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ABSTRACT Software Defined Networks (SDN) offer dynamic reconfigurability and scalability, revolution-
izing traditional networking. However, countering Distributed Denial of Service (DDoS) attacks remains a
formidable challenge for both traditional and SDN-based networks. The integration of Machine Learning
(ML) into SDN holds promise for addressing these threats. While recent research demonstrates ML’s
accuracy in distinguishing legitimate from malicious traffic, it faces difficulties in handling emerging,
low-rate, and zero-day DDoS attacks due to limited feature scope for training. The ever-evolving DDoS
landscape, driven by new protocols, necessitates continuous ML model retraining. In response to these
challenges, we propose an ensemble online machine-learning model designed to enhance DDoS detection
and mitigation. This approach utilizes online learning to adapt the model with expected attack patterns.
The model is trained and evaluated using SDN simulation (Mininet and Ryu). Its dynamic feature selection
capability overcomes conventional limitations, resulting in improved accuracy across diverse DDoS attack
types. Experimental results demonstrate a remarkable 99.2% detection rate, outperforming comparable
models on our custom dataset as well as various benchmark datasets, including CICDDoS2019, InSDN, and
slow-read-DDoS. Moreover, the proposed model undergoes comparison with industry-standard commercial
solutions. This work establishes a strong foundation for proactive DDoS threat identification and mitigation
in SDN environments, reinforcing network security against evolving cyber risks.

INDEX TERMS DDoS attacks, LDDoS attacks, SDN, OML, ensemble, detection and mitigation.

I. INTRODUCTION
In the dominion of modern networking, Software Defined
Networks (SDN) have emerged as a transformative paradigm,
offering dynamic reconfigurability and scalability that stands
in stark contrast to traditional networking architectures [1].
This shift towards SDN has ushered in an era of unparalleled
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agility and efficiency in network management, enabling
organizations to swiftly adapt to evolving demands and
architectural requirements. However, amidst the promise
and potential of SDN, one enduring challenge remains as
formidable as ever: the mitigation of Distributed Denial of
Service (DDoS) attacks.

DDoS attacks, characterized by a barrage of malicious
traffic orchestrated from multiple sources, continue to pose
a significant threat to the availability and integrity of network

51630


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-5594-3415
https://orcid.org/0000-0001-5042-5793
https://orcid.org/0000-0002-3820-3378
https://orcid.org/0000-0002-0330-8372
https://orcid.org/0000-0001-7679-3674
https://orcid.org/0000-0003-3406-8954


A. A. Alashhab et al.: Enhancing DDoS Attack Detection and Mitigation in SDN Using an Ensemble OML Model

services [2], [3]. This threat is not confined to traditional
networks alone; rather, it extends its ominous shadow over
SDN-based networks as well. The inherent flexibility and
programmability of SDN,while highly advantageous inmany
respects, also introduce novel attack vectors and complexities
in DDoS mitigation [4], [5], [6].

Recognizing the pressing need to strengthen SDN against
persistent DDoS threats, the integration of Machine Learn-
ing (ML) techniques into SDN architecture has emerged as
a promising strategy. Recent studies have showcased the
effectiveness ofMLmodels in accurately distinguishing legit-
imate network traffic from malicious attacks [7]. However,
as the DDoS landscape evolves with the rise of low-rate
and zero-day attacks, the availability of features for model
training becomes increasingly restricted [8], [9], [10]. posing
challenges to the model’s adaptability and efficacy against
evolving attack tactics. In response, we present an innovative
solution aimed at enhancing DDoS detection and mitiga-
tion within SDN environments through an ensemble online
machine-learning model, meticulously designed to overcome
the limitations of traditional static models.

This model employs principles of online learning, ensuring
continuous adaptation and refinement by assimilating emerg-
ing attack patterns. It can continuously train on real-time
network traffic, employing refined feature selection processes
to promptly detect DDoS attacks and update itself as attack
patterns evolve. Ensemble methods, renowned for their supe-
rior performance compared to individual classifiers, achieve
this by amalgamating diverse models, resulting in reduced
errors and enhanced detection accuracy [11], [12]. Challenges
such as high bias (underfitting) or high variance (overfitting)
typically faced by individual classifiers [13], are addressed
by our ensemble method, which harmonizes multiple models
to strike a balance between bias and variance, ultimately
elevating overall performance.

The proposed ensemble method incorporates four OML
classifiers: BernoulliNB [14], Passive-Aggressive [15],
SGD [16], and MLP [17]. This approach significantly
enhances attack identification, adeptlymanages concept drift,
and strengthens SDN security. In summary, our work con-
tributes in three main aspects:

• Proposing an ensemble online machine-learning model
designed for detecting and mitigating evolving DDoS
attacks, including zero-day, high-rate, and low-rate
attacks, in SDN environments.

• Enhancing the model’s adaptability and resilience in the
dynamic DDoS landscape through continuous updates
to effectively counter evolving threats.

• Rigorously validating the proposed model’s perfor-
mance through experiments conducted in SDN simu-
lation environments using diverse datasets, including
CICDDoS2019, InSDN, and slow-read-DDoS.

The subsequent sections of this paper are structured as
follows: Section II delves into the preliminaries, offer-
ing a comprehensive overview of key concepts such
as Software-Defined Networking (SDN), Low-rate DDoS

attacks, Zero-day DDoS attacks, Online Machine Learning
(OML), and ensemble Machine Learning. Moving on to
Section III, we conduct a thorough review of various promi-
nent approaches designed for the detection and mitigation of
DDoS attacks within SDN environments. These approaches
leverage diverse machine learning techniques to bolster the
security of SDN networks. In Section IV, we present our
proposed comprehensive system architecture, providing an
in-depth exploration of its core components tailored specifi-
cally for the detection and mitigation of DDoS attacks within
SDN environments. Sections V and VI detail the evaluation
and experiment setup, encompassing information on datasets
and traffic generation utilized for model training. Section VI
presents the findings of the results, accompanied by a detailed
discussion. Finally, the concluding Section VII wraps up
this paper, summarizing key insights and paving the way for
future directions in this domain.

II. PRELIMINARIES
This section provides an overview of Software-Defined Net-
working, Low-rate DDoS attacks, Zero-day DDoS attack,
Online Machine Learning, and Ensemble Model.

A. SOFTWARE DEFINED NETWORKS (SDN)
Software Defined Networks (SDN) represent a revolutionary
shift in network architecture, fundamentally altering the way
networks are designed, managed, and operated. In traditional
network infrastructures, the control plane and data plane
functions are tightly integrated into network devices such
as switches and routers. SDN decouples these functions,
enabling centralized control of network resources through a
logically centralized controller, often referred to as the SDN
controller [18].

The SDN architecture comprises three layers: the Data
layer, Control layer, and Application layer, as illustrated in
Figure 1. At the core of SDN is the SDN controller, which
communicates with network devices through a standardized

FIGURE 1. Software defined networking architecture.
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protocol like OpenFlow [19]. The controller maintains a
global view of the network and utilizes this knowledge to
make dynamic decisions regarding traffic routing, quality
of service (QoS) policies, and security enforcement. SDN
switches, typically situated at the network’s edge, forward
traffic based on instructions received from the controller. This
centralized control and programmability empower network
administrators to adapt quickly to changing network condi-
tions and traffic patterns [20].

B. LOW-RATE DISTRIBUTED DENIAL OF SERVICE (LDDoS)
ATTACKS
DDoS attacks pose a pervasive threat to network availability
and performance. While traditional DDoS attacks flood a tar-
get with an overwhelming volume of traffic, low-rate DDoS
attacks employ a subtler approach [21]. In a LDDoS attack,
malicious traffic is injected at a lower rate, making it less
conspicuous and more challenging to detect using traditional
threshold-based methods [22].

LDDoS attacks often involve techniques such as
Slowloris [23] and RUDY [24], which exploit vulnerabili-
ties in web servers by establishing connections but sending
minimal, legitimate-looking requests over extended periods.
These attacks aim to exhaust server resources, leading to a
degradation of service quality without the extreme bandwidth
consumption associated with traditional DDoS attacks [25].

