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Abstract — Recent popularity to realize image recognition by memristor-based neural network hardware systems
has been witnessed owing to their similarities to neurons and synapses. However, the stochastic formation of conductive
filaments inside the oxide memristor devices inevitably makes them face some drawbacks, represented by relatively
higher  power  consumption  and  severer  resistance  switching  variability.  In  this  work,  we  design  and  fabricate  the
Ag/MXene (Ti3C2)/SiO2/Pt memristor after considering the stronger interactions between Ti3C2 and Ag ions, which
lead  to  a  Ti3C2/SiO2 structure  memristor  owning  to  much  lower  “SET”  voltage  and  smaller  resistance  switching
fluctuation than pure SiO2 memristor. Furthermore, the conductances of the Ag/Ti3C2/SiO2/Pt memristor have been
modulated by changing the number of the applied programming pulse, and two typical biological behaviors, i.e., long-
term potentiation and long-term depression, have been achieved. Finally, device conductances are introduced into an
integrated device-to-algorithm framework as  synaptic  weights,  by which the  MNIST hand-written digits  are  recog-
nized with accuracy up to 77.39%.
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 I. Introduction
Image  recognition  has  been  considered  as  the  most

important  branch  of  artificial  intelligence  (AI)  industry
today.  It  therefore  receives  ubiquitous  applications
through  the  daily  life  of  global  citizens  [1]–[3]. Realiza-
tion  of  image  recognition  can  be  simply  classified  into
software-based  approach  and  hardware-based  approach.
For software  case,  images  are  input  into  a  neural  net-
work whose weights were previously trained according to
some mature  algorithms,  and the  output  of  such  neural
networks  correspond  to  the  classifications  of  the  input
images [4]–[6]. It is  obvious that the recognition accura-
cy of software-based approach drastically depends on the

sophistication of the adopted algorithms and the efficien-
cy of the computers. For this reason, supercomputers are
usually  required  to  solve  very  complex  computing  task,
which undoubtedly increases the computing cost and en-
ergy  consumption  [7]. In  contrast,  hardware-based  ap-
proach targets  for  a  hardware  neural  network  that  be-
haves in a similar manner to biological brains. Such trait
enables hardware-based neural  network with several  ad-
vantageous  features  over  software  case,  such  as  faster
processing speed, smaller energy consumption, and inde-
pendence of computing resources [8], [9]. Owing to above
points, the hardware-based approach exhibits much more
promising application prospect than software counterpart. 
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The key to achieving brainlike hardware-based neu-
ral  network  (i.e.,  neuromorphic  computing)  is  to  break
the well-known von Neumann architecture of convention-
al computers where data processing and storage are per-
formed by  central  processing  unit  and  memory,  respec-
tively. To date, memristor has been unanimously regard-
ed  as  the  most  appropriate  candidate  for  neuromorphic
computing  applications  [10]–[19].  This  arises  from  its
unique  feature  that  its  resistance  corresponds  to  the
synaptic  weight  that  can  be  continuously  adjusted  and
sustained with and without external stimulus, respective-
ly.  Triggered  by  its  superb  characteristics,  a  variety  of
memristor-based neural networks have recently been de-
signed  to  accomplish  image  recognition  function.  The
crucial  materials  for  aforementioned  neural  networks
mainly include magnetic materials [11], [12], ferroelectric
materials [13], [14], phase-change materials [15], [16], and
resistance  switching  (RS)  materials  [17]–[19].  Compared
with  other  memristive  families,  the  memristive  device
was pioneered from RS random access memory with sev-
eral  attractive  merits,  including  fast  write/read  speed,
small energy consumption, great endurance, and long re-
tention  [20],  [21].  Various  neural  network  architectures
with different oxide-based devices have been devised and
applied  to  image  recognition  most  recently,  and  their
recognition accuracy has also been demonstrated [22]. In
spite of reported progress, the stochastic formation of con-
ductive  filaments  (CFs)  inside  oxide  based  memristors
inevitably makes them face some formidable drawbacks,
represented by relatively higher power consumption and
bigger RS variability. One promising strategy to address
these issues is to add an additional MXene layer on top
of the oxide layer to modulate the RS characteristics and
further reduce the energy consumption for programming
operation  [23]–[25]. For  above  reasons,  considerable  re-
search  enthusiasm  is  recently  devoted  to  studying  and
engineering  the  memristive  behavior  of  MXene/Oxide
based  device,  while  its  suitability  for  AI  applications,
particularly in  the  field  of  image  recognition  still  re-
mains un-investigated.

