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ABSTRACT Accurate and fast forecasting of short-term load is conducive to the safe and stable operation of
the power system, and a short-term power load combination forecasting method based on feature extraction
is proposed. Firefly Sparrow Algorithm (FSA) is applied to find the optimal combination of influencing
parameters in Variational Mode Decomposition (VMD) to obtain the signal components with the best
effect. Since the signal components contain different influence characteristics and timing information, the
Maximum Information Coefficient (MIC) is used to screen the features of each signal component, establish
the feature matrix, and use the over-zero rate as an index to determine the high and low frequency signal
demarcation points. Based on the different characteristics of high and low frequency signals, the Informer
model is used to forecast the high frequency signal components, and the LSTM is used to forecast the low
frequency signal components. All the forecasting results are reconstructed to obtain the final forecasting
value. Taking the Spanish power load data as an example, considering the actual seasonal factors, and
experimentally comparing with other forecasting models, the results show that after the feature screening,
the errors are significantly reduced, and the decidability coefficient is significantly improved, which verifies
the accuracy and universality of the model proposed in this paper.

INDEX TERMS Power load forecasting, feature selection, hybrid model, variational mode decomposition,
informer.

I. INTRODUCTION
Power demand is affected by various factors, such as weather,
electricity prices and accidents, resulting in random volatility
and the corresponding fluctuations in power load. Therefore,
power load forecasting has become increasingly important
for the power supply plans and the balance between power
demand in the power grid [1]. According to the length of
forecast time, power load forecasting is categorized into
long-term load forecasting (LTLF), medium-term load fore-
casting (MTLF) and short-term load forecasting (STLF) [2].
Accurate STLF not only makes the system run normally with
low energy waste, but also improves power supply reliabil-
ity [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

The forecasting methods is challenging in improving the
accuracy of power load forecasting. Enhancing model accu-
racy is particularly crucial accordingly. Due to the time series
and nonlinear characteristics of load sequences, numerous
scholars have proposed a variety of models by simple or
complex methods such as machine learning [4], exponen-
tial smoothing method [5], autoregressive integrated moving
average model [6], multiple linear regression method [7],
Kalman filter algorithm [8], grey prediction theory [9] and
support vector machine [10]. Nevertheless, their overall fore-
casting accuracy has room for improvement, especially by
the, challenge of applying large-scale data with universality.
With the continuous development and application of deep
learning [11] in various fields, recurrent neural network [12]
is applied to improve the accuracy of MTLF and LTLF.
The long short-term memory neural network [13] is applied
to solve the problem of weight disappearance in the back
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propagation of recurrent neural network so as to improve the
forecasting accuracy. The Informermodel [14] has effectively
reduced the spatial-temporal complexity, memory usage and
decoder decoding time of the Transformer model, based on
the model proposed by Google. Additionally, it has improved
the forecasting accuracy of time series and has a stronger
ability to capture the long-range correlation coupling between
input and output data. Meanwhile, a variety of combina-
tion forecasting methods are widely used in STLF. The
method primarily based on Empirical Mode Decomposition
(EMD) [15], can decompose the original load sequence.
However, the decomposed components are susceptible to
model mixing, which can impact the accuracy, Ensemble
Empirical Mode Decomposition (EEMD) [16] adds Gaussian
white noise prior to decomposition, which can effectively
alleviate the mode mixing phenomenon of empirical mode
decomposition mode decomposition. However, the method’s
robustness to measurement noise needs to be strengthened.
Variational Mode Decomposition (VMD) [17] decomposes
the data into mode functions with different characteristics,
effectively avoidingmodemixing. However, the effectiveness
of load sequence decomposition is affected by the number of
mode components and the penalty parameter. In the field of
power load forecasting, there is a lack of scientific evalua-
tion standards for determining these parameters, which are
often determined empirically and subjectively, leading to an
impact on effect of the load sequence decomposition and the
total accuracy. In this regard, parameter optimization through
optimization algorithms is of greater significance [18], [19],
[20].