C. ZERO-DAY DDoS ATTACKS
Zero-day DDoS attacks exploit vulnerabilities in the network
on the same day the vulnerability becomes known to the
public, or even before a fix or patch is available. In other
words, these attacks take advantage of security flaws that are
‘‘zero days old,’’ meaning there are no official patches or
solutions to protect against them because they are newly dis-
covered. Zero-day DDoS attacks pose significant challenges
for organizations and security experts, as they often require
immediate and creative solutions to mitigate the impact [26].
Traditional Machine learning mechanisms can struggle

to detect zero-day DDoS attacks because they rely on his-
torical data to learn patterns and anomalies [27]. Zero-day
attacks, by definition, have not been previously observed,
so there is no historical data to train the model. Therefore,
machine learning models may not recognize these attacks as
anomalous behavior. Machine learning models require care-
fully engineered features to make predictions. For zero-day
attacks, it’s challenging to define relevant features because
their characteristics are unknown. Models trained on features
specific to known attacksmay not generalize well to unknown
threats. also, attackers continually evolve their tactics, mak-
ing it challenging for static machine learning models to keep
up with rapidly changing attack strategies.

D. ONLINE MACHINE LEARNING (OML)
Machine Learning (ML) has emerged as a potent tool for
enhancing network security, equipping us with the capability

FIGURE 2. Batch and online machin learning.

to scrutinize vast troves of network data and promptly detect
anomalies in real-time. A specialized variant of ML, known
as OnlineMachine Learning (OML), accentuates adaptability
and perpetual learning from streaming data streams [28].

Key Characteristics of OML involve its intrinsic design
for processing data incrementally. It meticulously updates
its models as new data streams in. This innate real-time
adaptability positions OML as an ideal choice for tasks such
as network intrusion detection and the mitigation of DDoS
attacks, especially crucial in contexts where threats can meta-
morphose with remarkable celerity.

To differentiate between the two paradigms, we turn to
Figure 2a which illustrates batch learning. In this conven-
tional approach, a machine learning model is meticulously
trained using the entire corpus of available data. Subse-
quently, the trained model is archived and deployed with-
out further learning. This practice, albeit reliable, can be
time-consuming, particularly when processing substantial
datasets. It is imperative to note that while the model can be
updated post-deployment, it remains static during the learn-
ing process.

In contrast, Figure 2b depicts Online Learning, a dynamic
paradigm wherein a model undergoes continuous updates
with small, incremental increments of new data as it becomes
accessible. This affords the model the capacity to perpetually
learn and adapt to the ever-evolving data landscape. The key
steps in Online Learning encompass:

1) Initializing the model with an initial dataset.
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2) As new data emerges, the model incrementally absorbs
this data, accommodating either single data points or
mini-batches.

3) The model remains in a state of continual learning and
adapts promptly to shifting data patterns, even after
deployment.

Online learning is crucial for dynamic DDoS attack detec-
tion, adapting swiftly to changing data patterns. A robust
detection system requires amodel that continuously improves
and adapts in real-time to stay current.

OML excels in mitigating the challenges posed by
ever-changing data distributions and concept drift, frequent
adversaries in network security. It effortlessly adapts to shift-
ing network behavior and extends the capability of proactive
threat detection, even when faced with previously unseen
attack patterns.

E. ENSEMBLE MACHINE LEARNING MODEL
Ensemble learning, a potent approach in machine learning,
involves the incorporation of multiple models to create a
more resilient and accurate predictive system [35]. The core
concept revolves around leveraging the strengths of diverse
models to compensate for individual weaknesses, ultimately
enhancing the overall predictive performance. This collabo-
rative strategy reduces overfitting risks and captures nuanced
patterns in the data, making ensemble models particularly
effective across a range of applications [36].
Ensemble models come in various types, each with

its unique methodology. Bagging, exemplified by Random
Forests, concurrently trains multiple models on different
subsets of the training data to generate a robust aggre-
gate prediction. Boosting techniques, such as AdaBoost and
Gradient Boosting, sequentially train models, emphasizing
instances that were previously misclassified to improve over-
all accuracy. Additionally, stacking combines predictions
from multiple models using a meta-learner, aiming to lever-
age the diverse strengths of individual models for a more
comprehensive outcome [36].
Despite their effectiveness, ensemble models pose chal-

lenges such as computational expenses and the need for
hyperparameter tuning, requiring careful balance between
model complexity and available resources [37]. Evaluation
metrics like accuracy, precision, and recall ensure robust gen-
eralization performance across various domains, highlighting
ensemble learning’s versatility in real-world applications
such as image recognition, finance, and healthcare.

In the context of DDoS attack detection in SDN environ-
ments, ensemble methods offer stability, effective handling
of imbalanced data, and adaptability to changing network
conditions. Leveraging model diversity allows for captur-
ing a broad range of relevant features crucial for detection.
In this study, we opted for ensemble method over other
machine learning approaches for DDoS detection in SDN
environments due to its robustness and adaptability. By com-
bining multiple base learners, ensemble method provides a
reliable detection mechanism capable of handling diverse

and evolving DDoS attacks. It adapts well to changing net-
work conditions, ensuring real-time response capabilities for
rapid attack detection and mitigation. Additionally, ensemble
method effectively handles imbalanced data and integrates
diverse modeling approaches, enhancing overall predictive
performance and enabling detection of a wide range of DDoS
attack patterns.

III. RELATED WORK
In this section, we review several notable approaches for
detecting andmitigating DDoS attacks in SDN environments.
These approaches employ various machine learning tech-
niques, to enhance the security of SDN networks.

Ribeiro et al. [29], introduce an adaptable architecture
that combines SDN and Moving Target Defense (MTD) to
combat DDoS attacks. Their solution redirects attack traf-
fic to a controlled server, ensuring uninterrupted service
for legitimate users. A sensor employing ensemble mod-
eling with Gaussian Naive Bayes (GNB), Support Vector
Machine (SVM), Random Forest (RF), and Multilayer Per-
ceptron (MLP) algorithms facilitates flow classification. Key
contributions include MTD integration with SDN, machine
learning-based DDoS diagnosis, enhanced detection using
various models, and proactive defense rules. However, its
performance sensitivity to network conditions and reliance
on secondary servers in practical scenarios warrant further
investigation.

Tonka et al. [30], present an Ensemble machine learning
approach with Neighbourhood Component Analysis (NCA)
for DDoS attack detection in SDN, achieving high accuracy,
with Decision Tree (DT) reaching 100% classification suc-
cess. However, this approach is limited to predefined features,
making it less effective against novel or emerging attack
patterns.

Deepa et al. [31], propose an Ensemble Learning Methods
approach using multiple ML algorithms (KNN, Naive Bayes,
SVM, and SOM) to detect anomalous traffic behavior in the
SDN controller. The ensemble method outperforms single
algorithms in terms of accuracy, detection rate, and false
alarm rate, improving DDoS detection in SDN environments.

Other research papers propose methods for detecting and
mitigating LDDoS attacks in SDN environments.

Jess et al. [31], introduce a modular architecture utilizing
six machine learning models to train an intrusion detection
system (IDS). With a 95% detection rate, their approach
proves effective. However, these methods can increase con-
troller overhead and reduce response efficiency in large
networks.

Khamkar et al. [33], propose an LDDoS attack identifica-
tion and defense framework employing the SVM algorithm.
With an accuracy of 99%, the framework successfully iden-
tifies and mitigates LDDoS attacks. However, the process
of identifying features for effective rule creation is not
addressed, limiting its efficiency and network connectivity.

Sudar et al. [34], present a flow-based detection and miti-
gation framework with 93% accuracy in traffic classification,
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TABLE 1. Comparison of existing approaches using ML algorithms.

reducing resource consumption. Nonetheless, it exhibits a
high false positive rate for certain traffic flows, such as ICMP.

Table 1 provides a summary overview of the main points
of these existing approaches, highlighting their strengths and
limitations for DDoS detection and mitigation in SDN envi-
ronments.