In order  to fill  above scientific  gap and explore the
possibility  of  commercializing  the  MXene/Oxide  based
memristor in near future, in this work, we designed and
fabricated  a  silver  (Ag)/MXene  (Ti3C2)/silicon  dioxide
(SiO2)/Platinum (Pt) structured memristor to explore its
commercial application in the field of image recognition.
Such  Ti3C2/SiO2 memristor  exhibits  much lower  “SET”
voltage  and  weaker  cycle-to-cycle  variations  than  pure
SiO2 memristor. Such intriguing finding can be attribut-
ed  to  the  stronger  interactions  between  Ti3C2 and  Ag
ions, demonstrated  via  first-principles  calculations.  Fur-
thermore,  the  conductances  of  the  Ag/Ti3C2/SiO2/Pt
memristor have  been  modulated  by  changing  the  num-
ber  of  the  applied  programming  pulse,  and  two  typical
biological  behaviors,  i.e.,  long-term  potentiation  (LTP)
and  long-term depression  (LTD),  are  therefore  achieved
by continuously tailoring the device conductions. Device

conductances  are  finally  introduced  into  an  integrated
device-to-algorithm  framework  as  synaptic  weights,  by
which  the  MNIST  hand-written  digits  are  recognized
with accuracy up to 77.39%.

 II. Experimental Procedures
2D materials have shown great potential in memristor-

based neural networks due to their atomic-scale thickness,
excellent electronic properties, thermal stability and so on
[26]–[28]. As the discovery of the first MXene composition,
Ti3C2 has  subsequently  attained  tremendous  attention,
particularly  in  the  fields  of  optoelectronic  applications
such as  photovoltaics,  photodetectors  and  photoelectro-
chemical devices [29], [30]. A myriad of experience about
the electronic, optical, and chemical properties of Ti3C2,
associate  with  its  corresponding  fabrication  techniques,
has been accumulated [31]–[33]. As a result, an additional
Ti3C2 layer was inserted into a typical Ag/SiO2/Pt resis-
tive  device  to  comprise  an  Ag/Ti3C2/SiO2/Pt  stacked
memristor. To fabricate such device, an 80 nm SiO2 layer
was sputtered on top of Si wafer according to the physical
vapor  deposition  with  Ar  gas  at  a  flow rate  of  10  sccm
and  a  pressure  of  1  torr.  The  Ti3C2 layer,  prepared  by
etching  Ti3AlC2 with  hydrogen  fluoride,  was  deposited
on top of SiO2 layer via spin-coating at 500 rpm for 60 s.
The thickness of the deposited MXene layer was demon-
strated to  be  50  nm through  a  cross-sectional  SEM im-
age,  as  illustrated  in  the  inset  of Figure  1(a),  while  its
main composition was revealed by the corresponding X-
ray diffraction (XRD), as shown in Figure 1(a). Such bi-
layered structure with a dimension of 100 μm × 100 μm
was  sandwiched  between  an  Ag  top  electrode  with  a
thickness  of  100  nm  and  a  Pt  bottom  electrode  with  a
thickness of 80 nm. The top electrode was designed ortho-
normal  to  the  bottom  electrode  so  as  to  readily  extend
the  single  device  to  the  crossbar  architecture.  Keithley
4200A SCS semiconductor parameter analyzer was imple-
mented to measure all electrical characteristics of the de-
signed memristor presented below.

 III. Results and Discussions
The prerequisite of using the designed memristor for

image  recognition  applications  arises  from  its  ability  to
be  reversibly  switched  between  a  low  resistance  state
(LRS) and a high resistance state (HRS). To prove this,
resulting  current  flowing  across  the  device  for  different
DC voltages was collected via the conventional DC sweep
approach, giving rise to Figures 1(b) and (c). Figure 1(b)
revealed the threshold switching (TS) characteristics (i.e.,
volatile  behavior)  of  the  Ti3C2/SiO2 based  memristor
under a relatively low compliance current limit of 100 nA.
It was clearly indicated that the measured current under-
went  a  dramatic  increase  once  the  applied  DC  voltage
reached approximately  0.2  V,  implying  that  the  thresh-
old voltage was approximately 0.2 V for 100 nA compli-
ance current. Such threshold voltage was lower than the
reported value of  the SiO2-based memristor  without the
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MXene layer [34], [35]. After the TS effect occurs, revers-
ing the DC sweep from 0.2 V to 0 V however resulted in
an abrupt  decrease  on resulting  current  when backward
DC voltage is close to 0 V. This undoubtedly suggested
that the device resistance turns back from LRS to HRS
when  losing  the  external  excitations,  demonstrating  its
volatile  behavior.  As  the  designed  device  is  expected  to
suffer from numerous programming for practical applica-
tions,  aforementioned  DC  sweep  process  was  performed
on the same device for 100 cycles to test the repeatabili-
ty of the measured results. It was found that among dif-
ferent cycles, the minimum and maximum programming
current almost  remained  the  same,  indicating  an  excel-
lent stability of the LRS and HRS and a constant on-off
ratio.  Additionally,  the  threshold  voltages,  also  known
as “SET” voltage, mainly fell  within the range between
0.1  V  and  0.2  V,  leading  to  a  small  fluctuation  of  the
“SET” voltage.

