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ABSTRACT Knowledge tracing aims to predict students’ future question-answering performance based on
their historical question-answering records, but the current mainstream knowledge tracing model ignores
the individual differences in different students’ knowledge-absorption and problem-solving abilities, which
leads to a poor prediction of students’ question-answering performance by the model. To solve this, Dynamic
Key-Value Memory Networks Knowledge Tracing with Students’ Knowledge-Absorption Ability and
Problem-Solving Ability (DKVMN-KAPS) is proposed in this paper. Firstly, a hierarchical convolutional
neural network is used to consider students’ knowledge mastery at multiple time steps, and then quantify
students’ knowledge-absorption ability, aiming to more accurately portray students’ knowledge states;
secondly, an autoencoder is used to dynamically update students’ problem-solving ability at each time step;
and finally, students’ question answering performance is predicted by considering the students’ knowledge
state, problem-solving ability, and question features. Extensive experiments on three datasets show that
the prediction performance of DKVMN-KAPS outperforms existing models and improves the prediction
accuracy of deep knowledge tracing models.

INDEX TERMS Knowledge tracing, knowledge-absorption ability, problem-solving ability, individual
differences.

I. INTRODUCTION
Knowledge tracing (KT) is a research hotspot in the field of
personalized learning [1], which tracks changes in students’
knowledge state through their history of answering questions
to predict their future performance in answering questions.
KT aims to provide feedback on students’ weak knowledge
links, assist teachers in optimizing their teaching plans, and
help students adjust their learning plans, thus improving the
efficiency and quality of personalized learning [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

KT is mainly categorized into traditional KT models and
deep learning-based KT models. Bayesian Knowledge Trac-
ing (BKT) [3], as a classic traditional KT model, uses the
Hidden Markov Model (HMM) to model each know-ledge
point individually in order to predict students’ mastery of
specific knowledge points. Deep Knowledge Tracing (DKT)
marks the first application of deep learning techniques in
KT, opening up new paths of research [4]. Dynamic key-
value neural network (DKVMN) [5] adds a storage module
and corresponding read/write mechanism based on a tra-
ditional neural network to track students’ mastery states
of each knowledge point, which improves the model’s
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FIGURE 1. Examples of the effect of knowledge absorption ability on how
quickly students acquire knowledge.

interpretability. Compared to traditional KT models, deep
KT models have powerful feature learning and modeling
capabilities [6]. However, most deep KT models have the
following shortcomings: (1) they do not take into account
the fact that different students’ knowledge-absorption abil-
ity (students’ ability to absorb and understand knowledge
points) is different, which leads to an inaccurate portrayal of
students’ knowledge states in the model; (2) they ignore the
differences in students’ problem-solving ability. The existing
model assumes that students have the same problem-solving
ability, which to some extent leads to poor model prediction
performance.

Existing research suggests that students’ knowledge-
absorption and problem-solving abilities are key factors that
influence their question-answering performance [7]. To pro-
vide insight into how individual differences (i.e., knowledge
absorption ability and problem-solving ability) affect stu-
dents’ question-answering performance, two examples of
the effects are provided. Figure 1 demonstrates the effect
of knowledge absorption ability on how quickly students
acquire knowledge: in answering questions Q1-Q8 involving
knowledge points k1 and k2, Student1 quickly mastered these
points with fewer errors, while Student2 and Student3 needed
more practice to master them, which indicates that Student1
is significantly better at comprehending and assimilating
knowledge than Student2 and Student 3. Figure 2 shows the
effect of problem-solving ability on the answer results: when
Student4 and Student5 were faced with two identical ques-
tions involving the same knowledge points, Student4 only
answered the simpler Q9 correctly and answered the more
complex Q10 incorrectly;on the contrary, Student5 answered
both questions correctly, which shows that Student5 has
stronger problem-solving ability than Student4 and is able to
fully understand the key information in the questions and use
the knowledge and ability he has learned to create effective
methods and strategies to solve the problems. Nevertheless,
the knowledge-absorption ability and problem-solving ability
of different students are not given in advance, which makes it
very challenging to measure them.

To solve the above problems, this paper proposes a
Dynamic Key-Value Memory Networks Knowledge Trac-
ing with Students’ Knowledge-Absorption Ability and

FIGURE 2. Examples of the impact of problem-solving ability on students’
answer results.