Traditional classification machine learning algorithms
often struggle to detect evolving DDoS attacks, including
zero-day attacks, because they rely on historical data to
learn patterns and anomalies. Zero-day attacks, by defini-
tion, have not been previously observed, rendering historical
data ineffective for training models. Consequently, these
approaches may fail to recognize zero-day attacks as anoma-
lous behavior. Furthermore, these models require carefully
engineered features to make predictions, posing a significant
challenge for zero-day attacks where relevant characteristics
are unknown. Models trained on features specific to known
attacks may struggle to generalize to unknown threats. Addi-
tionally, attackers continuously evolve their tactics, posing
challenges for static machine learning models to keep pace
with rapidly changing attack strategies.

To address these challenges, our model dynamically adapts
in real-time to emerging threats without relying on known
signatures. By combining multiple classifiers, our approach
improves accuracy and enhances the ability to detect evolving
threats. Our approach to DDoS detection distinguishes itself
through the utilization of online ensemble learning, which
dynamically adjusts to evolving network conditions and con-
cept drift in real-time. In contrast to traditional methods that
rely on static datasets and offline training, our approach con-
tinuously learns from streaming data, ensuring an immediate
response to emerging threats. The comparison table provided
in Table 2 outlines the innovations of our approach.

The proposed model employs a dynamic feature selection
mechanism that continuously adjusts its feature set based on
the evolving characteristics of network traffic. This dynamic

TABLE 2. Comparison of proposed approach with current approaches.

approach enables the model to adapt swiftly to changes in
network conditions and emerging attack patterns, enhancing
its ability to detect novel and evolving threats effectively.
By selecting relevant features in real-time, the model opti-
mizes detection efficacy while minimizing computational
complexity, ensuring efficient utilization of resources in
rapidly changing environments.

Our approach offers superior adaptability to concept drift,
enabling immediate responses to streaming data, scalability
for handling large volumes of data efficiently, and flexibil-
ity in deployment for dynamic network environments. This
contrasts with traditional approaches that may struggle with
delayed responses, scalability limitations, and resource inef-
ficiencies associated with batch processing.

IV. ARCHITECTURAL DESIGN
This section introduces our comprehensive system architec-
ture, providing an in-depth exploration of its core components
tailored for detecting and mitigating both high and low-rate
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DDoS attacks within SDN environments. Our system encom-
passes three primary modules:
1) Traffic Collector Module: Responsible for capturing

and recording network packets as they traverse the SDN
environment. This module serves as the initial data
source for subsequent analysis.

2) OnlineMachine Learning-based Intrusion Detection
System (OML-based IDS): Utilizes machine learning
techniques to process and classify incoming traffic in
real-time, identifying potential DDoS attacks.

3) Online Machine Learning-based Intrusion Preven-
tion System (OML-based IPS): Takes immediate and
precise actions to mitigate identified threats based on
the information received from the intrusion detection
system.

Our model is intelligently designed to continually adapt to
evolving attack patterns through an online learning approach.
Figure 3 offers a comprehensive overview of the entire DDoS
detection and mitigation process, emphasizing the seamless
integration of our system with SDN architecture.

System Workflow:
1) The traffic collector, connected to the SDN con-

troller, efficiently copies network traffic from SDN edge
switches. This process involves periodic requests for
flow entries from all flow tables on OpenFlow switches,
ensuring that each packet is switched only once.

2) To enhance security, these requests and responses are
transmitted over a secure and isolated channel, pre-
venting exposure to connected hosts. The speed of
data collection significantly impacts threat detection and
response times.

3) The OML-based IDS module plays a pivotal role in
the detection process. It conducts traffic standardization,
variable analysis, and employs trained machine learning
models to classify preprocessed input traffic as either
suspicious or benign.

4) Decisions made by the OML-based IDS are promptly
communicated to the mitigation module, which employs
the OML-based IPS strategy to take appropriate mitiga-
tion actions based on the information received from the
IDS.

5) The ML-based IPS module translates these actions into
flow rules, which are then implemented by the controller
in network devices.

One of the strengths of our architecture lies in its mod-
ular design. Each module can be optimized independently,
providing flexibility and adaptability. For instance, the IDS
module can be replaced with alternative security products,
such as new-generation firewalls. Additionally, while our
experiments use the Ryu controller, our modular approach is
controller-agnostic, as the OML-based IDS and OML-based
IPS modules seamlessly integrate with the SDN controller
through its northern interface (Rest API).

In the subsequent sections, we will offer detailed insights
into the functionality and optimization of each module.

A. TRAFFIC COLLECTOR
The Traffic Collector module stands as a pivotal component
within our DDoS detection system. While various network
traffic flow generator and analysis tools like Flowba [38] and
CICFlowMeter [39] are available, their compatibility with the
OpenFlow protocol and SDN controllers varies. Some tools
introduce delays or affect network traffic flow, hindering their
seamless integration [40]. Moreover, certain tools primarily
focus on offline processing, which does not align with our
real-time packet processing approach. Consequently, we have
meticulously amalgamated the strengths and advantages of
these tools to craft our robust traffic collector module.

Our traffic collector module operates within the Ryu con-
troller, implemented through a Python script. This module
communicates with the controller’s APIs to retrieve and
mirror flow traffic information, capable of issuing periodic
requests for flow statistics. The operation sequence of the
traffic collector is as follows:

Authentication of all connected OpenFlow switches by
generating a unique ID for each switch. Authentication
ensures that hosts connected to the switch are permitted to
exchange packets.

Packet headers are matched against flow entries in the
switch’s flow table upon packet arrival at an OpenFlow
switch. If a successful match occurs, the entry’s statistics are
updated, encompassing information like the number of bytes
and packets.

If a packet header fails to match any flow entry within
the switch’s flow table, it is forwarded to the controller.
The controller, in response, can add a new flow entry to the
switch’s flow table to enforce the defined policy. This process
ensures that traffic generated by all hosts connected to a
specific OpenFlow switch populates the switch’s flow table.

To construct the collecting module, we define a class
known as ‘‘DDOSMLApp,’’ extending the RyuApp
class from the ‘‘app_manager’’ module. The DDOSMLApp
class serves as the foundation for implementing a Ryu appli-
cation designed to monitor packet flow within a network.
The class includes the ‘‘OFP_VERSIONS’’ class variable,
specifying the OpenFlow protocol versions it is compatible
with.

The ‘‘init’’ method, functioning as the constructor for
the DDOSMLApp class, initializes essential class variables
such as ‘‘mac_to_port,’’ ‘‘datapaths,’’ and ‘‘mlobj.’’ Fur-
thermore, it initiates a new thread using the ‘‘hub.spawn’’
method. The ‘‘monitor’’ method operates within this new
thread.

The ‘‘monitor’’ method is responsible for continuously
observing the packet flow within the network. It operates
in a loop, with intervals of sleep, and iterates through
the datapaths. For each datapath, it sends an ‘‘OFPFlow-
StatsRequest’’ message, prompting the datapath to provide
information about the current packet flow. The inclusion of
print statements aids in outputting debugging messages to the
controller.
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FIGURE 3. Overview of proposed system architecture.

Algorithm 1 outlines the pseudocode detailing the con-
struction of the flow collectormodule, meticulously crafted to
monitor and handle flow entries within OpenFlow switches.

B. OML-BASED IDS
The Online Machine Learning-Based Intrusion Detec-
tion System (OML-based IDS) has been designed and
deployed specifically to detect evolving DDoS attacks. The
OML-based IDS represents a promising solution, employ-
ing ensemble Machine Learning models that fuse multiple
ML algorithms to assess network traffic in real-time. This
dynamic analysis identifies patterns indicative of intrusions
or malicious attacks.

The selection of BernoulliNB, Passive-Aggressive, SGD
Classifier, and MLP Classifier for the ensemble model is
based on several key criteria tailored to the demands of
DDoS detection in SDN environments. Firstly, diversity
in learning algorithms ensures that each classifier captures
unique data facets, thereby enhancing the ensemble’s over-
all predictive power. Secondly, computational efficiency
is crucial, especially for real-time adaptation to stream-

ing data. This necessitates classifiers with low computa-
tional overhead to minimize processing latency. Moreover,
adaptability to concept drift and robustness to imbalanced
data are essential attributes. These ensure that the model
can effectively handle dynamic network conditions and
accurately differentiate between attack and normal traffic
instances.