Besides the TS behavior of the designed memristor,
the RS phenomenon (i.e., non-volatile behavior) was also
investigated  and  depicted  in Figure  1(c).  Similar  to  its
TS  characteristic,  resulting  current  initially  remained
trivial  at  the  beginning  of  the  DC  sweep  and  suddenly
increased  when  reaching  the  “SET ”  voltage.  However,
the LRS resistance state was maintained even if the po-
larity of the DC sweep was reversed, exhibiting its non-

volatile characteristics.  Further  lowering  the  DC excita-
tion to approximately −0.2 V caused the switching of the
LRS back to HRS, and this corresponded to a “RESET”
voltage of approximately −0.2 V, which was also smaller
than reported “RESET” values of pure SiO2-based mem-
ristor [34], [35]. The repeatability of its RS characteristic
was subsequently assessed for 100 cycles. As can be seen
from Figure  1(c),  the  “SET ” and  “RESET ” voltages
varied from 0.1 V and −0.1V, to 0.3 V and −0.3 V, re-
spectively.  This  promisingly  allows  for  smaller  cycle-to-
cycle variation compared with the SiO2 based memristor.
Furthermore,  we  performed  the  device-to-device  test  to
check the uniformity of the Ag/MXene/SiO2/Pt memris-
tors.  As  shown  in Figure  1(d), the  statistical  distribu-
tions of resistances in both the HRS and LRS for five dif-
ferent  devices  were  diagramed by box chart  to  evaluate
the  device-to-device  variation,  indicating  that  the
Ag/MXene/SiO2/Pt memristors have relatively good uni-
formity.

As  the  proposed  device  leads  to  some  prevailing
memristive  characteristics  over  the  conventional  SiO2
based memristor,  it  exhibits  great  potential  for  neuro-
morphic computing  application  such  as  image  recogni-
tion. To realize it, the memristor cell corresponds to the
biological synapse,  whereas  its  conductance  can  be  de-
fined as the synaptic weight. Based on the classic neural
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Figure 1  (a) The XRD shows that the main composition of MXene used in this work is Ti3C2, and the cross-sectional SEM image indicates
the thickness of the MXene film is 50 nm (a.u.: arbitrary unit). (b) The typical TS I–V curves under a relatively low compliance current
limit of 100 nA. (c) The typical RS I–V curves under a relatively high compliance current limit of 1 mA. (d) Box chart of resistances in
both the HRS and LRS under 50 consecutive cycles of five different devices.
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network algorithms, the synaptic weight is required to be
updated every epoch so as to enhance the recognition ac-
curacy  of  the  neural  network.  To  mimic  such  behavior,
the electrical conductance of the designed device was al-
tered by  changing  the  number  of  the  applied  program-
ming pulse [36], giving rise to Figures 2(a) and (b). For
the optimization purpose, two conductance sets were cre-
ated.  Conductance  set  1  (Figure  2(a))  was  obtained  by
applying 200  consecutive  positive  pulses  with  an  ampli-
tude  of  0.15  V  and  a  width  of  25  ms,  followed  by  300
consecutive negative pulses with an amplitude of −0.15 V
and a  width of  25  ms.  Conductance  set  2  (Figure  2(b))
was possessed from applying 70 consecutive positive puls-
es with an amplitude of 0.18 V and a width of 25 ms, fol-
lowed by  70  consecutive  negative  pulses  with  an  ampli-
tude of  −0.18 V and a width of  25 ms.  For both cases,
increasing  the  number  of  positive  pulses  facilitates  the
extension of the Ag CFs and hence boosts the electrical
conductance, corresponding to the LTP characteristic. In
contrast,  applying  negative  pulses  starts  to  rupture  the
Ag  CFs,  which  reduces  the  conductance  and  represents
the LTD characteristic.  To make the measured data set
better compatible  with  the  subsequent  training  algo-
rithm, conductance sets depicted in Figures 2(a) and (b)
were normalized to fit the weight update using formulas
(1)–(3) [37], as illustrated in Figures 2(c) and (d). It can

