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ABSTRACT The increasing reliance on photovoltaic (PV) generation as a cornerstone of carbon neutrality
has led to transformative changes in the energy structure, further impacting electricity market trading
mechanisms and price volatility. The electric power system reform also promoted wholesale trading in the
Japan Electric Power Exchange (JEPX) spot market. This study explores an effective JEPX spot market
price forecasting model that enables PV power suppliers to make informed production decisions and ensure
revenue optimization. We found that understanding the net demand (total demand minus PV generation) is
crucial for accurate price forecasting, as it allows for a more precise reflection of the gradual evolution of
the solar-dominated energy structure of the dynamic electricity demand. We also conducted parameter tests
and a comparative analysis of different training loops and periods in the basic form using an artificial neural
network (ANN) and support vector regression (SVR) algorithms. The results indicated that the narrow ANN
and SVR models with a linear kernel function and training in the continuous loop method performed better
in spot market price forecasting than other model settings. Our proposed approach can provide essential
insights into future price trends, facilitating informed sustainable energy planning and resource allocation
for power generation to guarantee the benefits of achieving solar promotion and net-zero transition.

INDEX TERMS Japan electric power exchange (JEPX) spot market, electricity price forecasting (EPF), net
demand, PV generation, support vector regression (SVR), neutral network regression (ANN).

I. INTRODUCTION
The global transition towards renewable energy sources,
driven by environmental concerns and the need for sustain-
able energy solutions, has reshaped the electricity generation
landscape. In this context, Japan has embarked on a signif-
icant transition towards a more sustainable and diversified
energy mix. Solar power has been the primary driver of
renewable energy deployment, offering a clean and abundant
energy source that has garnered substantial attention and
investment since the late 1990s. By the end of 2022, the
cumulative capacity reached 78.8 GW, and may reach up
to 370 GW in the future, which is approximately 10% of the
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total estimated domestic primary energy demand by 2050 [1].
However, the output of renewable energy sources, such as
solar and wind power, is variable and uncertain, posing
integration challenges for grid stability and reliable power
supplies. Next-generation renewable energy infrastructure
must be built with cybersecurity to protect the power grid
from potential attacks [2], [3], [4], [5]. Moreover, expensive
maintenance and supervision fees, extended returns on invest-
ment periods, and barriers such as limited access to financing
and inconsistent government incentives create financial chal-
lenges for potential investors and slow down introduction
rates. Despite earlier initiatives, such as the introduction of
feed-in tariffs (FIT) to incentivize renewable energy projects,
FIT ended in 2019, making power producers reconsider the
benefits of selling electricity [1]. With the approval of Japan’s
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Sixth Strategic Energy Plan for 2030 and the introduction
of the Feed-in-Price Subsidy (FIP) plan, the discourse on
electricity price forecasting has gained significant traction
and relevance, making it a crucial and timely topic.

Electricity price forecasting plays an important role in
planning operations, optimizing buying and selling strategies,
and integrating renewable energy sources into the grid for
utilities, energy traders, and other market participants [6].
For electricity suppliers, it helps well-balance their costs and
benefits by providingmore accurate estimates of future prices
by considering factors such as market trends, technological
advancements, and evolving energy policies. This, in the
whole power grid industry, as a decision or preference factor,
offers guidance or recommendations formore informed activ-
ities and decisions or preference factors for the entire power
grid industry, which can lead to a more efficient allocation of
resources when navigating the evolving energy landscape and
align it with emerging market needs [7]. It has been proven
that considering preferences (such as technological, financial,
and even political factors) can help develop practical and
effective cyber defense strategies to protect the safety of
the power grid [3]. In the attacker-defender game, effective
defense is not only determined by finding the critical sec-
tions [5] or simulating different attack-defense scenarios of
a power grid [4] but also needs to enhance incident response
capabilities during critical periods. Defenders can use price
data for predicting potential attack times and weigh the cost
of implementing security measures to prioritize and strate-
gically allocate resources more effectively during periods
of heightened risk. Moreover, supervisory control and data
acquisition systems for solar PV have recently become some
of the main targets. Real-time monitoring of day-ahead price
forecast data to identify abnormal fluctuations facilitates the
detection of anomalous data in renewable energy generation
that may be caused by cybersecurity threats or unauthorized
access, ensuring prompt responses and mitigation measures.
Additionally, policymakers need to have prior knowledge
of electricity price trends to evaluate or coordinate supply-
demand plans, boost the introduction of renewable energy
infrastructure, and design and runmultiple electricity markets
like capacity and balancing markets [1]. Understanding elec-
tricity price trends is essential for the long-term sustainability
of solar power projects to ensure that the expansion of solar
PV capacity reaches the net-zero target [8].