To achieve this, we harness the capabilities of streaming
machine learning, capitalizing on a specialized incremen-
tal library called ‘‘scikit-multiflow’’ [41]. This extension
of the widely recognized ‘‘scikit-learn’’ [42] caters to
multi-output/multi-label and stream data classification and
regression tasks. ‘‘Scikit-multiflow’’ empowers us to seam-
lessly handle data streams, where instances continuously
flow,whether one-by-one or inmini-batches [43]. This allows
us to engage in incremental learning, dynamically updat-
ing our model in real-time as new data streams in. The
library offers a spectrum of learning algorithms proficient
in acquiring knowledge from incoming data, eliminating
the need to reprocess previously encountered instances. Our
model can continuously train and adapt to new network
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Algorithm 1 Construction of the Flow Collector Module
1. Initialize DDOSMLApp_FlowCollector
2. AddFlow:

a. Set priority, match, and actions
b. Generate flow_id
c. Parse match and actions
d. Add flow to flows dictionary
e. Send packet out message with flow_id

3. GetFlows:
a. Return flows dictionary

4. UpdateFlowExpiration:
a. If flow_expiration_timeout exists, set new

flow_expiration_timeout to 30 seconds from now
b. Else, set flow_expiration_timeout to current time

5. CollectFlows:
a. If flow_expiration_timeout exists and current time is

greater than or equal to flow_expiration_timeout:
i. For each flow in flows dictionary:
ii. If difference between current time and flow

[’expiration_time’] is greater than or equal to
30 seconds:
Remove flow from flows dictionary

b. Update flow expiration timeout
6. Set connection and table_id arguments
7. Create a FlowCollector instance
8. Add a flow entry with priority, match, and actions
9. Collect flows every 30 seconds

traffic, enhancing its ability to detect novel threats, including
zero-day DDoS attacks.

The key steps involved in constructing our OML-based
IDS are as follows:

1. Collect and Preprocess Data: In this initial step, data is
received from the traffic collector module. The data is cleaned
and preprocessed to eliminate irrelevant or noisy information,
rendering it suitable for our online ensemble ML model. This
entails data cleaning, transformation into a format compatible
with the model’s algorithms/classifiers, and storage in the
database and the data stream.

2. Feature Selection and Engineering: Next, we embark on
feature selection and engineering. This phase involves ana-
lyzing the data to pinpoint relevant features and transforming
them into a format suitable for the model’s classifiers.

3. Model Initialization: Before we commence real-time
predictions in the online stage, we initialize the model with
initial data during an offline stage. This typically involves
selecting a subset of existing datasets, such as CICIDS2019
dataset, InSDN, and slow-read-DDoS-attack-in-SDN, to train
classifiers like BernoulliNB, Passive-Aggressive, SGD, and
MLP as multiple base learners, each with its own set of
hyperparameters.

4. Ensemble Learning: After the base learners are initial-
ized, the model begins making predictions on new data as it
arrives. The ensemble model is created by combining the pre-
dictions of these base learners throughweighted combination,
culminating in the final prediction.

5. Attack Detection: As the ensemble model generates
predictions on incoming data, it can flag data points that
appear anomalous or suspicious. This determination is typ-
ically based on the selected features, contrasting incoming
data against the characteristics of what is considered normal
behavior.

6. Model Monitoring and Updating: The final step involves
keeping our model up to date. Over time, the accuracy of
base learners may decline due to changing data distributions.
To counteract this, we implement a drift detection technique
to monitor the performance of each base learner over time,
periodically updating them as new data streams in.

C. OML-BASED IPS
In a network’s normal operation, real-time responsiveness
plays a pivotal role as traffic necessitates continuous online
monitoring and processing. The proposed OML-based IPS
is engineered to avert DDoS attacks before they can inflict
harm on the network or its resources. The distinctive feature
of our OML-based IPS in DDoS prevention lies in its capacity
to perpetually learn and adapt to shifting traffic patterns and
evolving attack methods.

This adaptability empowers the IPS to proficiently identify
and prevent DDoS attacks, even if assailants employ novel
or unfamiliar tactics. It’s crucial to emphasize that the IDS
and IPS function in tandem, mutually reinforcing each other’s
effectiveness. The IDS detects the attack, and the IPS swiftly
enacts the appropriate actions to thwart or mitigate it.

To robustly avert DDoS attacks, our model can:
1. Monitor Real-Time Network Traffic: The model scru-

tinizes network traffic in real-time, actively seeking unusual
patterns or anomalies that might signify an attack.

2. Apply Machine Learning Algorithms: The system
employs machine learning algorithms to scrutinize traffic
patterns and identify potential threats, responding to notifi-
cations originating from the OML-based IDS.

3. Enforce Appropriate Countermeasures: Upon identify-
ing potential threats, the IPS initiates suitable countermea-
sures, such as obstructing malicious traffic or diverting it to a
designated sinkhole, thus forestalling the attack’s success.

4. Continuously Learn and Adapt: The IPS is continually
evolving, adjusting to shifting traffic patterns and emerging
attack techniques, thus preserving its efficacy in detecting and
thwarting attacks.

The architectural framework of the proposed OML-based
IPS comprises four key phases:

1. Traffic Profiling: This phase involves analyzing and pro-
filing network traffic in real-time to pinpoint unusual patterns
or indications of an attack.

2. Action Mechanism Design: In this step, we design the
appropriate actions and countermeasures to be employed
upon detecting a threat.

3. Implementing the Action: The IPS executes the desig-
nated actions, such as blocking malicious traffic or redirect-
ing it, to prevent the attack from succeeding.
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FIGURE 4. Workflow for processing each received packet.

4. Monitor and Update the Model: The IPS continuously
monitors its performance and adapts over time to ensure its
accuracy and effectiveness in thwarting evolving attacks.

The OML-based IDS and IPS collaborate harmoniously to
ensure the network’s security, with the IDS serving as the
vigilant watchdog and the IPS swiftly taking action against
any identified threats.

The novel aspects of the model architecture outlined in this
section can be summarized as follows, complementing the
streamlined flow processing depicted in Figure 4:
In the architecture workflow for processing each received

packet, the traffic collector model operates within the Ryu
controller framework using a Python script. This model inter-
acts with the controller’s APIs to gather or mirror flow traffic
information and can initiate periodic requests to retrieve
flow statistics. During the traffic collection phase, the initial
step entails the Ryu controller authenticating all connected
OpenFlow switches by assigning a unique ID to each switch.
Only upon successful authentication are the connected hosts
permitted to exchange packets.

As packets arrive at an OpenFlow switch, their head-
ers undergo matching against the flow entries stored in the
switch’s flow table. In the event of a successful header
match, the corresponding flow entry’s statistics, such as byte
and packet counts, are promptly updated. However, if no
flow entry matches the packet’s header, the packet is for-
warded to the controller for further processing. A crucial
facet of our model’s architecture lies in its feature engi-
neering methodology, which incorporates a novel selection
process. This process aims to optimize detection efficacy
while simultaneously reducing computational complexity.
By carefully selecting pertinent features, our model achieves
heightened efficiency and accuracy in identifying anomalous
network behavior.

Moreover, our model incorporates robust mechanisms for
handling concept drift, ensuring dynamic model updates
based on streaming data. This adaptive approach enables
continuous adaptation to changing network conditions, bol-
stering the model’s resilience and efficacy against evolving

threats. Together, these innovative architectural elements
contribute to the model’s effectiveness in real-time DDoS
detection and mitigation, enhancing its adaptability and per-
formance in dynamic network environments.