Problem-Solving Ability. First, the model uses hierarchical
convolutional neural networks [9] to analyze students’ mas-
tery of knowledge points in the continuous learning process,
so as to dynamically update students’ knowledge-absorption
ability, aiming at more accurately portraying students’ knowl-
edge states; second, the model adopts the auto-encoder (AE)
[10] to capture the potential relationship that exists between
students’ responses to different questions, and dynamically
models students’ problem-solving ability at each time step,
to evaluate students’ problem-solving ability. Finally, con-
sidering that question features are also important factors
affecting students’ responses, this paper innovatively com-
bines students’ knowledge states, problem-solving ability,
and question features, and uses extreme gradient boosting
(XGBoost) [11] to predict the probability of students answer-
ing the next question correctly.

The primary contributions of this paper are as follows:
• We use the knowledge-absorption ability to chara-
cterize the speed of students’ knowledge mastery.
Considering the differences in students’ knowledge-
absorption ability, this paper uses a hierarchical convolu-
tional neural network to consider the knowledgemastery
degree of students at multiple time steps and dynam-
ically extract students’ knowledge-absorption ability,
which can better assess students’ knowledge state by
distinguishing students’ knowledge-absorption ability.

• DKVMN-KAPS considers the features of students’
problem-solving ability and distinguishes students’
problem-solving ability by capturing the potential rela-
tionships in the process of answering questions, which
can better predict students’ performance in answering
questions and improve the prediction performance of the
model.

• Experiments on three public real-world datasets demon-
strate that DKVMN-KAPS outperforms base-line meth-
ods. The ablation experiment proves the effectiveness of
the model components.

The remainder of this paper is organized as follows.
In Section II, research related to this study is systematically
reviewed. In Section III, the KT task is defined. In Section IV,
the proposed DKVMN-KAPS model is elaborated upon.
In Section V, the experimental results of the DKVMN-KAPS

VOLUME 12, 2024 55147



W. Zhang et al.: DKVMN-KAPS: Dynamic Key-Value Memory Networks KT

with the baseline model are discussed on three real datasets.
In Section V-D, this paper is summarized and future work is
identified.

II. RELATED WORK
Mainstream KT models are mainly divided into two cat-
egories: (1) traditional KT models represented by BKT
(Bayesian Knowledge Tracing) [3]; (2) deep learning-based
KT models represented by DKT (Deep Knowledge Tracing)
[4], DKVMN (Dynamic Key-Value Memory Networks for
Knowledge Tracing) [5] as deep learning-based KT models.
This section reviews the trends and shortcomings of tradi-
tional KT models and deep learning-based KT models.

BKT [3] uses HMM to model students’ knowledge states.
When a student answers a question, the student’s mastery of
each knowledge point is updated by the HMM to predict the
student’s performance in answering the next question. Nev-
ertheless, BKT has some shortcomings, such as the inability
to automatically mine the correlations between knowledge
points, the need formanual annotation, and the lack of consid-
eration of students’ personalized features. To compensate for
these shortcomings, researchers have successively improved
the BKT. Baker et al. [12] enhanced the predictive perfor-
mance of the model by introducing the parameters of student
blunders and guessing. Yudelson et al. [13] investigated
the parameters of students’ personalized learning rates and
obtained better predictive performance. However, all of these
models ignore the effects of students’ knowledge-absorption
and problem-solving abilities on their performance in answer-
ing questions and need to annotate the correspondence
between each question and the related know-ledge points in
advance, resulting in poor prediction accuracy of the models
and the need to spend a lot of labor for annotation.

To better portray the students’ knowledge state as well as to
avoid the high cost caused by manual labeling, Piech et al. [4]
first proposed the Deep Knowledge Tracing Model (DKT),
which uses a Long Short-Term Memory neural network
(LSTM) to model the student learning process, breaking
the limitation of the binary state assumption of the BKT,
and avoiding the high cost caused by manual labeling. The
DKT uses real-time feedback for modeling the user interac-
tion that controls the transmission state through the gating
mechanism of LSTM, remembering information that needs
to be memorized for a long time and forgetting unimportant
information. On top of DKT, researchers have proposed a
number of extended models. Yeung et al. [14] proposed a
method of adding three regularization terms to the loss func-
tion of the DKT algorithm to enhance the consistency of the
algorithm’s predictions and improve its prediction accuracy.
Zhang et al. [15] addedmore features at the problem level and
used a self-encoder to convert high-dimensional features to
low-dimensional features, which further improved the DKT
model. Minn et al. [16] proposed an improved DKT model
based on the dynamic clustering of students, which improves
the accuracy of the model in portraying students’ knowledge

states by classifying their learning abilities. Li et al. [17]
introduced plastic weights into the DKTmodel, which can be
used to continuously update the model parameters after train-
ing to adapt to the cognitive characteristics of the students,
thus capturing their personal development and individual
differences.