This paper proposes a STLF method that utilizes fea-
ture selection and hybrid model. In order to extract signal
components with feature information from the original load
sequence, which has more noise and achieve optimal signal
processing. First of all, Firefly Sparrow Algorithm (FSA)
is applied to find the optimal combination of influencing
parameters in VMD to obtain the signal components with the
best effect. Secondly, the adaptive algorithm is employed to
determine the optimal zero crossing rate [21], and each signal
component is divided into two parts of high frequency and
low frequency. Thirdly, the Maximum Information Coeffi-
cient (MIC) [22] is used to filter the features of each signal
component. Then, the high frequency signal components and
their features are used to forecast with the Informer model,
while the low frequency signal components and their features
are used to forecast with the LSTM model [23]. Finally, the
forecasting result of all signal components are reconstructed
to obtain the final forecasting value. The accuracy of the
method is verified by comparison experiments.

The rest of this article is structured as follows. In Section II,
we introduce the basic process of feature extraction.
In Section III, we describe the different characteristics of the
forecasting algorithms. In Section IV, we show the construc-
tion process of the overall model and the evaluationmetrics of
the forecasting effect. In Section V, we demonstrate the usage
process of the overall model, conduct result analysis, and

perform comparative experimental verification. Section VI
concludes the paper.

II. FEATURE EXTRACTION METHOD BASED ON
FSA-VMD-MIC
The power system load data exhibits large fluctuations and
randomness, which are determined by the complexity of the
influencing factors. The data may not necessarily reflect the
contribution of each influencing factor to the load trend. Dur-
ing the summer months, the use of refrigeration equipment
tends to increase as temperatures rise. This increase in usage
can lead to a higher demand for power. Although weather
variables such as wind speed and humidity do not directly
affect power load, accurately identifying the significant fac-
tors that do can significantly increase the precision of load
forecasting.

In this case, we use VMD to decompose the original
power load data, and decompose the original signal into a
number of Intrinsic Modal Function (IMF), each of which
has different frequency and amplitude characteristics. From
the decomposition steps of VMD, it can be seen that before
decomposing the signal, it is necessary to set the appropriate
number of modes K and the penalty parameter α. Different
combinations of K and α will have different effects on the
decomposition results, and their optimal combinations need
to be combined with a specific scenario to determine. In this
paper, we propose FSA to optimize the optimal combination
of VMD parameters. FSA combines the advantages of Firefly
Algorithm (FA) [24] and Sparrow Search Algorithm (SSA)
[25], compared with SSA, FSA can effectively improve the
global search ability and avoid falling into local optimal
solutions. The specific steps taken by FSA to optimize the
VMD parameters are shown in Fig. 1.

The specific process for FA and SSA to form an FSA and
optimize VMD is as follows,

1) We randomly generate several combinations of [K, α]
parameters as the initial positions for both the discoverer and
follower.

2) After performing the VMD decomposition, the fitness
value is calculated and sorted.

3) The discoverer and follower’s locations are updated
based on the alerts, while the sparrow’s location is updated
based on the fitness value.

4) FA disturbs the sparrow’s location. If the disturbed
location is better than the original location, it is adopted.
Otherwise, the original sparrow location is used.

5) For each discoverer and follower location, VMDdecom-
position is performed and the envelope entropy of each signal
component is calculated.

6) Randomly select the alerts and update their location,
calculating envelope entropy.

7) Determine whether the stop condition is met. If it is
satisfied, complete the process and obtain the minimum fit-
ness value. Output the best parameter combinations [K, α].
Otherwise, return to step 3.
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FIGURE 1. Flow chart of FSA optimized VMD parameters.

In the feature extraction part, the original power load data
are decomposed using VMD, and in the decomposition pro-
cess, the number of modes K and the penalty parameter α in
VMD are optimized using FSA, and multiple sub-sequences
will be obtained for the original power load data through
FSA-VMD, and then MIC is used to compute the relevant
influence features of each sub-sequence respectively, and the
input matrix of the model is constructed.

