it hard for convolutional network to
learn. They built a convolutional neural network that is very
similar to LeNet-5 [14] for training and testing. They were
able to achieve about 99. 41% accuracy using the USTC-
TFC2016 [1] dataset with 20 malware classes, which is a
significantly smaller dataset compared to MCFP [4]. Their
train and test data were from the same dataset.

Bendiab et al. [15] used Binvis [16], a binary file
visualization tool, to generate images from pcap files. They
generated only 1,000 images of dimension 1024× 256 pixels
representing 8 different traffic classes from their own traffic
dataset. The images are generated from chunks of pcap files.
Therefore, images are not associated with flows or sessions.
Also, the images seem to include payload data as well as
IP addresses. They used Resnet 50 [17] to train and validate
these images and achieved a 94. 5% F1 score.

Agrafiotis et al. [2] generated 28 × 28 grayscale
images almost identically to Wang’s paper [1]. However,
they applied to a different dataset called CIC-IDS2017
[18]. Three different machine learning algorithms were
used: CNN, vision transformer, and random forest. The
images were the input to CNN and vision transformer.

CiC-Flow-Meter [19] tool extracted features from the pcap
files were the input to the random forest algorithm. They
did binary classification of benign and malicious traffic and
achieved the best 0.999 accuracy with the vision transformer.
The random forest result is 0.985, which is just slightly worse
than the vision transformer. They used the same dataset for
training and testing.

Bo et al. [3] used the neural networks initially created for
natural language modeling of malicious traffic. They treated
each byte in the raw packet as a word input to a Gated Recur-
rent Units (GRU) neural network to classify the malware traf-
fic. Their datasets include ISCX2012 [20], USTC-TFC2016
[1], and CICIDS2017 [18]. They achieved high accuracy on
these datasets. Specifically, the accuracy on USTC-TFC2016
[1] was 99.94%. Similar to Wang et al. [1], their train and test
were all performed within the same data set.

There are several papers utilizing the MCFP dataset.
However, most of the work only used a small subset of the
entire dataset. For example, Liu et al. [21] used 8 of theMCFP
malware classes in their experiments to generate malware
traffic fingerprints for classification. Zhang et al. [22] also
used 8 MCFP malware classes in detecting encrypted mali-
cious traffic. Li et al. [23] selected a random set of 20 MCFP
malware classes for unknown malware class detection.
Zhao et al. [24] used 10 MCFP malware classes in their
prototype based learning method in malware classification.
Rong et al. [25] used more MCFP classes than the research
work above. A total of 42 malware classes were used by the
paper. However, they experimented with 5-way and 20-way
classifications. The F1 classification score of on 20-way
classification was about 97% with their few-shot learning
algorithm. In this paper, we used all 142 malware classes in
MCFP and achieved a similar F1 score.

III. METHODOLOGY
A. MACHINE LEARNING PIPELINE
Figure 1 shows the full machine learning pipeline of this
research. The process begins with downloading network
traffic data from four sources, including theMalware Capture
Facility Project (MCFP), USTC-TFC2016, MedBIoT, and
IEEE-Mirai datasets. Datasets were stored in a tree directory
structure organized by source and malware class labels.
The next stage, the pipeline diverges into image generation
and statistical feature extraction. Images generated from the
dataset were used to train a CNNmodel and numeric features
extracted from previous stages were used to train random
forest, svm, and xgboost models. Finally, the evaluation stage
compared F1 scores of CNN versus traditional ML models.
In the subsequent sections, each of these steps is described in
detail.

B. DATASETS
1) MCFP DATASET [4]
The Malware Capture Facility Project, affiliated with the
Stratosphere IPS Project, captures malware and network data
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FIGURE 1. An overview of malware classification pipeline.

to refine machine learning algorithms in network security.
They utilize Malware, Normal, and Background traffic to
assess detection and algorithm performance. Each dataset
includes pcap files and password-protected zip files related
to the malware execution.