To distinguish students’ mastery of different knowledge
points and improve the model interpretability, Zhang et al. [5]
proposed the DKVMN model. DKVMN is a variant of
memory-augmented neural networks (MANNs), which is
a kind of neural network based on the traditional neural
network by adding a storage module and the correspond-
ing read-write mechanism. model. Specifically, the DKVMN
uses a key memory matrix to store all potential knowledge
point information, which is used to uncover the correlation
between questions and potential knowledge points; a value
memory matrix is used to store and update students’ mastery
of each knowledge point, and at each time step, the value
memory matrix is updated with the mastery of the relevant
knowledge point using the students’ real answers. The greater
the relevance of a question to a potential knowledge point,
the greater the impact of student mastery of that knowledge
point on the prediction. By adding a static keymemorymatrix
and a dynamic value memory matrix to the neural network
to model the students’ knowledge state, DKVMN not only
effectively alleviates the long-distance dependency problem,
but also improves the problem of poor interpretability of the
DKT hidden state and improves the model interpretability
[18]. Improvement work on DKVMN in recent years mainly
includes three aspects: the improvement of model interpret-
ability, the supplementation of learned behavioral features,
and the optimization of the model’s long-distance depen-
dency limitation. Yeung et al. [19] inspired by Bayesian deep
learning, fused the learning model and Item Response Theory
(IRT) to improve the DKVMNmodel and proposed the Deep-
IRT model, and Sun et al. [20] selected the Classification
Regression Tree (CART) algorithm as a classificationmethod
for students’ behavioral features for behavioral features not
considered by DKVMN, which improves the accuracy of
DKVMN’s portrayal of knowledge states. Zou et al. [21]
improved the DKVMN model by simulating the learning
and memory process of students from the perspective of
cognitive psychology and proposed the LPKT model. The
above work improves the model interpretability by construct-
ing an interpretability module to provide a basis for feature
usage. Sein MINN et al. [22] used learning rate for the
first time, based on which stage-specific learning ability was
integrated into deep knowledge tracing for dynamic group-
ing of students, and Sun et al. [23] added the clustering
results of students’ stage-specific learning ability as features
to the model, which enriched the inputs of forgetting, adding
mechanism, and final prediction. Xiao et al. [24] introduced
features such as question text, knowledge point difficulty,
student ability, and duration, and used multiple self-attention
mechanisms to combine these features to more accurately
model student knowledge states. The above studies express
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students’ knowledge states more comprehensively by inte-
grating students’ rich learning behaviors and thus obtainmore
accurate prediction results. Abdelrahman et al. [25] improved
the model’s ability to capture long-range dependencies by
introducing Hop-LSTM to discover sequential dependencies
between problems in a sequence.

Compared to previous work, DKVMN and its improved
model can better handle the long-distance dependency prob-
lem, show students’ mastery of each knowledge point, and
automatically discover similar problems. However, existing
DKVMN-based optimization efforts still have shortcomings,
mainly including: (1) DKVMN and its improved optimiza-
tion model ignored the influence of students’ knowledge-
absorption ability on the speed of students’ knowledge
mastery when supplementing the learning features, resulting
in the model’s inaccurate assessment of student’s knowledge
states to the point of low prediction accuracy; (2) Neither
the DKVMN nor its improved model takes into account the
effect of students’ problem-solving ability on their question-
answering performance. In fact, problem-solving ability is
an important assessment indicator that affects students’ per-
formance in answering questions, but due to the lack of
assessment of students’ problem-solving ability, there is
still a lot of room for the model to improve its prediction
performance.

III. PROBLEM DEFINITION
The KT model takes student-question interaction sequences
as input, analyzes the interaction sequences to predict stu-
dents’ future question-answering performance, and provides
targeted learning feedback by analyzing students’ knowledge
state.

In the KT task, let S = {s1, s2, · · · ,sN } and Q =

{q1, q2, · · · , qM }, where s ∈ S denotes the students, N
denotes the total number of students, and q ∈ Q denotes the
questions, and the students select some of the questions from
Q to answer, and the log of the student’s responses, X =

{x1, x2, · · · , xT }, is denoted by the dichotomous group xt =

{qt , rt } where qt ∈ Q denotes the question that the student
has done at moment t and rt∈ {0, 1}. rt = 1 if the student
answered the question correctly, and rt = 0 if the student
answered the question incorrectly. the output of the model
is pt , which denotes the probability that the student answered
the question correctly at moment t.TABLE 1 lists the relevant
symbols and their annotations.

IV. THE DKVMN-KAPS MODEL
In this section, Dynamic Key-Value Memory Networks
Knowledge Tracing with Students’ Knowledge-Absorption
Ability and Problem-Solving Ability (DKVMN-KAPS) is
proposed, which achieves a more accurate prediction by inte-
grating students’ knowledge-absorption ability and problem-
solving ability. The model architecture is shown in Figure 3.
The DKVMN-KAPS model is mainly divided into correla-
tion weights, knowledge-absorption ability, knowledge states
update, problem-solving ability, and student performance

TABLE 1. Some key notations in the DKVMN-KAPS.

prediction. More technical details will be presented in the
following subsections.