The Japan Electric Power Exchange (JEPX) is a wholesale
electricity market in Japan established in 2005 as part of
the Japanese government’s efforts to deregulate the electric-
ity market and introduce competition [9]. The purpose of
the JEPX is to facilitate an efficient and stable supply of
electricity in Japan by creating a transparent and compet-
itive marketplace. It operates as an exchange, similar to a
stock exchange, in which electricity and related products
such as futures contracts and options are bought and sold
between power generators, suppliers, and consumers. The
spot market in the JEPX is a real-time market for buying

and selling electricity for immediate delivery, which plays a
critical role for efficient and effective operations [9], [10].
It operates in half-hour intervals, with market participants
submitting their bids and offers for electricity during each
trading interval. The market clearing price is then determined
based on the balance between the supply and demand at
any given moment [11]. Day-ahead forecasting, which is
one of the short-term forecasting, can provide the forecast
price for the delivery day for reference one day before the
bidding day to match the day-ahead trading mechanism of
the JEPX spot market. Typically, a combination of historical
data such as previous day-ahead prices and real-time data
are used [12], [13]. This information is then used to allocate
resources such as generators and storage facilities to ensure
that the expected demand can be met while maintaining the
reliability and stability of the electricity grid [14], [15]. If the
demand is underestimated, there may be a shortage in the
supply, leading to blackouts or disruptions [16]. Conversely,
overestimating the demand may result in an excess supply of
electricity leading to wastage and increased costs. To accom-
plish this, there are two prerequisites for deriving the optimal
forecasting model: (1) selecting effective predictor variables
that influence market mechanisms by considering the con-
text of Japan’s energy situation and (2) choosing suitable
algorithm configurations and conducting a specific logic in
the training and forecasting process, as explained below.

A short-term electricity price model can be developed
using only four label variables – week, month, year, and
hour – as well as historical data of the same day in the
previous week [17] To achieve more accurate predictions,
it was confirmed that a high accuracy can be achieved
through proper feature selection by investigating the relevant
attributes of the data among the redundant features [18].
In Ref. [19], a sensitivity analysis was performed to select the
most appropriate input features that considered the lagging
electricity prices and demand loads. The forecasting results
of Ref. [20] led to the same conclusion: models with system
load demand as the exogenous variable generally performed
better than those with only input price information. A state-
space model was used to forecast the daily JEPX spot market
price by adding the explanatory variables of buy and sell bid
volume, daily highest and lowest temperatures, and electricity
demand [21] Although many scholars have provided similar
insights into the use of fundamental drivers (total demand,
weather conditions, historical prices, etc.) through complex
algorithms, only a few have explored the relationship between
the usage of renewable energy sources and changes in the
energy structure of the spot market price. The effects of
wind generation and weekdays on Spanish electricity spot
price forecasting were studied [22] and found to facilitate
the fitting and forecasting processes. This conclusion con-
firms the influence of the energy situation on the electricity
market. However, due to different data and complicated con-
ditions, it is difficult to reach a consensus on countries that
have solar-driven renewable energy targets. The selection of
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effective predictor variables must consider the prevalence of
solar power, positioning Japan as one of the world’s largest
solar energy markets.

Several model algorithms are typically used for forecasting
electricity prices. The choice of method depends on various
factors such as the availability of data, time horizon of the
forecast, and specific requirements of the object [23], [24].
Statistical forecasting is the simplest and most basic method
based on an analysis of factors that can influence electricity
prices with the goal of predicting future prices. Its limi-
tations have always been criticized due to its inability to
accurately model the typical nonlinear behavior of electricity
prices and predictor variables. Time-series analysis can be
performed using various statistical techniques such as the
autoregressive integratedmoving average (ARIMA), general-
ized autoregressive conditional heteroscedasticity (GARCH),
and exponential smoothing methods (ESMs) [12], [20],
[25], [26]. However, this method relies solely on a fixed set
of variables and assumptions, which limits its flexibility and
adaptability to changingmarket conditions and data availabil-
ity. Thus, it may not be possible to capture new or emerging
trends that could affect electricity prices.

In recent years, as machine-learning techniques have
become more sophisticated, they are increasingly being
applied to forecasting problems and have a significant impact
on various industries [12], [14], [24], [27], [28]. Machine
learning can flexibly handle complex and non-linear tasks
and has shown promising results in electricity price forecast-
ing, particularly for short-term forecasts. Neural networks
(ANN) and support vector regression (SVR) are among the
most popular machine learning algorithms and are good at
modeling data features used for forecasting. An ANN-based
model combined with the weighted least squares (WLS)
technique was proposed for forecasting locational marginal
prices [29]. It enhanced the prediction accuracy primarily for
spring and winter, but evidence for the model’s performance
across all seasons is lacking, particularly during high elec-
tricity demands in summer. A hybrid (Levenberg–Marquardt)
model for day-ahead price forecasting in the electricity mar-
kets of the Indian and Austrian energy markets is presented
in Ref. [30]. This highlights the effectiveness of the model
in specific market environments for the current year and
raises doubts regarding its accuracy in other scenarios [19].
In Ref. [31], a multiblock ANN was optimized using an
intelligent algorithm to enhance both the training mechanism
and price and load prediction abilities. However, these studies
focused exclusively on optimizing the model through method
combination development or parameter optimization. Some
of these, with a more complex approach, hinder clear under-
standing and consensus. Additionally, the study in Ref. [32]
was conducted using both SVR and ANN models with one
unique solution and found that SVR requires less time, and
its accuracy is almost the same as that of ANN. This indicates
that machine learning requires large amounts of high-quality
data and the careful selection and tuning of algorithms to