MIC is used to evaluate the correlation between two vari-
ables. It is assumed that X , Y are two different variables in
the dataset, where X = {x1, · · · , xn}, Y = {y1, · · · , yn}, n is
the sample size. The mutual information between X and Y is
defined as,

I (x; y) =

∫
p(x, y) log2

p(x, y)
p(x)p(y)

dxdy (1)

where p(x, y) is the joint probability density between X and
Y ; p(x) and p(y) denote the marginal probability density of X
and Y , respectively.
Grids are plotted on the scatterplot of the data consisting

of variables X and Y the magnitude of the mutual informa-
tion between the grids is calculated. The maximum value
of mutual information M (x; y) is selected using different
gridding criteria and is calculated as,

M (x; y) = max
a∗b<B

I (x; y)
log2min(a, b)

(2)

where a and b are the number of meshes divided in the X and
Y directions, respectively, and B is the maximum value of the
mesh.

FIGURE 2. LSTM basic unit.

FIGURE 3. Informer structure diagram.

III. FORECASTING METHOD BASED ON LSTM-INFORMER
After the original load sequence is feature filtered, a number
of IMF input matrices containing different impact features
are obtained. These IMF input matrices have different timing
information. In the field of electromagnetism, the over-zero
rate is often used as the main feature to classify the signal.
In this regard, the over-zero rate is used as an evaluation
index, the high-frequency IMF produces a higher over-zero
rate due to its fast rate of change, and the low-frequency
IMF produces a lower over-zero rate due to its slower rate
of change. The forecasting error is calculated by calculating
the over-zero rate for each IMF, sorting them from smallest to
largest, and using the point separating them as the demarca-
tion point between high-frequency IMFs and low-frequency
IMFs. By obtaining the optimal cut-off point between high-
frequency IMFs and low-frequency IMFs, those with an
over-zero rate lower than the cut-off point are regarded as
low-frequency IMFs and are forecasted using the LSTM
model, and thosewith an over-zero rate higher than the cut-off
point are regarded as high-frequency IMFs and are forecasted
using the Informer model.

The low frequency signal components are typically slow
and irregular, with varying period lengths. To address this,
the LSTM model is utilized in this paper for forecasting.
The LSTM forecasting model is well-suited for processing
irregular time series data and adapting to changing trends
in low-frequency signals. Its memory unit structure allows
it to store previous information and recall it in subsequent
calculations, enabling it to capture historical information and
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FIGURE 4. The overall flow chart of the model.

trends in low frequency signals efficiently. Additionally, the
model’s gating structure helps to avoid the problem of a
long-term dependence on time series data, making it par-
ticularly suitable for forecasting low frequency time series
components with smooth, low complexity, and obvious peri-
odicity in signal components. The basic unit of LSTM is
shown in Fig. 2.

The period of the high frequency signal component is
very short, and its amplitude and frequency often vary in
response to external factors or events, which is short and
transient. The spectrum entropy energy distribution tends
to have a concentration of high frequency signal com-
ponent. In this regard, this paper employs the Informer
model for forecasting because it adopts multi-scale con-
volution operation, time series attention mechanism, and
adaptive feature selection mechanism. These features enable
the effective extracting and utilizing of the multi-scale
features from high-frequency signal components and auto-
matically learn the spatial-temporal dependence of time
series data. Furthermore, the Transformer structure in the
Informer model can capture the long-term trends and
periodic variation features in the high frequency signal
components, thereby better adapting to the characteristics
of these components. The Informer structure is shown
in Fig. 3.

IV. OVERALL FORECASTING MODEL FRAMEWORK
This paper proposes a hybrid model framework for electricity
load forecasting, as shown in Fig. 4.
The specific steps taken to optimize the algorithm are as

follows,
1) Data preprocessing: Collect relevant power load and

weather data, process missing and outlier values, and normal-
ize the data.

2) Signal decomposition: The optimal parameter combina-
tion in VMD is determined using FSA, and the electricity load
data is decomposed into signal components using VMD.

3) Frequency classification of components: The coefficient
sizes of each signal component are calculated using the MIC.
The most relevant features are selected to construct the input
matrix.

4) Feature selection of signal components: The adaptive
algorithm is used to determine the zero-crossing rate sepa-
ration point of the high and low frequencies of the signal
components. Values above the point are considered as high
frequency signal components, while values below it is con-
sidered as low frequency signal components.