A. CORRELATION WEIGHT
To compute the correlation weight vector, we follow the same
procedure as in the DKVMN in this paper. The correlation
weights are mainly reflected in the attention weights wt , i.e.,
the embedding vector kt is used to queryM k in themodel, and
the query result is a weighting of the attention level of each
knowledge point, which indicates the correlation between the
question and each knowledge point.

First, multiply the problem label qt with the embedding
matrix A∈RQ×dk to obtain a continuous embedding vector
kt∈Rdk , then do the inner product of the embedding vector
kt and each memory slot M k (i) in the keyed memory matrix,
and finally obtain the associated weights wt (i) ∈RN by the
Softmax function.

wt (i) = Softmax(kTt M
k (i)) (1)

where,
∑N

i=1 wt (i) = 1, the weightwt indicates the relevance
of question qt to each knowledge point.

B. KNOWLEDGE-ABSORPTION ABILITY
To model students’ knowledge states more accurately, this
paper uses convolutional neural network (CNN ) [26] to
extract students’ knowledge-absorption ability and update
students’ knowledge states by knowledge-absorption ability.
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CNN was originally invented for computer vision. It oper-
ates on a sequence of inputs using a fixed-size sliding window
that allows for the extraction of connective links and varia-
tions between successive input elements; typically, the first
layer is responsible for extracting the base features, while
subsequent layers accept these outputs and recognize more
complex features [27]. Thus, the multilayer convolutional
structure of CNN can extract deep features and create a
hierarchical representation of the input sequence. In this
hierarchical representation, closer input elements interact at
lower layers, while more distant elements interact at higher
layers [28]. The hierarchical convolutional structure of the
CNN allows us to consider the students’ mastery of the
knowledge points at multiple time steps and to learn from it
the features of the students’ knowledge-absorption ability.

This paper uses one-dimensional convolution, with
W∈R2d×dv and b∈Rdv as the sliding window’s parameters.
To prevent convolution operations involving subsequent
learning interactions, the second half of the sliding window
is masked in this paper. Since value memory matrices store
student knowledge point mastery, the sliding window takes
d time-step value memory matrices as inputs, uses a softmax
activation function, andmaps them to a single output element.
The number of feature maps is set to dv. A hierarchical
convolutional structure is formed by stacking L identical
convolutional layers, where lower layers capture knowledge-
absorption in the most recent period, and higher layers allow
for monitoring farther out. The GLU [29] is then used as a
nonlinear and a simple gating mechanism is implemented on
the outputs of the convolutional layers to filter and weight the
features selectively to obtain the output features. Finally, the
output features are processed by Singular Value Decomposi-
tion (SVD) [30]to obtain the students’ knowledge-absorption
ability λ. In addition, to address the problem of vanishing
gradients and network degradation, this paper adds residual
connectivity between the inputs to the outputs of the convo-
lutional layer [31]. The knowledge-absorption ability module
is shown in Figure 4:

C. KNOWLEDGE STATE UPDATE
After the student completes the answer to the question, the
value memory matrix is updated based on the import tuple
(qt , rt ), the associated weights wt , and the learning efficiency
λ. The knowledge growth vector vt ∈ Rdv is obtained by
multiplying the student’s answer (qt , rt ) with the embedding
matrix B ∈ R2Q×dv ; and the student’s adaptive knowledge
growth vadapt is obtained by connecting the student’s current
knowledge state ft to it.

vadapt = [vt , ft ] (2)

There exist studies that show that students who master
knowledge faster forget knowledge slower instead [32], here
in this paper, we consider that knowledge-absorption ability
is inversely proportional to knowledge forgetting. The value
memory matrix is erased by the knowledge erasure vector

et ∈ Rdv . The relevant formula is as follows:

et = Sigmoid
(
1
λ
ET vadapt + be

)
(3)

M̂ v
t (i) = M (t − 1)v (i) [1−wi(i)et ] (4)

Students with high knowledge-absorption ability have
faster knowledge growth, which is added to the value-
memory matrix via the knowledge growth vector at∈Rdv . The
relevant equations are shown in Eq. (5) Eq. (6)

at = Sigmoid
(
λDT vadapt + ba

)
(5)