FIGURE 1. The process of empirical research.

achieve accurate results. Under such circumstances, the per-
formance of the models depends on the representativeness of
the reference dataset used for training [33], [34]. It should
accurately reflect the complexities and fluctuations present in
the target system, ensuring that the model generalizes well to
unseen data and provides reliable predictions under different
conditions. Existing research lacks sufficient attention to the
crucial aspects of regular updates and adjustments to the
training period of a dataset, which are essential for ensuring
its continued representativeness as market dynamics evolve.

This study presents a case study of the Tokyo area that
explores a better option for forecasting JEPX spot market
prices (Fig. 1). In this study, we recognize the increasing
significance of solar power in Japan’s electric power demand
portfolio and the ongoing renewable energy revolution.When
developing a forecasting model, in addition to commonly
used input variables, we considered the impact of the energy
supply structure (such as the influence of photovoltaic power
generation) and the physical relationships that exist in elec-
tricity trading. This consideration adds a crucial layer to
the price-forecasting model, which goes beyond the standard
ones, and showcases a timely approach tailored to the spe-
cific challenges posed by renewable energy sources. Different
settings of the model parameters and training loop were
tested using efficient ANN and SVR algorithms to improve
the prediction accuracy and make it easier to understand.
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This series of comparative and empirical validations not
only substantiates the model’s effectiveness, but also con-
tributes to a broader understanding of the applicability and
performance of machine learning techniques in electricity
price forecasting within the context of renewable energy. Our
research aligns with the energy policy development goals
and industry requirements of countries such as Japan, for
which solar energy plays a pivotal role in shaping the future
energy landscape. The findings have practical implications
for stakeholders, policymakers, and other relevant entities
of renewable energy in the power industry by informing
decision-making with regards to market behavior or energy
allocation. The structure of this paper is as follows: Section II
presents information on the object, dataset, tool, ANN, and
SVR methods, and the established forecasting process using
machine learning. In Section III, we discuss a series of
analyses, forecasting, and evaluation results, including the
predictor variables used, considering the impact of solar
contribution, model parameter measurement results, training
loop determination, and forecast evaluation results. Finally,
the conclusions are presented in Section IV.

II. MATERIALS AND METHODS
A. OBJECT, DATASET, AND TOOL
In this study, the spot market price in the Tokyo area is
considered, which is controlled by the Tokyo Electric Power
Company (TEPCO). TEPCO is one of the largest electric
utilities in Japan, and participates in the JEPX spot market as
a generator and supplier of electricity [35], [36]. It is subject
to the same market forces as the other participants in the spot
market, which means that TEPCO’s participation in the JEPX
spot market is an essential part of its strategy for balancing
its supply and demand requirements and ensuring efficient
production and delivery of electricity to its customers. Trad-
ing in the spot market consists of 48 timeframe items every
30 minutes, similar to other areas in the JEPX.

The dataset of all variables in the forecasting process com-
prises 30-minute average values, including the electricity spot
price published on TEPCO [37] and other datasets of selected
variables collected from the public authority websites of
the Tokyo Area. It is divided into a training dataset for the
fiscal year 2020 (FY2020:2020.4.1∼2021.3.31) for model
learning and a forecasting dataset for the fiscal year 2021
(FY2021:2021.4.1∼2022.3.31) for model evaluation. To ver-
ify the validity of the model, we used actual data for testing.
If this works, the predicted values will be used in practical
projects in the future.

The entire forecasting process was performed inMATLAB
(R2021b) platform, a widely used programming language
and numerical computing software. It provides an interactive
environment for algorithm development, data visualization,
and data analysis, making it a powerful tool for researchers
and engineers in various fields [38]. ‘‘fitrnet’’ and ‘‘fitrsvm’’
are the main function codes in the model used to perform
the entire forecasting process based on the ANN regression
algorithm and the support vector regression (SVR) [39].

FIGURE 2. The structure of ANN models.