V. EXPERIMENT SETUP
This section outlines experiments assessing the proposed
approach’s effectiveness in detecting and mitigating DDoS
attacks within SDN-based networks. It details the experiment
methodology, covering traffic gathering, OML-based IDS,
and OML-based IPS. The model is evaluated on various
datasets, including a self-generated one with LDDoS/DDoS
attacks. Using Mininet and Ruy SDN controller, experiments
simulate DDoS attacks with tools like iperf, Hping3, and
Scapy. The section also highlights ensemble model train-
ing to classify DDoS attacks and evaluates the model on
benchmark datasets like CICIDS2019, InSDN, and slow-
read-DDoS-attack-in-SDN, showcasing its robustness and
real-world relevance.

A. EXPERIMENT ENVIRONMENT
The experiments were executed on a systemwith a 64-bit pro-
cessor and 16GBRAM running on theWindows 10 platform.
Oracle’s VirtualBox hosted Ubuntu 20.04 as the guest OS to
establish the experimental environment. Mininet, supporting
OpenFlow 1.3, was employed within this virtualized space,
along with the Ryu SDN controller. MiniEdit facilitated the
creation of virtual network topologies, and Wireshark was
used for network traffic analysis. Table 3 summarizes the
setup specifications, while Figure 5 visually represents the
overall configuration.

VirtualBox ensured a controlled and reproducible simu-
lated network environment. Mininet explored diverse net-
working configurations, and Ryu SDN offered efficient
network management. Rigorous testing and evaluation of
the proposed solution’s performance were conducted within
this experimental environment, affirming its effectiveness in
SDN-based networks.
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TABLE 3. Experiment environment specifications.

FIGURE 5. Overall experiment environment setup.

In a fat-tree network topology (depicted in Figure 6),
the setup included a Ryu controller with two backbone
switches (1Gbps) and eight side switches (100Mbps). All
switches were interconnected for robustness. Within this
setup, 80 emulated hosts were deployed, with specific roles
assigned to generate benign or DDoS attack traffic. Python
scripts were developed to introduce novel threats, aiding the
observation of the model’s adaptive response to evolving
attack scenarios. Security modules were integrated into the
Ryu controller, and a Python script automated experiment
execution across various network scenarios. Key functions
included topology creation, dataset generation, monitoring,
and policy updates.

This comprehensive experimental setup provides the foun-
dation for the subsequent sections’ analysis of the proposed
system’s performance and effectiveness.

B. DATASETS AND TRAFFIC GENERATION FOR MODEL
TRAINING
To assess the proposed ensemble model’s efficacy, a classi-
fication of network traffic was performed using data from
a simulated topology experiment depicted in Figure 6.
The processed dataset encompasses 145,614 network traf-
fic instances, with 61,881 representing abnormal traffic,
accounting for approximately 40.4% of the total samples.

This dataset encapsulates a variety of low and high-rate
DDoS attacks, alongside realistic normal traffic patterns

FIGURE 6. Customized fat-tree network topology scenario.

captured at 30-second intervals. Network traffic genera-
tion leveraged tools including iPerf, Scapy, and Hping3,
in conjunction with the unique characteristics of the SDN
architecture, facilitating the generation of network flows.
These generated flows were calculated bidirectionally, with
the direction forward/backward determined by the first packet
in the flow.

The output of the generated flow comprises 22 statisti-
cal features in CSV file format, including Flow duration,
IP proto, Number of bytes, Number of packets, SYN Flag
Count, etc. These 22 collected features were further catego-
rized into eight main groups, each serving distinct purposes
in the characterization of network traffic:

1. Packet-Based Attributes: Including details about pack-
ets, such as the total number of packets in both forward and
backward directions.

2. Network Identifiers Attributes: Encompassing common
information defining the source and destination flow, such as
IP addresses, port numbers, and protocol types.

3. Sub flow Descriptors Attributes: Presenting information
specifically related to sub flows, such as the count of packets
and bytes in both forwarding and backward directions.

4. Interarrival Time Attributes: Showcasing information
concerning interarrival times in both forward and backward
directions.

5. Bytes-Based Attributes: Relating to byte-specific data,
encompassing the total number of bytes transmitted in both
the forward and backward directions.

6. Flow Timers Attributes: Containing information regard-
ing the duration of each flow, including active and inactive
periods.

7. Flow Descriptors Attributes: Comprising traffic flow
details, such as the count of packets and bytes in both forward
and backward directions.

8. Flag Attributes: Encompassing information related to
flags like SYN Flag, RST Flag, Push Flag, and others.

The comprehensive process employed for generating the
dataset involved a series of detailed steps, meticulously out-
lined and executed to ensure accuracy and inclusivity of var-
ious network traffic features, thereby laying the groundwork
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TABLE 4. Recorded features of the dataset.

for an exhaustive dataset reflective of the contemporary SDN
environment. Following the meticulous outlining, the dataset
generation process followed the steps outlined below:

1. Create different network topology scenarios using
Mininet with Ryu controller, OpenFlow Switch, hosts, and
servers and then send normal and malicious traffic among the
network devices.

2. Create a Python file to collect the flow and port statistics
for the duration of the monitoring interval.

3. Save the flow and port statistics in a CSV file.
4. Generate normal traffic using the iPerf tool (TCP, UDP,

and ICMP traffic). Use Scapy and Hping3 tools to generate
malicious traffic (low and high-rate DDoS).

5. Collect the flow statistics every 30 seconds. The SDN
Controller sends Openflow flow stats request message to all
the switches, and the switches reply with flow stats.

6. Collect a total of 22 features in the dataset extracted from
the controller and the network traffic.

7. The last column in the dataset indicates the class label,
whether the traffic type is normal (0) or malicious (1).
8. Run the network simulation for 2 hours, generating about

2,900,000 instances (124,000 rows and 24 columns in the
CSV file).

The dataset was generated through various experiment
scenarios. It includes a combination of normal and malicious
network traffic, with normal traffic generated using iPerf and
Ping, and attack traffic generated using Scapy and Hping3.
Table 4 outlines the recorded features during the dataset
generation process.

To validate the model’s generalization ability, a compre-
hensive evaluation was conducted using benchmark datasets,
including CICIDS2019, InSDN, and slow-read-DDoS-
attack-in-SDN datasets. Table 5 serves as a comprehensive

TABLE 5. Comparison of our dataset with existing datasets.

FIGURE 7. Selected features by the proposed feature selection method.

representation of the comparison between the meticulously
curated dataset and existing datasets that have been employed
in related works. The strategic incorporation of both the
proprietary dataset and pre-existing datasets serves to enrich
and augment the scope of attack scenarios used to train
and evaluate the detection model. This synergy introduces
a heightened level of complexity and authenticity into the
training data, crucial for ensuring the effectiveness of the
approach across a multitude of potential real-world scenarios.

To enhance the effectiveness of our generated dataset,
we employed a feature selection process. Our proposed
method refined the Chi2 feature selection as a filter method,
reducing the dimensionality of the dataset by selecting only
the most informative features. This reduction, from 22 to
14 features, led to remarkable accuracy rates and helped mit-
igate overfitting, where the model learns irrelevant patterns
from the training data. Focusing on the most informative
features allows the model to generalize better to unseen data.
Figure 7 illustrates the selected features. The Chi-squared
statistic was computed for each feature to measure the dis-
parity between observed and expected counts. Comparing
this statistic against a critical value helped determine the
significance of the relationship between features and DDoS
attacks. The prioritized features, based on their Chi-squared
values, formed a curated subset seamlessly integrated into the
proposed ensemble model, thereby enhancing the efficacy of
DDoS attack detection.

C. ASSESSMENT OF THE OML-BASED IDS
The OML-based IDS model, designed for online training and
testing using streaming data, undergoes a thorough evaluation
process. The dataset comprises both normal and malicious

51640 VOLUME 12, 2024



A. A. Alashhab et al.: Enhancing DDoS Attack Detection and Mitigation in SDN Using an Ensemble OML Model

network traffic, divided into training and testing sets at a
70:30 ratio. Employed classifiers include Online Stacking
Ensemble, BernoulliNB, Passive-Aggressive, SGD, andMLP
Classifiers.