M v
t (i) = M̂ v

t (i) [1+wi(i)at ] (6)

where M̂ v
t (i) denotes the value memory matrix after erasing

memories and M v
t (i) denotes the value memory matrix after

adding memories.
The relevance weight wt (i) of the key memory matrix

input to each knowledge point is weighted and summed
with the value of the corresponding slot M v

t (i) of the value
memory matrix to denote the student’s mastery of the current
knowledge point mt , which is calculated as follows:

mt =

∑N

i=1
wt (i)M v

t (i) (7)

The mt and the embedding vector kt are connected and
passed through the fully connected layer with Tanh activa-
tion function, thus generating the feature vector ft , which
represents the current knowledge state of the student. The
calculation is shown in Equation (8):

ft = Tanh(wf [mt , kt ] + bf ) (8)

D. PROBLEM-SOLVING ABILITY
Students’ proficiency in answering questions accurately is
contingent upon both their level of knowledge and their
problem-solving abilities. The primary determinants of stu-
dents’ problem-solving abilities are the questions’ inherent
features, such as their complexity and differentiation [33].
In this paper, we fit the problem features dt by passing the
embedding vector kt of qt to a multilayer perceptual machine
(MLP).

dt = Tanh[MLP (kt)] (9)

Students’ performance in responding to various ques-
tions can be more accurately predicted by differentiating
their problem-solving abilities. When faced with the same
problem, students with strong problem-solving abilities tend
to outperform those with weaker problem-solving abilities.
Even in the face of difficult problems or in the case of
insufficient knowledge, students with strong problem-solving
abilities can rely on their ability to achieve good performance.
It is important to note that students’ problem-solving ability
is a dynamic process that continues to change based on their
performance during problem-solving. As shown in Fig. 5,
to realize the modeling of students’ problem-solving ability,
this paper adopts AE to process the answer results given by
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FIGURE 3. Model architecture diagram.

FIGURE 4. Module on knowledge-absorption ability.

FIGURE 5. Modeling student Problem-Solving ability.

students facing questions containing different problem fea-
tures to dynamically assess students’ problem-solving ability.

In this paper, the question feature vector dt and the answer
vector rt are spliced together as the student’s answers to

questions with different features awt=(dt , rt ), which are
mapped to a lower dimensional representation after a series of
hidden layers. This low-dimensional representation captures
the potential relationship that exists between how students
answer different questions when faced with different prob-
lems and their responses, i.e., the potential characterize-ation
of a student’s problem-solving ability ht .

ht = g1(awt ) (10)

where g1 denotes the encoding process of awt , containing
two fully connected layers with ReLu functions and one fully
connected layer without the activation function.

Subsequently, the decoder receives the output of the
encoder as input and generates a vector representation of the
corresponding student’s problem-solving ability abt through
a series of hidden layers that reconstruct the results as close
as possible to the input questions and answers:

abt = g2(ht ) (11)

where g2 denotes the decoding process of abt , which contains
two fully connected layers with the ReLu function and one
fully connected layer with the Sigmoid function.
The process of training the AE is achieved by minimizing

the loss function between the input and the reconstruction
result. In this paper, we use the mean square loss function to
continuously adjust the parameters of the AE to minimize the

VOLUME 12, 2024 55151



W. Zhang et al.: DKVMN-KAPS: Dynamic Key-Value Memory Networks KT

reconstruction error through the backpropagation algorithm
and stochastic gradient descent.

E. PREDICTION OF STUDENT PERFORMANCE
To predict students’ future question-answering performance
more accurately, this paper adopts XGBoost to predict
students’ question-answering performance. XGBoost uti-
lizes the integrated learning idea of gradient boosting tree,
which associates students’ input features with labels by
means of iterative optimization and constructing regres-
sion trees and predicts students’ question-answering per-
formance by weighted average [34]. Compared with a
single learner, XGBoost’s integrated approach enables more
accurate predictions and produces better results [35]. In addi-
tion, XGBoost further improves the performance of the
model by introducing regularization terms and flexible
hyperparameter tuning to prevent overfitting. Therefore,
in this paper, the XGBoost algorithm is applied to student
performance prediction to improve the model prediction
accuracy.

In this paper, students’ knowledge state ft , problem solving
ability abt , and problem feature dt are taken as XGBoost
input features R=(ft , abt , dt ), and students’ answer results rt
are taken as labels. When XGBoost reaches the maximum
number of iterations or satisfies the iteration termination
condition, the XGBoost model F(SR) is output, and the prob-
ability pt of students answering the next question qt correctly
is predicted by the trained XGBoost model F(SR).

To optimize the model and update the problem embedding
matrix A, the problem response embedding matrix B, the key
memory matrixM k , and the weights and biases of the neural
network, this paper chooses the cross-entropy loss function
to train the model and uses the Adam optimizer to minimize
the objective function [36]. The cross-entropy loss function
is shown in Equation (12):

L = −

∑
t
(rt logpt + (1 − rt ) log(1 − pt )) (12)

where pt is the predicted probability and rt is the true label.