B. ARTIFICIAL NEUTRAL NETWORKS FOR
REGRESSION (ANN)
The layer size of an ANN model (which refers to the num-
ber of neurons) is the most important hyperparameter that
can significantly affect network performance in regression
tasks. This determines the capacity of the neural network
to model complex relationships between the input and out-
put variables [40]. It is often necessary to experiment with
different layer sizes to determine the appropriate hyperparam-
eters [12].

In this study, five types of ANN models were used for
a comparative analysis (Fig. 2). Narrow, medium, and wide
neural networks refer to the number of neurons in the hidden
layers of a network, whereas bilayer and trilayer neural net-
works refer to the number of hidden layers in a network [41].
The advantages of each type of neural network and the layer
size depend on the specific problem, data, and architecture of
the network [42]. A rectified linear unit (ReLU) [43] function
was used and performed as follows, where x is the input for
the neuron:

f (x) = x+
= max(0,x) =

{
x if x > 0,
0 otherwise.

(1)

f ′(x) =

{
1 if x > 0,
0 if x < 0.

(2)

C. SUPPORT VECTOR REGRESSION (SVR)
SVR requires careful parameter tuning, especially the choice
of kernel function and scale, to ensure that the model
does not overfit the training data. Kernel function selec-
tion is the key point because SVR uses it to transform
input features into a higher-dimensional space, allowing
for better separation of data points. The choice of the
kernel function significantly affects the model’s ability to
capture complex relationships in the data. Selecting an
inappropriate kernel may lead to a poor generalization of
unseen data.
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FIGURE 3. Training and forecasting process using machine learning.

FIGURE 4. Training forecasting models in two loop ways.

In this study, six types of SVR models were created using
different kernel functions with other automatic hyperparam-
eter settings. Linear, quadratic, and cubic SVR models have
the advantages of simplicity, ease of understanding, compu-
tational efficiency, and easy interpretation of the relationship
between the input features and target variable [44]. Gaus-
sian kernel function SVR Models, namely fine Gaussian,
medium Gaussian, and coarse Gaussian models, are capable
of modeling complex nonlinear relationships [45]. They have
a high degree of generalization and are robust to noise and
outliers in the data, making them suitable for real-world
applications. Model flexibility using the Gaussian function
decreased with the kernel-scale setting. The kernel function is
given by:

Linear kernel:

K (xi, xj) = xixTj (3)

Quadratic and cubic kernel:

K (xi, xj) = (x ix
T
j + c)

d
(4)

Gaussian kernel:

K (xi, xj) = exp
(
−

∥∥xi − xj
∥∥ 2

/2σ 2
)

(5)

where xi and xj are input vectors, and c is a con-
stant.

∥∥xi − xj
∥∥ denotes the Euclidean distance between the

two vectors, and σ is a bandwidth parameter that controls the
kernel scale for different types of Gaussian models.

D. TRAINING AND FORECASTING PROCESS USING
MACHINE LEARNING
Our short-term forecasting is a one-day-ahead process; that is,
we must predict the spot market price on the delivery day one

day before the bidding date to maximize benefits. The basic
process was the same regardless of the machine-learning
technique (Fig. 3). Before training, we standardized the inputs
and outputs so that they always fell within a specified range
using the min-max scaling method [-1 1] [46]. However,
there was a difference between the two types of models
in the internal training paradigm. While both ANN and
SVR involve iterative processes for model training, ANN
focuses on adjusting the weights through multiple train-
ing epochs to minimize forecasting errors and ensure the
capture of complex relationships in the data. By contrast,
SVR emphasizes finding the hyperplane that best fits the
data in a transformed space defined by the chosen kernel
function.

We then implemented the model with two training logics,
which helped optimize the forecasting model and ensure its
accuracy (Fig. 4):

(1) One single-loop of training is the common process of
inputting training observations for batch learning to produce
the network’s output once [47], and the export model is
applied for the forecasting period.

(2) The continuous loop of training is the process of
maintaining a certain fixed training period, ranging from
automatically retraining the model each day by adding the
48 observations of the next day to using the newly derived
model to complete a one-day prediction loop until the end of
the prediction period.

Subsequently, the forecastingmodel was extracted by iden-
tifying the relevant features from the historical data. We input
the normalized values of the forecast data into the model. The
output data were denormalized to obtain the final predicted
value. In addition, the commonly used methods of MAE
and RMSE [48], [49] are chosen to determine the extent of
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FIGURE 5. Average timeframe electricity demand profile and system price of Spot Market, Tokyo Area.

spread between the forecast and actual values. Meanwhile,
we provided a combined FA score for performance ranking,
calculated as follows:

MAE =
1
N

∑N

i=1
|Ûsi − Usi| (6)

RMSE =

√
1
N

∑N

i=1
(Ûsi − Usi)

2 (7)

FA score = 2 −
MAE − min (MAE)

max (MAE) − min (MAE)

−
RMSE − min (RMSE)

max (RMSE) − min (RMSE)
(8)

where, Ûsi is the forecast, Usi is the actual spot market price
for the timeframe i. N is the total number of timeframes over
the forecasting period.