5) Hybrid model forecasting: Time series forecasting mod-
els are applied to each input matrix based on the high and low
frequency signal components, and the final forecasting results
are obtained through a reconstruction operation.
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6) Model evaluation and comparison: Evaluation metrics
are selected to perform comparative experiments and analyze
the forecasting performance of different models.

In order to assess the forecasting accuracy of the combined
feature selectionmodel and the time series forecastingmodel,
this paper utilizes several evaluation metrics, including Mean
Absolute Error (MAE), Root Mean Square Error (RMSE),
Mean Absolute Percentage Error (MAPE) and Coefficient of
Determination (R2) as evaluation metrics.

V. EXAMPLE ANALYSIS
A. DATA PREPARATION AND PREPROCESSING
The electricity load data used in this paper comes from the
Spanish electricity consumption data, which records the elec-
tricity load data from January 1, 2015 to December 31, 2018,
with a data sampling interval of 1 hour, and its average daily
load is shown in Fig. 5. The weather data was obtained from
Kaggle open-source data. The dataset is divided into training
set, validation set and test set according to the ratio of 8:1:1.

FIGURE 5. Average daily load curve of a location in spain.

Electricity load data may have data missing values and
outliers during the collection and transmission process, which
reduces the forecasting accuracy of the forecasting model,
for this reason, a usability interpolation method is used to
deal with the outliers and missing values, and the load data
is corrected. At the same time, in order to avoid the different
magnitude of each eigenvalue, which affects the forecasting
accuracy and speeds up the gradient descent. Therefore, the
data are normalized.

As shown in Fig. 5, the average daily load curve exhibits
significant seasonality. To enhance the accuracy of our fore-
casting evaluation, we partitioned the sample set into four dis-
tinct seasons: spring (April-June), summer (July-September),
autumn (October-December), and winter (January-March),
by the prevailing weather conditions in the city.

B. FEATURE SELECTION
Using FSA-VMD to decompose power load can avoid the
randomness caused by VMD setting parameters by experi-
ence. In order to verify the superiority of FSA for VMD
parameter optimization, Particle Swarm Optimization (PSO)
and Grey Wolf Optimization (GWO) are used to optimize the

parameter K and α of VMD and in a reasonable range, where
the value range of K is [2] and [10], and the value range of α

is [200,2000]. In the VMD process, the envelope entropy is
used as the objective function. Envelope entropy represents
the sparse characteristics of the original signal, when there
is more noise and less feature information in the component,
the value of envelope entropy is larger, and vice versa, the
value of envelope entropy is smaller. The specific formula for
envelope entropy is as follows,

Ep = −

N∑
j=1

pj lg pj

pj = a (j)

/
N∑
j=1

a (j)

a (j) =

√
[x (j)]2 + {H [x (j)]}2

(3)

where Ep is the envelope entropy; pj is the normalized form of
a (j); a (j) is the sequence of envelope signals obtained after
Hilbert mediation of the signal x (j) (j = 1, 2, · · · ,N ); H is
the Hilbert transform of the signal.

FIGURE 6. Heat map of MIC coefficient in spring.

In order to better compare the optimization effect of differ-
ent optimization algorithms on VMD decomposition, modal
loss is adopted as the evaluation index. By reconstructing
the signal components after VMD decomposition, the dif-
ference between the reconstructed data and the original data
is calculated, and the smaller the difference is indicates that
the decomposition effect is better. The calculation results are
shown in Table 1.
It can be seen from Table 1 that the decomposition

loss of FSA-VMD is the smallest, and the optimal param-
eters of VMD can be determined adaptively to improve
the decomposition effect. At the same time, compared to
VMD, FSA-VMD will reduce the modal loss generated
by decomposition. The optimization results of FSA-VMD
decomposition parameters by FSA in each season are shown
in Table 2.
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FIGURE 7. Forecasting chart of each signal component in spring.

TABLE 1. Decomposition results of different algorithms.