V. EXPERIMENTS AND ANALYSIS
In this section, several experiments are conducted to evaluate
the performance of the proposed DKVMN-KAPS model.
Specifically, the dataset is first introduced and the experi-
mental setup, comparison models, and evaluation metrics
of this paper are described in detail. Secondly, an extended
study is conducted to demonstrate the effectiveness of
the DKVMN-KAPS model by answering the following
questions:

• RQ1: How does DKVMN-KAPS perform in terms of
prediction accuracy compared to state-of-the-art KT
models?

• RQ2: How do the key modules of the DKVMN-KAPS
affect performance?

• RQ3: How well does the DKVMN-KAPS portray the
state of student knowledge?

TABLE 2. Overview of the datasets.

A. DATASETS
To verify the effectiveness of the proposed DKVMN-KAPS
model, this paper conducts many experiments on three public
education datasets. For each dataset, this paper is divided into
training sets and testing sets according to a certain proportion.
The basic information of each dataset is shown in TABLE 2:

ASSIST2009 [37]: This dataset, from the ASSISTments
Intelligent Tutoring System, is the most classic and widely
used dataset in KT research and contains 325,637 interac-
tions from 4,151 students covering 26,688 questions and
123 knowledge points, with an error rate of 34.16%. The error
rate is the percentage of questions answered incorrectly for all
interactions contained in the dataset.

ASSIST2015 [38]: This dataset also from the ASSIST-
ments Intelligent Tutoring System, contains 683,801 interac-
tions from 19,840 students covering 100 knowledge points
with an error rate of 26.82%. Compared to the ASSIST2009
dataset, which further clarifies the dataset ASSISTment col-
lected in 2009 by collapsing the number of concepts to exactly
100 and introducing a larger number of students, but with a
slightly reduced average student interaction record.

STATICS2011 [39]: The dataset is from an engineer-
ing mechanics course at a university and contains 189,927
interactions from 333 students covering 1,223 problems and
156 knowledge points with an error rate of 23.46%. Com-
pared to the previous two datasets, this dataset contains the
fewest students, but the average number of interactions per
student is the highest.

B. EXPERIMENTAL SETUP
Five-fold cross-validation is employed in this paper. Each
fold randomly divides the dataset into 80% training data and
20% test data, and the training and test sets do not contain
the same students. Next response of a student is predicted by
using current and previous response sequence in chronolog-
ical order. The input problem data is presented to the neural
network using ‘‘embedding’’ input vectors.

For the hierarchical convolutional neural network, the
convolution kernel size is 6, the number of layers in the
hierarchical convolutional layer is set to 3, and the number
of residual blocks is also 3. For DKVMN, the learning rate
and the number of iterations were set to 0.001 and 100,
respectively. The initial values of the key memory matrix and
the value memory matrix were learned during training. For
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XGBoost , the parameters used are those provided by default
in the Python toolbox. To speed up the training process, the
batch size is set to 256; to prevent overfitting, the dropout
coefficient is adjusted and takes the value of 0.2. In addition,
the stochastic gradient descent mechanism is applied to min-
imize the loss function.

C. BASELINES AND EVALUATION METRICS
To assess the validity of the DKVMN-KAPS model, BKT,
DKT, DKVMN, SKVMN, KTMFF, and DKT-LCIRT are
selected as baseline models in this paper.

BKT [3]: BKT is a classical KT model utilizing HMM,
which assumes a student’s knowledge state as a set of binary
variables and updates them according to Bayes’ rule.

DKT [4]: DKT is the pioneering deep KT model that
utilizes LSTM to model student knowledge states.

DKVMN [5]: DKVMN uses MANNs to track the knowl-
edge state of students, using key memory matrix and value
memory matrix to store the representation of underlying
knowledge points and update the knowledge state.

SKVMN [25]: SKVMNuses an improved LSTMwith skip
connections in its sequence modeling, enhancing the ability
of DKVMN to capture long-term dependency relationships
in the problem sequence.

KTMFF [24]: KTMFF introduced features such as prob-
lem text, knowledge point difficulty, student ability, and
question-answering time in DKVMN. It combines these
features using a multi-head self-attention mechanism to com-
prehensively predict the probability of students answering
questions correctly.

DKT-LCIRT [40]: DKT-LCIRT not only models student
learning ability but also introduces IRT to improve the inter-
pretability of the model improving the DKVMN model.