The training and testing procedure involves importing the
dataset, splitting it into training and test sets, converting data
into streams, creating classifiers, initializing models, testing
in an online fashion, and plotting results. Performancemetrics
like accuracy, precision, recall, and F1 score are calculated for
each classifier. The steps are detailed below:

1) IMPORTING THE DATASET
- The required libraries are imported, and the source of the

dataset is mounted from Google Drive to access the data.
- The dataset is read using the pandas library and stored in

a DataFrame named ‘‘df’’.

2) SEPARATING TRAINING AND TEST DATASETS
- The dataset is split into input features (X) and the target

variable (y).
- Further division is done to create separate training and

test sets using appropriate indexing.

3) CONVERTING TRAIN AND TEST DATA INTO STREAMS
- The train and test sets are converted into data streams

using the DataStream class.
- The prepare_for_use() method is called to initialize and

prepare the data streams.

4) MODEL CREATION
- Four different classifiers, namely nb_classifier, PA_
classifier, sgd_classifier, mlp_classifier, voting_classifier,
and ensemble (Online Stacking), are initialized.

5) INITIALIZING THE MODEL ON INSTANCES
- The next sample of instances is fetched from the training

data stream using the next_sample() method.
- Each classifier is fitted or trained using the obtained

training data.

6) TESTING THE MODEL IN AN ONLINE FASHION AND
RECORDING PERFORMANCES

- A loop is set up to iterate over chunks of test data. The
next sample of test data is fetched from the test data stream.

- Predictions are made using each classifier on the test data,
and the results are stored. Performance metrics such as accu-
racy, precision, recall, specificity, F1 score, and confusion
matrix are calculated for each classifier.

- The partial_fit() method is called to update themodel with
the new test data.

- The counts of class labels (zeros and ones) and the
imbalance ratio are stored for each chunk.

7) PLOTTING RESULTS
- The performance results of the different classifiers are

plotted using the matplotlib library.

FIGURE 8. Validation accuracy progress during online learning.

- The plotted results provide insights into the performance
comparison among the classifiers

This methodology enables the training and testing of the
OML-based IDSmodel using streaming data, evaluating clas-
sifiers’ performance with various metrics. The visualized
accuracy progression in Figure 8 demonstrates the model’s
adaptability to evolving traffic patterns in real-time.The
stability and improvement of accuracy over time signify
the model’s proficiency, especially in handling unknown
traffic representing new DDoS attacks. This online learn-
ing approach ensures continuous adaptation to the dynamic
nature of network traffic, making the model a potent defense
against emerging cybersecurity threats.

D. ASSESSMENT OF OML-BASED IPS
This section assesses the OML-based IPS, examining its
performance, effectiveness, and adaptability against various
DDoS attacks, especially in real-time scenarios. By com-
bining real-time intrusion prevention and online machine
learning, the OML-based IPS establishes a dynamic defense
mechanism that efficiently counters DDoS threats. This
mechanism also incorporates strategies for legitimate com-
munication recovery, ensuring scalability in fluctuating
network traffic. At its core, the system continuously scruti-
nizes incoming network traffic, adeptly identifying potential
anomalies and intrusions. In response, it promptly initiates
measures to mitigate risks, safeguarding the network from
potential threats.

The OML-based IPS combines real-time intrusion pre-
vention and machine learning for a strong defense against
DDoS attacks, adapting dynamically for network stability and
security. The assessment relies on key metrics from carefully
orchestrated experiments, offering insights into the system’s
efficacy in mitigating DDoS attacks. Subsequent sections
explore the details of this evaluation, revealing how the syn-
ergy of real-time intrusion prevention and machine learning
creates a resilient shield against evolving DDoS threats.

1) ATTACK STRATEGY AND TESTS’ DESCRIPTION
DDoS attacks involve coordinated assaults from various loca-
tions in the network, targeting a single victim and exhausting
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TABLE 6. Normal network performance without DDoS attack.

its resources, leading to the denial of service for legitimate
hosts. In the provided scenario (Figure 6), a single controller
manages 10 switches and 80 hosts using the OpenFlow pro-
tocol. The attack strategy simulates network activities and
scenarios, configuring 24 hosts as attackers out of 80, while
the remaining 56 hosts are assigned as legitimate.

To gauge the system’s response, benign traffic is generated
using iPerf and Ping commands, and high-rate DDoS attacks
are simulated with Hping3 and Scapy tools. The experiment
duration is 5 minutes, with traffic collected every 30 seconds.

The IPgen function is employed to intensify the attack,
altering the source IP address within a specified range. The
attack targets a specific server with the IP address 10.0.0.23.

Verification of network connectivity and exploration of
normal behavior involve exchanging packets using Pingall,
iPerf, and Ping commands. Additionally, OpenFlow table
rules are excluded, showcasing the typical traffic trend before
DDoS attacks launch. Normal network performance metrics,
without DDoS attacks, are quantitatively measured, provid-
ing a baseline for comparison.

2) NORMAL NETWORK PERFORMANCE WITHOUT DDoS
ATTACK
Table 6 presents the latency of Quality of Service (QoS) met-
rics during normal network performance, showing average
Round Trip Time (RTT) and packet loss percentage for each
host during ping tests. The values indicate stable network
conditions without DDoS attacks. These results serve as a
benchmark for assessing network performancewithout DDoS
attacks.

During the DDoS attack, when the proposed Defense
System was disabled, significant differences in results were
observed. Figure 9 illustrates the impact on the OpenFlow
Switch’s Rule Table and network traffic behavior, show-
casing the surge in traffic during the DDoS attack. The
Defense Model’s absence allowed for the injection of mali-
cious traffic, leading to an unmanageable peak traffic rate
near 50,000 packets per second, rendering the server unreach-
able for legitimate users.

This comprehensive evaluation provides valuable insights
into the OML-based IPS’s efficacy in handling DDoS attacks,
emphasizing its adaptive nature and real-time response capa-
bilities. The subsequent analysis further dissects the model’s
accuracy during online learning, showcasing its resilience and
proficiency in addressing emerging DDoS attacks.

VI. RESULTS AND DISCUSSION
To evaluate the ensemble model’s performance, which incor-
porates four distinct OML algorithms on the acquired dataset,
we employ several primary performance indicators: accuracy,
precision, recall, F1 score, and false alarm rate. These metrics
rely on values derived from true positives, true negatives,
false positives, and false negatives. Each machine learning
technique possesses unique characteristics for learning, pre-
dicting, and evaluating data points to classify and detect
attacks based on applied tuning parameters. The aim of our
proposed model is to achieve high accuracy, precision, recall,
and F1-measure while maintaining a low false alarm rate.
Accuracy is computed using the formula:

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(1)

Here, TP represents correctly classified malicious flows,
TN denotes correctly classified normal flows, FN refers to
incorrectly classified normal flows, and FP indicates incor-
rectly classified attacking flows.

Precision is calculated as:

Precision =
TP

TP+ FP
(2)

Recall is determined by:

Recall =
TP

TP+ FN
(3)

The F1-score is derived from:

F1 − score =
2 ∗ recall ∗ precision
recall + precision

(4)

The false alarm rate (FAR) is computed as:

FAR =
FP

(FP+ TN )
(5)

A. EVALUATION METRICS OF THE DETECTION PHASE
1) PREDICTION ACCURACY
Evaluating the predictive accuracy of the ensemble model,
which amalgamates outputs from four distinct machine
learning algorithms (BernoulliNB, Passive-Aggressive, SGD
Classifier, and MLP Classifier), involves scrutinizing the
individual classifier accuracies and emphasizing the supreme
accuracy achieved by the ensemble. These evaluations were
conducted on the meticulously crafted dataset. Figure 10
delineates the performance metrics of individual classifiers
and the ensemble. This experiment rigorously scrutinized the
ensemble model and its constituent classifiers using a pur-
posely diversified dataset, thoroughly testing their capacity
to generalize.

The ensemble model showcased remarkable performance,
surpassing the individual classifiers with an accuracy of
0.9926. This substantiates the efficacy of amalgamating
diverse classifiers to forge a more precise predictive system.
The visual depiction in Figure 10 effectively illustrates each
classifier’s accuracy, offering a comprehensive comparative
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FIGURE 9. OpenFlow switch’s rule table and network traffic before DDoS attacks.