The optimal [K, α] combination parameters for each sea-
son are brought into the VMD, and the raw power data are

TABLE 2. Parameters of the best combination for all seasons.

decomposed to produce a number of IMF. In order to improve
the forecasting accuracy, this paper adopts the over-zero rate
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FIGURE 8. The forecasting results of model in each season.

as the evaluation index, and sets the over-zero rate higher than
0.01 as the high-frequency IMF, and sets the over-zero rate
lower than 0.01 as the low-frequency IMF. The cut-off points
for the over-zero rate of the spring subsequence are 0.01,
0.1, 0.2, 0.4, 0.5, 0.7, for the summer subsequence are 0.01,
0.1, 0.2, 0.4, 0.5, 0.55, 0.7, for the fall subsequence are 0.01,
0.1, 0.2, 0.4, 0.5, 0.7, 0.8, and for the winter subsequence
The cut-off points of over-zero rate are 0.01, 0.1, 0.2, 0.4,
0.5, 0.7. For different seasons, the high and low-frequency
components are divided with these cut-off points, respec-
tively, and the forecasting and calculation of errors are made,
and through the error analysis, the optimal cut-off point for
the high and low-frequency components in each season is
0.01. The over-zero rate of the various signal components
for spring, summer, autumn, and winter seasons are shown
in Table 3.

Meanwhile, in order to better characterize the impact fea-
ture information contained in each IMF after decomposition,
this paper adopts MIC to filter the features and enhance the
forecasting capability. The heat map visualization of the MIC
coefficientmatrix for the spring season is shown in Fig. 6. The
darker the red color indicates a larger MIC coefficient and a

TABLE 3. Zero crossing rate of each signal component in four seasons.

higher degree of correlation, while the darker the blue color
indicates a smaller MIC coefficient, i.e., a higher degree of
correlation is lower.
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FIGURE 9. Forecasting results of each model.

From Fig. 6, the influence characteristics of each signal
component are different, combined with the MIC coefficients
of each IMF corresponding to the influence factors, this paper
selects the three to five features with the highest correlation to
construct the feature matrix. In order to facilitate the analysis,
each influencing factor is replaced by a number. Among them,
① stands for Pressure, ② stands for Clouds_all, ③ stands for
Price actual, ④ stands for Temp, ⑤ stands for Temp_min, ⑥
stands for Temp_max, ⑦ stands for Humidity, ⑧ stands for
Wind_deg, and ⑨ stands for Wind_speed. The results of the
feature screening in different seasons are shown in Table 4.

C. POWER LOAD FORECASTING RESULTS BASED ON
HYBRID MODEL
The high and low frequency signal components exhibit differ-
ent feature characteristics. Therefore, this paper applies the
LSTM model to forecast the signal component input matrix
with zero crossing rates less than 0.01, and the Informer
model to forecast the input matrix with zero crossing rates
greater than 0.01. The forecasting outcomes of each signal
component in spring are presented in Fig. 7.

Based on Fig. 7, it is observed that the forecasting results
for IMF1, IMF2 and IMF3 signal components are relatively
accurate, and exhibit a smooth trend over time. However,
the forecasting results for IMF4 and IMF5 signal com-
ponents are less accurate, showing large fluctuations and

TABLE 4. Feature screening results.

significant differences between each peak. The forecasting
of IMF6 and IMF7 signal components, which belong to
high frequency components is challenging, but the ampli-
tude is relatively small, and their forecasting errors have
a limited impact. By reconstructing the forecasting results
of each signal component in Fig 7, we can obtain the
spring power load forecasting results. In this paper, power
load forecasting is divided into four seasons. We construct
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TABLE 5. Forecasting error statistics of each model for four seasons.

a hybrid model for the spring season and forecast the
remaining three seasons using the same methodology. The
forecasting results of the four seasons are shown in Fig. 8.
Meanwhile, in the low-frequency components, the eigenma-
trices of IMF1 are Pressure, Clouds_all, Price actual. in the
high-frequency components, the eigenmatrices of IMF2 are
Temp, Temp_min, Temp_max, Humidity, Wind_speed; the
eigenmatrices of IMF3 are Price actual, Temp, Temp_min,
Temp_max; the feature matrices of IMF4 are Price actual,
Temp, Temp_min, Temp_max; the feature matrices of IMF5
are Price actual, Temp, Temp_min, Temp_max; the fea-
ture matrices of IMF6 are Price actual, Temp, Temp_min,
Temp_max; and the characteristic matrix of IMF7 is Pressure,
Price actual, Wind_deg.