III. RESULTS AND DISCUSSIONS
A. PREDICTOR VARIABLES SELECTION CONSIDERING THE
SOLAR CONTRIBUTION
In the Tokyo area, solar PV power generation is expected to
account for 7.6% of the total demand by 2021, which is much
higher than the share of other renewable electricity sources
(Fig. 5). PV generation is speculated to be a key factor that
may play an important role in dominating spot market prices
in the JEPX, particularly as solar energy use continues to
grow. This is because solar PV power has very low marginal
costs, meaning that the electricity generated by solar panels
is essentially free from other sources such as fossil fuels.
Conversely, when there is a shortage in electricity from PV
power generation, other sources may need to increase their
output to meet demand, which may lead to an increase in spot
market prices. Moreover, the spot market price is determined
by the supply of and demand for electricity; thus, the total
power demand is another key factor that can directly influence
the price at any given time.

To verify the inference that the dominance of solar PV
makes it a pivotal and influential factor in shaping electricity
prices, we designed a series of comparative verifications of

FIGURE 6. The correlation analysis between variables of renewable
energy generation and spot market price in FY2021.

the correlation analysis, as shown in Fig. 6. This involved
assessing the correlation between the electricity generation
from each renewable energy source (including PV, hydro,
wind, biomass, whereby geothermal and nuclear power were
excluded due to minimal or negligible generation) and spot
market price, as well as examining the correlation between
the net demand (total demand minus each renewable source’s
generation) and price. The results showed that except for
solar PV and hydropower, all other variables exhibited a
positive correlation with the prices. The relationship between
the net demand and the price surpasses that of the individ-
ual energy generation correlations. Remarkably, the positive
relationship between the net demand (total demand minus PV
generation) and the price was the most substantial among all
combinations.

Moreover, we conducted a thorough examination of the
interactions between the optimal variable and price over
time (Fig. 7). Our investigation revealed that during periods
of abundant solar energy production (from 5:30 to 17:30
in FY2021), the impact of the net demand on the price
experienced a notable increase, playing a significant role
in enhancing spot market stability. However, this correla-
tion weakens during periods of low solar power generation,
resembling the behavior of the total demand. This can be

VOLUME 12, 2024 52457



X. Fang et al.: Machine Learning-Based Japanese Spot Market Price Forecasting

FIGURE 7. The coefficient of determination (R2) between Net
demand / Dt (total demand) / PV and spot market price in FY2021.

attributed to the reliance on more expensive power genera-
tion resources, such as fossil fuels, coupled with heightened
nighttime demand, which leads to frequent price surges. Con-
sequently, the dual dimensions of solar contribution – its
overwhelming share in the renewable energy portfolio and its
dynamically driven net demand were strongly correlated with
electricity prices, affirming our decision to designate it as the
key predictor variable in the forecasting model.

In addition, prices can vary depending on various factors,
including weather conditions, historical prices, and other
seasonal and temporal characteristics. We used a series of
potentially related factor data through correlation analysis
and collinearity detection to screen out the composite tem-
perature in the Tokyo Area (the composite value provided
by seven meteorological observatories in the Tokyo Area)
and four historical prices variables with a high coefficient
of determination (R2) of over 0.7. The external labels for
the seasonal and temporal characteristics were converted into
dummy variables for the forecasting model. The monthly
label variable was used only when the training time exceeded
six months. All variables matched the standard with an R2

value greater than 0.3 and passed significance (p-value <

0.05) and VIF testing (VIF < 10), categorizing them into
dummy, key and auxiliary variables (Table 1).

B. MODEL PARAMETER MEASUREMENT RESULTS
The performance of any model is highly dependent on the
specific dataset and problem at hand, and it is important to
evaluate multiple models to determine which performs best
in spot market price forecasting. To test the different model
parameters, we used one year of data (FY2020) for training
and the next year’s data (FY2021) as the forecasting set in
a single-loop training method, using both SVR and ANN
models. The predictive accuracy of the models was ranked
based on a comprehensive evaluation of the FA score.
The comparative results indicated that (1) In ANN series

models, the narrow ANN1 model with one hidden layer of
ten neurons was the best choice for prediction, followed by
the medium- and wide-type models (Table 2). The range
of the forecasting error, calculated by subtracting the actual
value from the forecasting value, was almost the same for all

TABLE 1. The variable list of ANN and SVR model.