From the diverse file types in the MCFP, the focus was
solely on raw pcap files representing malware. A script
was created to navigate the dataset’s JSON structure, and
pcaps corresponding to each malware type were extracted,
subsequently organizing them into folders named after the
malware class.

The dataset represent over 140 classes, to include such
malware classes as Neeris, Wootbot, Sogou, RBot, NSIS
Agent, Zbot, Trojan MSIL Inject, Sirefef, Dridex, and many
others. Pcap file sizes range from 4KB to 70GB in size. This
dataset was used for training and validation. The dataset can
be downloaded here [26].

2) USTC-TFC2016 DATASET [1]
The USTC-TFC2016 dataset was created by Wang et al. for
their malware classification research. contains both benign
and malicious network traffic. The malicious traffic is based
onCTUdataset [26] collected from 2011 to 2015. The authors
made somemodifications on the dataset. The dataset included
a total of 20 classes, of which 10weremalware classes such as
Cridex, Geodo, Htbot, Virut, and Zeus. Pcap file sizes range
from 2.5MB to 282MB. This was used as a test dataset. Find
the dataset here [27].

3) MEDBIOT DATASET [5]
The MedBIoT dataset was developed by Manzanares, et al.
from the Department of Software Science at the Tallinn
University of Technology, Estonia. The dataset incorporates
a combination of real and emulated IoT devices (a total of
83 devices) and providing genuine malware network data,
specifically from three notable botnet malwares: Mirai, Bash-
Lite, and Torii. Mirai and Torii were used, where pcap file
sizes range from 25MB to 635MB. These were utilized as
the test dataset. Find the dataset here [28].

4) IEEE-MIRAI DATASET
Mirai-based Multi-class dataset [6] created by Gebrye, et al.
Derived from prior IoT intrusion data, this dataset emphasizes
benign traffic and three specific Mirai botnet attacks:
SYN-Flooding, ACK-Flooding, and HTTP-Flooding, all
treated under the general umbrella of the Mirai class. Pcap
file sizes range from 12MB to 87MB. This was used as a test
dataset. Find the dataset here [29].

C. IMAGE GENERATION
For each session in a PCAP file, a 3-channel RGB image of
size 50 × 50 pixels are generated. Each row of the image
represents exactly one packet. Therefore, the first 50 packets
of a session are used in generating the image. For each
packet, 50 pixels were used to present the following fields in
the IP header: Type of Service (TOS), Total Length, Flags,
Time To Live (TTL), Flags, and Protocol. Because source
and destination IP addresses are identifying data, which
should be not used in training, they were not included in the
images. Additionally, other fields in the IP header, including
checksum, packet identification, and fragment offsets, were
not included. These fields are either irrelevant to the malware
or potentially identifying. To make it easier for the neural
networks classify the images, we used different colors to
represent adjacent fields in the IP header.

The following Figure 2 shows 6 random generated sample
images arranged in 2 × 3 grid for 9 malware classes. Images
in the same malware class do look more similar to each other
compared to the images from different classes. However,
there are visible variations among the images from the same
class. In the example of Miuref and Neeris, the variations are
quite significant. For some malware, the length of session is
much less than 50 packets. For example, Emotet has a lot
empty rows in the images, which means short sessions.

Next, the detailed steps of generating these images from
the PCAP files are described. Scapy [30] Python library was
used to extract the sessions from the PCAP files. However,
the library is extremely slow in handling large PCAP files and
time complexity seems to be more than linear time. Many of
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FIGURE 2. Sample malware images generated from MCFP dataset.

PCAP files in MCFP dataset are several gigabytes in size.
To make the image generation faster, we used ‘tcpdump’
command to split the large PCAP files into a set of smaller
PCAP files of 25 Megabtyes each. The Scapy [30] library is
able to handle this size reasonably quickly. A Python script
was written to iterate through all the sessions identified by
the Scapy library and generate an image for each session. For
each session, the Python script reads the first 50 packets in
the session and extract the fields mentioned above and use
PIL python library to generate a 50×50 PNG image. To limit
the number of total images generated for reasonable training
time later, the first of the 25 Megabyte split files was used.
After all these steps we generated a total of 1,553,086 images
for 142 Malware classes.