In addition, this paper also uses the average AUC metric
to evaluate the prediction performance of each model. AUC
is the area surrounded by the lower axis and the ROC curve,
and the AUC calculation formula contains Equation (13) and
Equation (14):

TPR =
TP

TP+ FN
(13)

FPR =
FP

FP+ TN
(14)

In Equation (13), TP denotes true cases, i.e., the number of
samples that the model correctly predicts as positive cases;
TN denotes true negative cases, i.e., the number of samples
that themodel correctly predicts as negative cases; FP denotes
false positive cases, i.e., the number of samples in which the
model predicts a negative case as a positive one; and FN
denotes false negative cases, i.e., the number of samples in
which the model predicts a positive case as a negative one.

In Equation (14), FPR denotes the horizontal coordinate
of the ROC curve and TPR denotes the vertical coordinate
of the ROC curve. The value of AUC ranges from 0 to 1.
AUC=0.5 indicates that the predictive performance of the
model is equivalent to random guessing, and the larger value

indicates that the predictive performance of the model is
better. The predictive performance of the model is positively
correlated with the value of AUC.

D. EXPERIMENTAL RESULTS AND ANALYSIS
1) ANALYSIS OF MODEL VALIDITY (RQ1)
To answer RQ1, this paper compares the DKVMN-KAPS
model with the BKT, DKT, DKVMN, SKVMN, KTMFF,
and DKT-LCIRT models. The best performance model and
second-best performance model results are shown in bold and
italics, respectively. TABLE 3 shows the comparative results
of the average AUC of the seven models tested on the three
publicly available datasets.

As shown in TABLE 3, it can first be seen that DKVMN-
KAPS significantly outperforms the state-of-the-art DKT-
LCIRTmodel onASSIST2009, with anAUC improvement of
2.24%.However, the performance improvement of DKVMN-
KAPS on STATICS2011 and ASSIST2015 is more limited,
with only 0.62% and 0.83% improvement in AUC com-
pared to the next best model. This paper suggests that the
reason for this is that the more information about incor-
rect responses (i.e., the higher the percentage of incorrect
responses), the richer the information about students’ ability
to do the question is captured by the model, and thus the
more accurate the predictions are. Second, the traditional
model BKT is inferior to all other models in predicting
students’ question answering, which may be caused by the
unreasonable portrayal of students’ knowledge state in BKT,
while the present model adopts the deep learning method and
considers the students’ knowledge-absorption ability, which
effectively improves the portrayal of the students’ knowledge
state and achieves the best results in comparison with all
baseline models. Finally, DKVMN-KAPS outperforms the
other models on all datasets, which is attributed to the fact that
the model takes into account students’ knowledge-absorption
and problem-solving ability, not only realizes the accurate
portrayal of students’ knowledge states, but also takes into
account students’ knowledge states, problem-solving ability,
and question features to predict whether students can answer
the questions correctly, which is a more comprehensive pre-
diction of students’ answering performance and improves the
prediction accuracy.

Overall, the AUC of DKVMN-KAPS performs better than
other models on all datasets, and compared to advanced mod-
els such as SKVMN, KTMFF, and DKT-LCIRT, the present
model improves the AUC by an average of 2.31%, 4.16%, and
2.18%, and compared to the baseline models such as DKT,
DKVMN, and so forth, it improves the AUC by an aver-
age of 4.13%, 4.38%. This suggests that updating students’
knowledge states by considering their knowledge acquisi-
tion at multiple time steps extracting features of students’
knowledge-absorption ability from them, and modeling stu-
dents’ problem-solving ability by their responses to different
questions are necessary to obtain better performance. So far,
RQ1 has been answered in detail.
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TABLE 3. Model performance comparison.

2) ABLATION EXPERIMENTS(RQ2)
To answer RQ2, this paper conducts an ablation study on
all three real datasets to further validate the effectiveness of
each component in the model proposed in this paper. Three
comparison settings are set up in this paper, details of which
are given below:

DKVMN-X: Predicting student answer results via
XGBoost considering only student knowledge state and ques-
tion features.

DKVMN-PS: DKVMN-KAPS without considering stud-
ents’ knowledge-absorption ability.

DKVMN-KA: DKVMN-KAPS without considering stud-
ents’ problem-solving abilities.

To be fair, the previously mentioned variants of the model
and the rest of the experimental setup remained consistent
except for the changes mentioned above. TABLE 4 and
Figure 6 show the comparative results of the average AUC
of the three models tested on the three publicly available
datasets.