FIGURE 10. Accuracy performance of individual classifiers and the
ensemble.

analysis of their performances. It unequivocally demon-
strates the consistent superiority of the ensemble model over
individual classifiers, underscoring the benefits of harness-
ing multiple algorithms for predictive tasks. This graphical
representation substantiates the ensemble’s exceptional per-
formance and fortifies its applicability in practical real-world
scenarios.

These discoveries offer invaluable insights into the dis-
tinctive strengths and limitations of each classifier and
accentuate how the ensemble approach can harness their
collective prowess to yield more accurate predictions. These
results underscore the ensemble model’s potential deploy-
ment across various domains, including but not limited to
finance, healthcare, and diverse data-driven applications.

2) PRECISION
Precision stands as a crucial metric unveiling the accuracy
of anomaly predictions within the model, denoting the ratio
of true positive predictions to all positive predictions. This
section presents precision results for both individual classi-
fiers and the ensemble model. Figure 11 visually represents
the precision of individual classifiers alongside the ensemble.

The ensemble model exhibits remarkable precision, regis-
tering an outstanding value of 0.9910, surpassing individual

FIGURE 11. Precision performance of individual classifiers and the
ensemble.

classifiers. This underscores the ensemble’s capability to
effectively pinpoint anomalies and yield accurate posi-
tive predictions. The graphical representation in Figure 5,6
succinctly showcases precision values for each classifier,
allowing a lucid comparison of their performances. Evidently,
the ensemble consistently maintains high precision, further
validating its proficiency in anomaly detection. These preci-
sion results provide insightful evidence regarding themodels’
capacity to minimize false positives and ensure reliable pre-
dictions. Precision plays a pivotal role in domains such as
fraud detection, medical diagnosis, and quality control, ensur-
ing precise decision-making and risk mitigation. Overall, the
ensemblemodel’s impressive precision underscores its poten-
tial as a dependable and robust tool across various domains
demanding precision-centric tasks.

3) RECALL
Recall serves as a pivotal metric that gauges the accuracy of
DDoS attack detection within the model, evaluating its capac-
ity to accurately identify anomalies among positive examples.
This section presents the recall results for both individual
classifiers and the ensemble model. Figure 12 provides a
visual representation of Recall performance for individual
classifiers and the ensemble.
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FIGURE 12. F1 Score performance of individual classifiers and the
ensemble.

FIGURE 13. Recall performance of individual classifiers and the
ensemble.

The ensemble model showcases exceptional recall, achiev-
ing an impressive value of 0.9962, surpassing the individual
classifiers. This underscores the ensemble’s remarkable pro-
ficiency in accurately detecting DDoS attacks and reducing
false negatives. These recall results offer valuable insights
into the models’ effectiveness in capturing true positive
examples while minimizing the likelihood of missing gen-
uine anomalies. In domains such as intrusion detection and
network security, recall stands as a critical measure of the
model’s capability to accurately identify significant events.
Overall, the ensemble model’s outstanding recall underscores
its potential as a robust and reliable tool in scenarios where
precise anomaly detection is pivotal for upholding system
integrity and security.

4) F1 SCORE
The F1 score stands as a pivotal metric that consolidates
precision and recall, offering a singular value that signifies
the overall effectiveness of the model in anomaly detec-
tion. It assesses the model’s capability to strike a balance
between minimizing false positives (precision) and minimiz-
ing false negatives (recall). This section presents the F1 score
results for both individual classifiers and the ensemblemodel.
Figure 13 visually illustrates the F1 Score performance of
individual classifiers and the consolidated ensemble.

The ensemble model achieves an exceptional F1 score
of 0.9817, indicating its proficiency in striking a balance

FIGURE 14. False alarm rate of individual classifiers and the ensemble.

between precision and recall, effectively detecting anomalies.
Figure 13 provides a graphical representation of the F1 score
values for each classifier, offering a clear comparison of
their performance. The consistently high F1 scores exhibited
by the ensemble further substantiate its prowess in anomaly
detection and classification. The F1 score is an indispensable
metric as it comprehensively evaluates the overall model
performance by considering both false positives and false
negatives.

5) FALSE POSITIVE
False positives play a crucial role in assessing the effective-
ness of a DDoS detection model, serving as a key metric
to gauge its performance. This metric evaluates the model’s
ability to maintain a balance between accurately identifying
legitimate traffic and erroneously flagging it as malicious.
In this section, we present the false positive results for both
individual classifiers and the ensemble model, shedding light
on their respective performances.

The ensemble model demonstrates exceptional proficiency
in false positive management, achieving a remarkably low
value of 0.025. This indicates the model’s effectiveness in
minimizing false alarms while accurately detecting DDoS
attacks. To provide a visual comparison of the false positive
rates across different classifiers, Figure 14 depicts the F1
score values for each classifier, offering insights into their
relative performances and highlighting the ensemble model’s
superiority in false positive mitigation.

6) EVALUATION ON EXISTING DATASETS
In addition to evaluating the proposed model’s performance
on the custom dataset, rigorous assessments were con-
ducted across three well-established benchmark datasets:
CICIDS2019, InSDN, and slow-read-DDoS-attack-in-SDN
datasets. These evaluations serve as robust validations,
affirming the versatility and effectiveness of the proposed
model across a spectrum of diverse datasets.

a: CICDDoS2019 DATASET ANALYSIS
The CICDDoS2019 dataset, a cornerstone in cybersecurity
research facilitated by the Canadian Institute for Cybersecu-
rity, offers a comprehensive repository encompassing both
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DDoS attack instances and benign network traffic samples.
Noteworthy for its extensive compilation of network traffic
data, it provides an array of rich features surpassing the
scale and breadth of existing datasets. With 88 distinctive
characteristics derived fromflow-based features and covering
12 diverse types of DDoS attacks, this dataset significantly
enhances the value for robust DDoS attack detection and
comprehensive analysis.

To evaluate the proposed model’s performance on this
dataset, several metrics, including accuracy, precision, recall,
and F1-score, were computed. The meticulous evalua-
tion produced exceptional performance metrics: accuracy
at 98.70%, precision at 98.78%, recall at 98.81%, and an
F1-score of 98.78%. These high-performance results under-
score the model’s proficiency in effectively identifying and
categorizing DDoS attacks within this specific dataset.

b: InSDN DATASET ANALYSIS
The InSDN dataset serves as a critical asset tailored for the
analysis of intrusion detection mechanisms within SDN envi-
ronments. Specifically curated to study network intrusions,
it encompasses a wide spectrum of network traffic data orig-
inating from an SDN-based network. Similar methodologies
as employed with the CICDDoS2019 dataset were imple-
mented to attain evaluation results for the InSDN dataset.

The method applied to the InSDN dataset yielded signifi-
cant performance metrics: an accuracy of 98.20%, precision
at 97.51%, recall of 97.93%, and an F1-score of 98.27%.
These statistics are a testament to the model’s proficiency in
effectively analyzing the InSDN dataset.

c: SLOW-READ-DDoS-ATTACK-IN-SDN DATASET ANALYSIS
The slow-read-DDoS-attack-in-SDN dataset is purposefully
crafted to delve into the intricate realm of slow-read DDoS
attacks within SDN environments. It encompasses a vari-
ety of slow-read DDoS attack types, such as Slowloris,
Slowhttptest, and Hulk. As the pioneering publicly available
dataset devoted explicitly to investigating slow-read DDoS
attacks in SDN landscapes, it stands as an invaluable asset
for researchers devoted to scrutinizing detection mechanisms
within SDN environments.

Similar methodologies, akin to those employed in obtain-
ing the CICDDoS2019 and InSDN datasets, were adopted to
acquire results from this dataset. The dataset was utilized to
both train and evaluate the model, culminating in a notable
performance: an accuracy score of 98.88%, precision mea-
sured at 96.80%, recall reaching 95.90%, and an F1-score of
96.27%.

d: SUMMARY OF THE EVALUATION RESULTS ON THE
EXISTING DATASETS
The evaluation outcomes garnered from a thorough assess-
ment across multiple datasets, including CICIDS2019,
InSDN, slow-read-DDoS-attack-in-SDN, and the custom
dataset, unequivocally depict outstanding performance met-
rics, notably high accuracy, precision, recall, and F1-scores.