FIGURE 3. Image distribution top 50 of malware classes of MCFP dataset.

Figures 3 and 4 show the distributions of 50 largest
malware classes and 50 smallest malware classes. The largest
malware class Trickbot has about 175 thousand images, while
the smallest malware class jRAT Has less than 10 images.
The wide distribution of number of samples makes it more
challenging to classify with machine learning algorithms.

D. CNN ARCHITECTURE
VGG [31] was initially used to classify images from the
ImageNet [32] dataset. The dataset contains more than

FIGURE 4. Image distribution bottom 50 of malware classes of MCFP
dataset.

14 million images and 1,000 classes. Packet images are
simpler than those of ImageNet. The number of classes
142 is also less than ImageNet. Therefore, it should be
less challenging to classify compared to ImageNet. The
decision was made to simplify VGG to meet the project’s
requirements.

The following Figure 5 shows the architecture of our CNN
model. The input to the network was 50 × 50 pixel RGB
images. This was followed by a sequence of convolutional
blocks consisting of convolutional layers interspersed with
max pooling layers. The convolutional filter sizes were 3 × 3
and the number of filters in the convolutional layers were
64, 64, 128, and 128 respectively. To reduce overfitting,
dropout layers with a rate of 0.5 were added after every
convolutional block. The convolutional features were finally
fed into a flatten layer and two fully connected dense
layers with 4096 units each before an output layer with
142 channels for 142 malware classes. Figure 6 is the
summary of the Deep Convolutional Neural Network which
is more detailed description of Figure 5. There are over
93 trainable parameters in this neural network.

FIGURE 5. Deep convolutional neural network architecture diagram.

E. TRAINING CNN MODEL
A random 80-20 split was performed on the MCFP dataset,
resulting in 1,242,468 images in the training set and 310,618
images in the validation dataset. AdamW optimizer in
Pytorch library was used with 1.0 × 10−5 as the learning
rate and 0.01 as the weight decay factor. Cross-Entropy was
used as the loss function. The batch size was 128. The CNN
models were implemented in Pytorch and trained on 4 Nvidia
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FIGURE 6. Detailed summary of CNN model.

GPUs. The model converged fairly quickly within 2 epochs.
To show the gradual progress of learning, instead of every
epoch, we sampled loss and accuracy for every 100 batches
of training, which is equivalent to every 12,800 samples.
A random 100 batches in the validation dataset is selected
when computing the validation loss and validation accuracy.
The following Figures 7 and 8 show the progress of training
and validation loss and accuracy on every 100 batches as a
unit. Validation loss and validation accuracy is computed after
every 100 batches of training in the beginning. This explains
why validation result is better than training in the beginning.
However, as the loss function and accuracy converge, the
difference between the two is very small. It is observed that
there is no sign of overfitting. Both training and validation
loss stayed stable in the later stage of training. A more
detailed result of training and validation will be shown in the
result section of this paper.

FIGURE 7. Training and validation accuracy history.

F. BASELINE METHOD
The performance of the image-based CNNmodel was chosen
for comparison against a commonly used method in the

FIGURE 8. Training and validation loss history.

literature, where statistical features are extracted from the
packet captures and machine learning algorithms are applied
to this structured dataset. Netml [33] is a Python library that
extracts 10 of the most common statistics in the literature:
flow duration, number of packets per second, number of
bytes per second, and the following statistics of packet sizes:
mean, standard deviation, the first to the third quantiles, the
minimum and the maximum. A Python script written with
netml library to extract these statistical features from the
same MCFP dataset. Please, note that the first 25 megabytes
was used in large PCAP files for generating images. We did
the same when extracting the statistical features. Another
thing to note is that these statistical features are flow-based
and images are generated based on sessions. Therefore, the
statistically based dataset has 4,472,196 samples, which is
about twice the number of samples as the images. Random
Forest, Support Vector Machine, and XGBoost are applied on
this statistically based dataset. A detailed result will be shown
in the following result section.