Firstly, it can be observed that the knowledge-absorption
ability contributes the least to the performance in the whole
model, but it is not conducive to accurately portraying
the students’ knowledge states if the students’ knowledge-
absorption ability is ignored. Second, it can be observed that
the student problem-solving ability module plays a pivotal
role in the model predictions, and the largest decrease in the
predicted results is observed if the student problem-solving
ability is not considered, which implies that modeling stu-
dent problem-solving ability can better predict the results of
student responses. In addition, the relatively low enhance-
ment of problem-solving ability on the model’s predictive
performance on the ASSIST2015 dataset may be because
the average number of student interactions with problems
in this dataset is low, resulting in the model not learn-
ing enough about students’ problem-solving ability. Overall,
the prediction accuracy of DKVMN-PS with the addition
of student problem-solving ability and DKVMN-KA with
the addition of knowledge absorption ability were both
improved compared to DKVMN-Xwith the addition of ques-
tion features only. By adding the student problem-solving
ability module, the model prediction accuracy improved

TABLE 4. Comparative results of ablation experiments.

FIGURE 6. The ablation experiment result in figure.

by 2.21% on average compared to the DKVMN-X model.
The DKVMN-KA model with knowledge absorption abil-
ity improved the prediction accuracy by 0.34% on average
compared to the DKVMN-X due to the more accurate
portrayal of the student’s knowledge state. The DKVMN-
KAPS improves the prediction accuracy by an average of
2.46% compared to DKVMN-X with the combined effect
of students’ problem-solving ability and knowledge absorp-
tion ability, which indicates that DKVMN-KAPS, which
considers both students’ knowledge absorption ability and
problem-solving ability, outperforms any individual model.
Therefore, it is necessary and effective to consider students’
knowledge absorption ability and problem-solving ability
together. So far, this paper completes the answer to RQ2.

3) EVOLUTION OF KNOWLEDGE STATES (RQ3)
To demonstrate more intuitively the accuracy of this paper’s
portrayal of students’ knowledge states, this paper visualizes
students’ knowledge states on the Assistments09 dataset.
By extracting the relevant weight vector for each question,
the association between questions and knowledge points can
be obtained. According to the knowledge state extraction
method introduced in subsection IV-C, the knowledge state of
students after completing each specific question can be output
to get the knowledge state of students after completing each
specific question, and the knowledge state of students can be
visualized by plotting the knowledge state of students in the
order of doing the questions into a heat map. The knowledge
state visualization can not only be used for personalized
instruction of students but also can verify the actual effect
of the KT model to a certain extent.
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FIGURE 7. Knowledge state evolution diagram.

To track changes in a student’s mastery of specific
knowledge points as they learned, we randomly intercepted
the student’s interaction record from the Assistments2009
dataset. The horizontal coordinates in Figure 7 are the stu-
dent’s interaction sequence (t, kq, r), which represent the
moments, the knowledge points corresponding to question
q, and the student’s answers, respectively, and the vertical
coordinates represent five different knowledge points. The
results of the experiment showed that after a student answered
a question involving knowledge point 46 and answered it
correctly at moments 4 and 7, the student’s mastery level of
the knowledge point increased at the next moment. When
the student answered the question about Knowledge Point
46 incorrectly at moment 6, the student’s mastery level of
the knowledge point decreased at the next moment. After the
student correctly answered the questions involving Knowl-
edge Point 46 at moments 16, and 17, the student’s mastery
level of Knowledge Point 46 hardly changed because the
student practiced Knowledge Point 46 several times, and
therefore, the student should be given more time to learn
other knowledge points. This shows that DKVMN-KAPS can
better capture the changes in the knowledge level of the cor-
responding knowledge points from the student’s responses.
Moreover, teachers can give students practice suggestions
according to their knowledge states. So far, this paper has
provided a sufficient answer to RQ3.

VI. CONCLUSION
In this paper, we propose a Dynamic Key-Value Memory
Networks Knowledge Tracing with Students’ Knowledge-
Absorption Ability and Problem-Solving Ability (DKVMN-
KAPS), which considers the influence of students’
knowledge-absorption ability and problem-solving ability on
students’ performance and obtains better prediction results
than the existing models. In addition to focusing on the
state of knowledge, DKVMN-KAPS introduces problem-
solving ability as a supplement, and more accurately portrays
students’ knowledge state by considering the knowledge-
absorption ability of students. Finally, we consider students’
knowledge states, problem-solving ability, and question
features to predict students’ performance in answering ques-

tions. We have conducted extensive experiments on three
public datasets, and the results show that DKVMN-KAPS can
track the changes in students’ knowledge states more closely
to the real situation and has better performance in predicting
the results.

In the future research direction, we can use more appro-
priate methods to construct features according to the textual
features of the problem (e.g., teaching terminology, subject-
specific terms, etc.) and use pedagogical theories to model
students’ knowledge absorption and problem-solving abili-
ties and to better simulate the changes in students’ knowledge
states during the learning process.
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