Fig. 8. illustrates that the load sequence exhibits poor
regularity due to rapid temperature changes during summer
and winter, making forecasting more challenging. However,
the models proposed in this paper demonstrate the ability to
accurately track the actual load trend, resulting in high overall
forecasting accuracy.

D. ANALYSIS OF FORECASTING RESULTS
To evaluate the accuracy of the proposed model, this
paper compares it with two single models (LSTM and
Informer) and two combined models (EMD-LSTM-Informer
and VMD-LSTM-Informer) using several evaluation indices,
including Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), Mean Absolute Percentage Error (MAPE)
and Determinable Coefficient (R2). The mean values of
load in spring, summer, autumn and winter are 28384.47,
29278.07, 28814.73517 and 29790.36 MW, respectively, and
the standard deviations are 4251.97, 4569.60, 4662.41 and
4887.93 MW, respectively. The forecasting error statistics of
each model in four seasons are shown in Table 5, with the
minimum errors highlighted in bold. The forecasting results
of each model in four seasons are shown in Fig. 9.

The overall model of this paper is integrated by five meth-
ods, FSA, VMD, MIC, LSTM and Informer, and the running
process between different steps can be disassembled to be
carried out without generating a large running load, and at
the same time, in the field of power load forecasting, there is
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enough time and space to make forecasting in order to obtain
more accurate results.

Fig. 9. demonstrates that the forecasting curves of the
model proposed in this paper accurately track the actual load
trends across all seasons, particularly in areas with strong
load fluctuations. When combined with the results presented
in Table 5, it is clear that the MAE, RMSE, MAPE and R2

evaluation indices of the hybrid model are significantly supe-
rior to those of the singlemodels in each season. The results of
the comparison between the proposed feature selectionmodel
and the Informer model indicate a significant improvement
in the performance of the former. Specifically, the MAPE
of the proposed model is reduced by 0.71%, 0.5%, 0.58%
and 0.57% in each season, respectively. These results indi-
cate that the feature selection model can effectively extract
the relevant feature information from the load time series,
resulting in reduced forecasting errors and improved overall
model fitting. In addition, the proposed model outperformed
other combined models in all four seasons, as demonstrated
by the significantly better performance in the four evaluation
indexes. This superior performance can be attributed to the
use of VMD, which effectively addresses the modal con-
founding phenomenon in EMD. The combined model based
onVMDdecomposition generally achieved lower forecasting
errors and better model fitting in all seasons. In comparison to
the VMDdecomposition combination forecastingmodel with
an artificial empirical setting of parameter combinations [K,
α], the model proposed in this paper uses the FSA to search
for the best parameter combinations [K, α] in VMD. As a
result, the proposed model achieved a reduction in MAPE by
0.32%, 0.32%, 0.49% and 0.43% in each season, respectively.
These results suggest that the preferred strategy of FSA-VMD
for parameter combinations [K, α] improves the decompo-
sition quality, resulting in better forecasting accuracy of the
load in each season.

VI. CONCLUSION
To meet the increasing need for precise forecasting of power
system load, this paper proposes a short-term power load
forecasting method that utilizes feature selection and hybrid
models. The advantages of the model in this paper are as
follows,

1) The model in this paper can significantly improve the
forecasting accuracy by combining the characteristics of each
of the five methods, namely FSA, VMD, MIC, LSTM and
Informer, and giving full play to their respective advantages.

2) The forecasting accuracy is further improved by opti-
mizing the number of modes and K and the penalty parameter
α in VMD by FSA and screening the influencing factors by
MIC.

3) By determining the optimal over-zero rate decomposi-
tion point and MIC to construct the feature matrix of each
signal component, the forecasting accuracy can be effectively
improved by selecting different models for different input
matrices with respect to their characteristics.

The research content of this paper still has some shortcom-
ings, such as not considering the weekend and holidays. In the
follow-up work, we can further consider the holidays and the
user demand side to further improve the accuracy of power
load forecasting.
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