G. EVALUATION METHODOLOGY
Accuracy is not a good measure when the classes are not
evenly distributed. Figures 3 and 4 show the distribution of
classes is very uneven among different malware classes in our
datasets. The decision was made to use the macro F1 score
to evaluate the performance of machine learning models.
To compute the macro F1 score, precision and recall values
are computed for each individual class. For each class i, where
1 ≤ i ≤ n, and n is the total number of classes, precision,
recall, and F1 score are defined as follows:

Precisioni =
TPi

TPi + FPi
(1)

Recalli =
TPi

TPi + FNi
(2)

F1i = 2 ·
Precisioni · Recalli
Precisioni + Recalli

(3)

TPi, FPi, and FNi represent the true positives, false positives,
and false negatives for malware class i, respectively. F1 score
for the individual class is defined as the harmonic mean
of precision and recall values. Harmonic mean gives higher
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weight to the worse performing metric between precision
and recall. The macro F1 score is the mean of individual F1
scores for all classes. Macro F1 score treats each class equally
without giving higher weights to bigger classes. The macro
precision, recall, and F1 score, considering all n classes, are
calculated as the arithmetic mean of the individual metrics for
each class:

Macro Precision =
1
n

n∑
i=1

Precisioni (4)

Macro Recall =
1
n

n∑
i=1

Recalli (5)

Macro F1 =
1
n

n∑
i=1

F1i (6)

To evaluate the CNN model and the baseline models,
classification reports were first run on the MCFP validation
dataset. For each of 142 malware classes, the precision,
recall, and F1 score will be computed. The macro precision,
recall, and F1 scores will be computed and compared.
To further test the performance of the CNN model and
the baseline, classification reports will be run on test
datasets from different sources including USTC-TFC2016
and Taltech.ee MedBIoT, and IEEE-Mirai. Because these test
datasets are captured independently from one another, the
evaluation results will be more convincing in determining
the performance of our image based approach. A detailed
evaluation result will be presented in the next result section.

IV. RESULTS
The results demonstrate that using images to represent
malware packet sessions and training a Deep Convolutional
Neural Network (CNN) model generates significantly better
accuracy in malware classification compared to traditional
methods using numerical features from sessions. Specifically,
training a deep CNN on a large dataset of millions of
labeled images representing 142 malware classes from the
Malware Capture Facility Project (MCFP). This achieved a
97% macro F1 score on the validation set, far exceeding the
maximum 74% macro F1 score from Random Forest models
trained on numerical features from the same MCFP dataset.
Table 1 shows the summary of the classification report in
the MCFP validation dataset. CNN on image data generated
from malware sessions achieved macro precision, recall, and
F1 scores of 98%, 97% and 97%, respectively. Random
Forest on aggregated numerical feature dataset extracted from
the same packet sessions achieved macro precision, recall,
and F1 scores of 79%, 78%, and 78% respectively. Other
machine learning algorithms, including XGBoost and SVM,
were also tried on the aggregated numerical feature dataset.
XGBoost’s macro F1 score was only 24%. Due to the higher
time complexity of SVM with an RBF kernel, completion
of training on the entire training dataset was not achieved.
However, on the much smaller subset of the training dataset,
the macro F1 score was 40%.

TABLE 1. Macro Precision, Recall, F1 Score on MCFP validation dataset.

Tests were also conducted on datasets from different
sources, and it was found that the image-based deep learning
approach consistently outperformed traditional methods
by a wide margin. Both trained models were tested on
USTC-TFC2016 [3], and Taltech.ee MedBIoT [34], and
Mirai-based Multi-Class [29] datasets. They are much
smaller datasets than the MCFP dataset containing only
about 11 malware classes which are a subset of MCFP’s
malware classes. The following tables 2 and 3 show the
classification reports of these malware classes on MCFP
validation datasets. Table 2 shows the result of the Random
Forest algorithm on the aggregated numerical feature dataset
extracted from the MCFP validation dataset that focuses only
on these 11 malware classes from the test datasets. Table 3
shows the result of CNN algorithm on image extracted from
the MCFP validation data set that focuses on the same set of
malware classes. Please note that these tables show the results
on validation dataset.