TABLE 7. Performance of proposed method on different datasets.

These results vividly underscore the method’s resilience and
adaptability across varied scenarios.

A summary of the comprehensive evaluation results for
these datasets is presented in Table 7. The results demon-
strate the reliability and robustness of the proposed model
across diverse datasets, reinforcing its potential for effectively
detecting andmitigating DDoS attacks in SDN environments.

B. EVALUATION METRICS OF THE MITIGATION PHASE
Effective evaluation metrics are pivotal in assessing the per-
formance of a mitigation model and understanding the impact
of DDoS attacks. This studymeticulously selected commonly
used evaluation metrics to comprehensively evaluate the pro-
posed model’s effectiveness and analyze the effects of DDoS
attacks:

Response Time: Quantifying the duration taken to respond
to a request, this metric provides insight into the system’s
responsiveness.

Resource ConsumptionAnalysis: This metricmeasures the
workload executed by the processor and indicates the amount
of memory consumed by the system. Understanding resource
utilization is vital for optimizing performance.

Effect of a DDoS attack on Legitimate Users: This refers
to how the attack impacts regular users or clients trying to
access network resources or services.

Through the careful selection of these evaluation metrics,
valuable insights are gained into the performance of the mit-
igation system, allowing for a comprehensive understanding
of the defense model’s efficacy and aiding in informed deci-
sions to enhance network resilience against DDoS attacks.

1) RESPONSE TIME
This section explores the latency aspects of the OML-based
IPS by examining its response time during attack handling.
Response time serves as a measure of latency, indicating the
duration between the initiation of an attack and the activation
of the ‘‘Drop’’ action by theOML-based IPS. The results, out-
lined in Table 8, highlight the system’s efficient performance,
with an average response time of approximately five seconds
across multiple tests. This swift mitigation response ensures
heightened protection against potential DDoS attacks, under-
scoring the solution’s effectiveness.
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TABLE 8. Average response time result.

FIGURE 15. Server CPU utilization before, during and after the attack.

The consistently efficient performance observed, with
response times consistently below ten seconds, underscores
the model’s proficiency in swiftly mitigating DDoS attacks,
thereby minimizing network disruption during mitigation
procedures.

Our experimental findings shed light on both the latency
and throughput of our model in processing network traffic
and responding to DDoS attacks. By analyzing metrics like
response time and packet processing rates, we gain insights
into the model’s real-time detection and mitigation capabili-
ties. Furthermore, we can explore optimization strategies to
reduce latency, such as deploying efficient data structures,
implementing parallel processing techniques, and optimizing
algorithmic complexity. Similarly, throughput enhancements
may involve optimizing network communication protocols,
improving parallelism, or harnessing hardware acceleration
techniques.

2) RESOURCE CONSUMPTION ANALYSIS
Assessing resource consumption involved the use of Docker
containers within MININET to emulate CPU utilization.
Figures 15 and 16 present the temporal evolution of resource
consumption for both the Ryu controller and the target server.
Noteworthy observations include:

Baseline CPU utilization equilibrium between the con-
troller and the server before the attack.

Swift escalation in CPU utilization during the attack, peak-
ing at 68% for the controller and 85% for the server.

Post-mitigation, the controller stabilizes at approximately
28%, and the server maintains an average utilization of
around 60%.

FIGURE 16. RYU controller CPU utilization before, during and after the
attack.

FIGURE 17. Orchestrated responses for legitimate connections.

The discernible correlation between baseline utilization
levels and those during mitigation underscores minimal per-
formance overhead during the proposed model’s flow rule
execution.

This analysis delves into the intricate interplay between
DDoS attacks and resource consumption, highlighting the
mitigation strategy’s prowess in efficiently managing and
stabilizing resource utilization.

3) MITIGATING PACKET DROP (IMPACT OF DDOS ATTACK
ON LEGITIMATE USER)
The impact of a DDoS attack on legitimate users is a critical
aspect addressed by the proposed model. Figure 16 illustrates
the orchestrated responses for legitimate connections, empha-
sizing the IPS’s capability in ensuring minimal disruption to
legitimate users.
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TABLE 9. Comparison of the proposed solution with commercial alternatives.

A marginal impact on legitimate connection drops,
accounting for 0.02, reaffirming the IPS’s success in pre-
serving the integrity of legitimate user interactions. Swift
reinstatement of inadvertently impeded legitimate connec-
tions, typically within an 8-second timeframe, ensuring
minimal disruptions for legitimate users. This swift and
efficient response time, coupled with minimal disruption to
legitimate users, highlights the model’s success in maintain-
ing a high-quality user experience even in the face of potential
threats.

4) INDUSTRY RECOMMENDATIONS AND COMPARISONS
WITH COMMERCIAL SOLUTIONS
In the dominion of DDoS detection and mitigation, our
solution stands as a contender alongside established com-
mercial systems. Drawing from our empirical findings and
industry benchmarks, we meticulously evaluate our approach
against prevalent commercial solutions, aiming to eluci-
date its strengths in adaptability, real-time responsiveness,
and cost-effectiveness. Through this comparative analysis,
we endeavor to shed light on the competitive edge and poten-
tial market adoption of our model.

Arbor Networks Peakflow [44], exemplifies robust capa-
bilities in DDoS detection and mitigation, leveraging a
combination of signature-based and anomaly-based tech-
niques. Widely recognized for its comprehensive protection
against diverse attack vectors, Peakflow is a stalwart presence
across expansive networks. However, its effectiveness may
falter in dynamic attack scenarios, where rapid evolution and
sophistication pose challenges to signature-based detection
methods [45].
In contrast, Radware DefensePro [46], offers real-time

DDoS protection through a blend of signature-based and
behavioral analysis techniques [47]. Renowned for its abil-
ity to counter both volumetric and application-layer attacks,
DefensePro provides granular control over mitigation poli-
cies. Nonetheless, concerns linger regarding its scalability for
high-traffic networks and the potential need for substantial
hardware investments in large-scale deployments [48].

F5 SilverlineDDoS Protection [49], presents a cloud-based
mitigation service equipped with global scrubbing centers,
delivering scalable and efficient defense mechanisms against

DDoS assaults. Leveraging F5’s expertise in application
delivery, Silverline seamlessly integrates with existing solu-
tions. Nevertheless, challenges may arise concerning latency
in geographically dispersed networks and potential cost bar-
riers for smaller organizations [50].

In addition to qualitative evaluations, Table 9 offers a com-
prehensive comparison that concisely outlines the strengths
and weaknesses of each solution across diverse features and
capabilities. This comparison serves as a valuable resource
for stakeholders, enabling them to make informed decisions
that align with their specific requirements and constraints.

VII. CONCLUSION AND FUTURE WORK
The proposed model, consisting of the traffic collector,
OML-based IDS, and OML-based IPS, offers a modular
and scalable framework for effective DDoS attack detec-
tion and mitigation in SDN networks. This architecture
excels in addressing both low-rate and high-rate incidents,
showcasing remarkable adaptability. The OML-based IDS
demonstrates exceptional performance in detecting various
DDoS attack types, achieving detection and legitimate rates
exceeding 99%. Integration with the OML-based IPS further
enhances capabilities in addressing the entire spectrum of
DDoS attacks within SDN networks. In contrast to prior
approaches, this solution exhibits superior adaptability to
unfamiliar traffic patterns, covering diverse DDoS attack
variations.

While recognizing the need for multiple layers of protec-
tion, the modular design allows independent improvements
in various components, ensuring adaptability. Compatibility
with various SDN controllers reinforces the model’s versa-
tility. The proposed approach presents a real-time solution
for detecting and mitigating DDoS attacks in SDN-based
networks. Future research directions include validating the
model with real-world network topologies, exploring deep
learning models, conducting live environment testing, and
extending capabilities to cloud-based SDN environments for
comprehensive protection in hybrid network infrastructures.
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