five models, with the average range between the first quartile
and the third quartile being approximately 4.00 JPY/kWh.
However, the bilayered ANN4 model shows a larger error
range and its error range, approximately 1.5 times of the other
models. The error of the optimal ANN1 model ranges within
0.26 JPY/kWh and -2.74 JPY/kWh, respectively (Fig.8-1).
(2) From among the SVR series models, the SVR1 model
with a linear kernel function performed the best, followed
by the medium and coarse Gaussian kernel function models
(Table 3). Compared with the ANN models, the range of
the forecasting error was significantly different for the six
SVR models (Fig. 8-2) The linear SVR1 model had the
smallest margin of error and the upper limit for the overes-
timation and underestimation of most timeframes is within
1.2 JPY/kWh and -0.95 JPY/kWh excluding outliers, respec-
tively. The quadratic SVR2 model had the lowest margin
of error, with the range from the first quartile to the third
quartile being nearly 3.00 JPY/kWh, followed by the linear,
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TABLE 2. The model parameter measurement results of ANN models.

FIGURE 8. The range of forecasting error (forecasting value minus actual value).

trilayered, cubic, and bilayered models. The performance of
the fine Gaussian SVR4 model in price forecasting was the
worst, with an error of up to 9.65 JPY/kWh for underes-
timation, which was ten times higher than that of the best
SVR1 model.

Both the ANN1 and SVR 1 models were favored because
of their effectiveness in capturing limited complexity data
characteristics. Data with the key variable net demand have
a relatively regular curve change pattern dominated by PV
generation, such as a sine wave-like shape, morning and
afternoon ramps, and seasonal variations. The ANN1 model,
characterized by a single hidden layer and a restrained num-
ber of neurons, was strategically chosen to mitigate the risk
of overfitting. This architectural choice prevented the model
from becoming overly complex, thereby reducing the num-
ber of parameters that must be learned. Deeper networks
with more layers often face challenges, such as vanishing or
exploding gradients, which hamper effective training. Fur-
thermore, the ANN1 model efficiently filters instantaneous
fluctuations in seconds of solar data, enhancing the com-
putational efficiency by minimizing the number of weights
and biases that require training. This streamlined approach
not only optimizes efficiency, but also bolsters the model’s

ability to generalize effectively to diverse datasets. In the
case of the SVR algorithm, the selection of the linear SVR
model was motivated by its resistance to overfitting and
superior capability to capture the underlying relationships
within the data, outperforming other more complex models
such as non-linear and Gaussian kernel functions in this
task. This makes it easier to interpret the model and under-
stand the relationship between the input variables and spot
market prices.

In terms of the ANN algorithm (Table 2), the narrowANN1
model with one hidden layer of ten neurons was the best
choice for prediction, followed by the medium- and wild-type
models. A narrower network can reduce the risk of overfitting
by limiting the number of parameters that must be learned.
It is computationally efficient with fewer weights and biases
that must be trained. However, deeper networks with more
layers are prone to vanishing or exploding gradients, making
it difficult to train the network effectively. Compared with
the SVR model, the ANN model had a smaller forecasting
error, and the error ranges of all five ANN models were
similar, with a larger margin of underestimation (Fig.8-1).
The quadratic SVR2 model had the lowest margin of error,
with the range from the first quartile to the third quartile
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TABLE 3. The model parameter measurement results of SVR models.

being nearly 3.00 JPY/kWh, followed by the linear, trilay-
ered, cubic, and bilayered models. The error of the optimal
ANN1 model ranges from 0.26 JPY/kWh to -2.74 JPY/kWh,
respectively.

In terms of the SVR algorithm (Table 3), the empirical
results show that the SVR1 model with a linear kernel func-
tion performed best in both 1st and 2nd half of FY2021,
followed by the medium- and coarse-Gaussian kernel func-
tion models. The linear SVR is less prone to overfitting
and can better capture the underlying relationships, outper-
forming other more complex models such as non-linear and
Gaussian kernel functions in this task. This makes it easier to
interpret the model and understand the relationship between
the input variables and spot market prices. Moreover, the
range of the forecasting error, which was calculated by sub-
tracting the actual value from the forecasting value, differed
significantly among the six SVR models (Fig.8-2). All the
models tended to underestimate the errors, which were rel-
atively large. The linear model has the smallest margin of
error and the upper limit for the overestimation and under-
estimation of most timeframes is within 1.2 JPY/kWh and
-0.95 JPY/kWh excluding outliers, respectively. However, the
performance of the fine Gaussian SVR4 model in price fore-
casting was the worst, with an error of up to 9.65 JPY/kWh
for underestimation, which is 10 times higher than that of the
best SVR1 model.

C. TRAINING LOOP DETERMINATION
Based on these results, we identified the best-performing
model parameter settings, which were the narrow ANN1
and linear SVR1 models for each algorithm. In this phase,
we used these two models as the base settings and tested the
most accurate option for JEPX spot market price forecasting
by setting two training loop methods (a single loop and a
continuous loop of training) and different training periods
(one, half, quarter, one month, and one week).