TABLE 2. Precision, Recall, F1 Scores Selected 11 Malware classes with
random forest.

TABLE 3. Precision, Recall, F1 Scores Selected 11 malware classes with
image based CNN.

Table 4 shows the accuracy results of the trained CNN
and Random Forest models on three test datasets are shown.
Overall, the results indicate that the CNN model trained on
image representations of malware sessions provides superior
performance in malware classification on test datasets from
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different sources. Except for Nsis and Emotet, CNN has
outperformed Random Forest by a significant margin. On a
closer look on these 2 malware classes, we can find (in
Table 1) that CNN’s F1 scores on MCFP validation dataset
were also the lowest for Nsis and Emotet compared to
all other classes. For Emotet, CNN’s Recall score on the
validation dataset was only 0.87, which is much lower than
the Precision score of 0.99. This could mean that the CNN
model has relatively high false negatives causing the low
accuracy score on the test dataset.

TABLE 4. Accuracy results of test datasets with CNN and random forest.

Because test datasets are from different sources, they may
label the same malware differently from MCFP. In Table 4
Geodo from USTC-TFC2016 dataset had a CNN and
Random Forest accuracy score of 0%. During testing, most
of the test samples were predicted as Emotet. Emotet is
also known as Geodo [35]. Testing the CNN model for
Emotet, yielded 71.5% accuracy, whereas testing Random
Forest model for Emotet yielded an accuracy of 78%. Similar
situation exists for Zeus and Trojan MSIL Inject. Zeus had
accuracy of 0% for both CNN and Random Forest. Both
CNN and Random Forest predicted them as Trojan MSIL
Inject instead. The MCFP dataset has a malware label for
Zeus Variant, and not the original Zeus. The USTC-TCF2016
dataset had a label for Zeus, instead of Zeus Variant. There
is a good chance what USTC- TCF2016 dataset has labeled
as Zeus is Trojan MSIL Inject instead. Kaspersky labels
Zeus as a Trojan [36]. CNN’s accuracy on Mirai was not
good compared to other malware classes. Random Forest’s
accuracy was even much worse. The could have been caused
by Mirai malware having many variants [37]. One of the
Mirai variants is call Okiru, which is another malware class
in MCFP dataset. In general, it is much more challenging
to apply a model learned in one dataset to other datasets.
However, the CNN based model consistently outperformed
the baseline method.

V. DISCUSSION AND CONCLUSION
The results show that the image-based deep convolutional
neural network model performs significantly better than
the various machine learning algorithms that use baseline
statistical features of flows or sessions in network traffic.

The image-based CNN was able to achieve 97% macro F1
score on classifying 142 malware classes in MCFP dataset.
The superior performance is evident on both validation and
test datasets. The reason for this performance gain could be
caused by images preserving the information of individual
packet while this information is lost in the statistical features.
Even though only the first 50 packets of a session is used for
generating images, it was enough to significantly outperform
the statistical features. Convolutional neural networks are
known to be excellent in automatically learning the features
in the unstructured image data. By encoding the packets
into images, convolutional neural networks can be enabled
to detect the unique patterns in different malware packet
images. There are some limitations to our current image
generation algorithm. Statistical features include time related
information such as flow duration and average number of
packets per second. Although the current images do not
include this information, it is possible to encode the time gap
between packets into images in order to capture the timing
information. Also, the image generation method is based only
on IP headers. In the next stage of research, the images can
be generated to include TCP header and application layer
headers. The method presented in this paper could be used
not only inmalware classification, but also in general network
traffic classification tasks.
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