We found that the process in the continuous training
loop can lead to significantly better forecast accuracy than
a single-loop training process, regardless of the machine
learning algorithm. With continuous training, real- or near-
real-time data can be incorporated seamlessly into a model,
allowing it to leverage the most recent forecasting infor-
mation. This adaptability is crucial in markets or scenarios
for which the latest data significantly influence predictions.
The continuous-loop approach allows the model to adapt to
dynamic patterns in the underlying data over time, so the
input variable data can match the changing trends in both the
energy structure and electricity supply-demand relationship
well. By regularly retraining the model with the addition
of new observations, the model captures evolving patterns
more effectively. Moreover, in environments in which data
exhibit nonstationary behavior, especially for net demand
data with seasonal characteristics, continuous retraining can
help learn and adjust the model to evolving patterns, thereby
improving the accuracy. In contrast, the single-loop method
relies on a fixed training period, which may become less
representative over time. It could potentially miss emerging
patterns or shifts in the data that occur after the initial training,
particularly during the accelerating transition towards cleaner
energy sources.

Regarding the detailed forecast results (1) from the ANN1
model (Table 4), case 3 was the most suitable for a full-year
prediction with a half-year training period. In monthly evalu-
ations, a higher prediction accuracy was achieved for the first
half of FY2021 with a training period of a quarter in case 4 or
shorter. However, a longer training period of six months or
more was required for the second half of FY2021. This is
due to a significant increase in prices and large fluctuations
in the spot market prices under more complex market con-
ditions. Consequently, neural networks require considerable
computational resources andmust spend time identifying pat-
terns and optimizing models. For the SVR1 model (Table 5),
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TABLE 4. The forecast evaluation results of six cases by using the narrow ANN1 model.

TABLE 5. The forecast evaluation results of six cases by using the linear SVR1 model.

a one-month training period (case 5) is optimal for spot
market price forecasting in both the first and second halves
of the year. In contrast to the computational logic of neural
networks, SVRs are well-suited for handling limited training
data because of their ability to accurately identify complex
relationships using a separating hyperplane, regularization to
prevent overfitting, kernel functions, and convex optimization
to find the global optimum solution.

D. FORECASTING EVALUATION AND DISCUSSIONS
The optimized forecasting solutions were then selected for
an accuracy evaluation. Specifically, the ANN1 model with a
continuous-loop training period of one quarter (case 4) was
employed to forecast the first half of the period (case 3),
which was characterized by relatively stable price fluctu-
ations. Subsequently, the same model, with a continuous
training period of six months, was used to forecast the second

half of the period, marked by high and frequently fluctuating
prices. The results (Figs. 9 and 10) indicated that: (1) the
forecast accuracy is better for the first half of the period
and higher than that for the second half. This is because the
electricitymarket price in that periodwas affected by a variety
of complicated and unexpected factors leading to difficulties
in forecasting, such as an imbalance in the crude oil sup-
ply and demand caused by the pandemic, sudden changes
in market regulations, and climate change. (2) The R2 of
the correlation coefficient exceeds 0.5, compared with the
predicted and measured values displayed in the scatter plots.
However, the approximate curves deviate from the diagonal
line because of the difficulty in predicting extreme prices,
such as drastically high values of over 40 yen/kWh or much
lower values close to 0 yen/kWh. In addition, we selected
typical weeks for each of the four seasons and found that
(3) the model perfectly matched the variance trends of the
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FIGURE 9. The scatter plot between actual and forecasting value using the optimal ANN1
(case 3 and case4) model.

FIGURE 10. The forecasting results using the optimal ANN1 (case 3 and case4) model.

spot market prices, especially during the daytime from 8:00 to
17:00, because the changes in net demand were mainly driven
by the increased utilization of solar power.

Despite employing two distinct machine learning archi-
tectures, we observed remarkably similar performances in
the spot market price forecasting for both architectures. The
error ranges for the more accurate predictions generated by
the ANN1 and SVR1 models were not significantly dif-
ferent (Fig. 11). For most timeframes in the first half of
the year, the upper limits for overestimation and underesti-
mation were within 0.6 JPY/kWh, which was considerably
better than the margin observed for the second half of the
year, which was almost within 3 JPY/kWh. The distinction

between forecasting accuracy under stable and fluctuating
market conditions highlights these limitations. The differ-
ences in accuracy can be attributed to the dynamics of the
electricity supply-demand relationship during fluctuations,
whereby sudden and unpredictable events introduce addi-
tional challenges for predictive models. The training data
utilized for model development may inherently harbor biases
or limitations that contributes to both models exhibiting sub-
optimal performances when confronted with extreme price
scenarios. The ANN1 model lacks the complexity required
to capture and represent the intricacies of the data, especially
when dealing with scenarios involving fluctuating market
conditions. The narrow ANN1 model may be sensitive to
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FIGURE 11. The range of forecasting error using ANN1 and SVR1 models.

outliers or extreme values, causing less weight to be assigned
to these instances during training. Similarly, the linear SVR
model is limited in accommodating non-linear relationships,
particularly in extreme scenarios. Consequently, the model
may struggle to adapt to these outliers, resulting in prediction
difficulties.

Although our current models prove applicable in most
timeframes, their performance may be constrained in highly
volatile conditions, which needs to be further explored using
the following potential methods or approaches. Enhance-
ments can be made from the model mechanism perspective
by (1) incorporating data transformation or specialized treat-
ment to identify and handle outliers more appropriately, and
(2) implementing ensemble methods (such as bagging or
boosting) that combine the strengths of different models
to enhance the robustness and better capture extreme price
movements. Another avenue for improvement is factor explo-
ration by (1) exploring external data sources in a broader
context, including economic indicators, geopolitical events,
and major policy changes. Additionally, (2) collecting more
granular or real-time data allows for dynamic adjustments to
the unfolding market situation.

IV. CONCLUSION AND FUTURE WORK
This study advances the field by addressing the specific
challenges regarding production, investment, and energy allo-
cation for solar power suppliers and government authorities
through the application of machine learning, consideration
of the key demand and energy supply factors, and com-
parative validation, thereby contributing useful insights to
the broader understanding of electricity price forecasting in
the context of a solar-dominated renewable energy structure.
We established a systematic predictive analysis and evalua-
tion workflow. Through this process, an optimal solution for
forecasting the spot market price of the wholesale electricity
exchangemarket in Japan is proposed, including the selection
of predictor variables, measurement ofmodel parameters, and
determination of the training period. Our results reveal that
the model can accurately reflect price change trends, espe-
cially during steady periods, and demonstrates a high level

of forecast accuracy. The main conclusions from the JEPX
spot market price forecast for Tokyo can be summarized as
follows:

(1) For the selection of predictive model variables, the net
demand (the total demand minus PV generation) is a key one
besides time dummy variables, temperature, and auxiliary
variables of historical prices. The widespread introduction
of solar energy is anticipated to stabilize spot market prices.
It should be noted that a reduction in net demand owing to
the increasing introduction of solar power has a direct down-
ward effect on spot market prices. Therefore, the bidding
strategy should carefully consider the multiparty electricity
market to maximize benefits, with particular attention paid
to the trading mechanism of the supply-demand adjustment
market.

(2) For the model parameter decision, the narrow ANN1
model with one hidden layer of 10 neurons and the SVR1
model with a linear kernel function performed better in spot
market price forecasting than the other models. The forecast-
ing accuracies of the two models are very similar in their
capacity to efficiently handle the limited complexity of key
variable data, with the ANN1 model designed to combat
overfitting challenges, and the linear SVR model excelling at
capturing and interpreting the underlying relationships within
the dataset. Both methods can achieve a high predictive accu-
racy in periods with stable price variations, thereby ensuring a
robust performance in most market stability scenarios. How-
ever, it is relatively difficult to forecast periods of sudden
price changes or frequent fluctuations owing to complex or
unexpected factors.

(3) With regards to the training logic of forecasting, train-
ing using the continuous-loop method significantly improved
the forecast accuracy compared with the commonly used
single-loop training process. This is because regular data
updates can better match changes in the energy structure
caused by the continuous introduction of solar energy. Owing
to the different calculation mechanisms of the models, ANN1
requires a training period of more than six months for opti-
mization, whereas SVR1 only needs to find support vectors
on the decision boundary, making it possible to reach the
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same level of predictive accuracy with only one month of
training data.

However, the performance of the current model is unsatis-
factory because of the difficulty in predicting the occurrence
of extreme prices in unexpected situations. This is expected
to improve by addressing model constraints through data
transformation and ensemble methods, leveraging external
data sources for a broader context and collecting more gran-
ular or real-time data for dynamic adjustments to unfolding
market situations. In the real application environment of our
forecasting model, given the increasing reliance on digital
technologies and data in energy markets, it is critical to
address potential cybersecurity risks and mitigation strate-
gies. We also need to establish a real-time monitoring system
to maintain continuous availability for decision-making in
the electricity market. Adversarial training techniques were
imported during the model development phase to enhance the
resilience of the machine-learning models against manipu-
lative attacks. Additionally, reinforcement approaches such
as Q-learning are incorporated to develop specific asset
optimization and attack resilience strategies. By combining
advancements in modeling techniques with cybersecurity
considerations, our future work will focus on comprehen-
sively improving the accuracy, reliability, and security of
the current approach to provide a more holistic view of the
challenges in modern electricity markets.
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