be seen from the Figures  2(c) and (d)  that  the  normal-
ized  conductances  of  both  LTP  and  LTD  change  with
the normalized pulses,  implying the feasibility of  updat-
ing weight of the simulated synapse for the training pur-
pose.  The  comparison  between Figure  2(c)  and Figure
2(d)  revealed  that  the  normalized  conductance  of  set  2
shows more  linear  LTP than that  of  set  1,  while  giving
rise  to  a  similar  linearity of  LTD to set  1.  In this  case,
resulting  conductance  from  set  2  shows  better  linearity
than  set  1.  Although  a  relatively  higher  programming
pulse amplitude  can  allow  for  a  wider  weight  modula-
tion window  and  a  relatively  better  linearity,  an  exces-
sive programming pulse amplitude can lead to a poor lin-
earity  of  the  conductance  [38].  Thus,  we  need  to  find  a
suitable  programming  pulse  to  obtain  a  relatively  high
conductivity linearity and big weight window.
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Figure 2  The LTP and LTD characteristics obtained by (a) applying 200 consecutive positive pulses with an amplitude of 0.15 V and a
width of 25 ms, followed by 300 consecutive negative pulses with an amplitude of −0.15 V and a width of 25 ms; (b) applying 70 consecu-
tive positive pulses with an amplitude of 0.18 V and a width of 25 ms, followed by 70 consecutive negative pulses with an amplitude of
−0.18 V and a width of 25 ms. (c) and (d) are normalized conductances (corresponding to (a) and (b)) change with the normalized pulses,
implying the feasibility of updating weight of the simulated synapse for the training purpose.
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A

B A

the  applied  programming  pulse,  respectively.  is  the
nonlinear  behavior  parameter  that  controls  the  weight
update, and  is a function of .

According to  aforementioned  descriptions,  the  pro-
posed Ti3C2/SiO2 based memristor exhibits smaller “SET”
and “RESET” voltages and weaker cycle-to-cycle varia-
tions in comparison with the pure SiO2 based memristor.
To interpret  the  physics  governing  the  superb  perfor-
mances  of  the  proposed memristor,  the  binding energies
of  Ag  ions  into  the  SiO2 based  memristors  with  and
without  Ti3C2 were  calculated,  respectively,  through  a
first-principle  computational  model  based  on  density
functional  theory  (DFT).  To  build  Ag/SiO2/Pt  and
Ag/Ti3C2/SiO2/Pt  hetero-junctions,  Ag  (100),  Pt  (100),
SiO2 (100), and Ti3C2 (001) surfaces were constructed to
build  2  × 2  × 1  Ag  supercell,  2  × 2  × 1  Pt  supercell,
1 × 1 × 1 SiO2 supercell, and 1 × 2 × 1 Ti3C2 supercell,
respectively. The electron exchange and correlation were
described  with  generalized  gradient  approximation
(GGA)-Perdew  Burke  Ernzerhof  (PBE)  functional  [39].
The  localized  double-numerical  quality  basis  set  with  a
polarization d-function (DNP-4.4) was chosen to expand
the  wave  functions.  The  core  electrons  of  the  metal
atoms were treated using the effective core potential. To
accommodate  the  van  der  Waals  interactions,  the
Tkatchenko-Scheffler method was used for dispersion cor-
rection  in  the  DFT  calculations,  and  the  orbital  cutoff
distance was 4.5 Å for all atoms. For the geometry opti-
mization,  the  convergences  of  the  energy,  maximum
force, and maximum displacement were set as 1 × 10−4

Ha, 2 × 10−3 Ha/Å, and 5 × 10−2 Å, respectively,  and
the  self-consistent  field  convergence  for  each  electronic
energy  was  set  as  1  × 10–5 Ha.  The  Brillouin  zone  was
sampled with 2 × 2 × 2 Monkhorst-Pack grids.  All  the
DFT calculations were performed using the DMol3 code
as provided by the Materials Studio package [40].

Binding energy of Ag ions to any memristor regime
can  be  regarded  as  the  sum  of  the  total  energy  of  the
memristor regime and Ag ions  excluding the total  ener-
gy of the memristor regime where Ag ions diffuse. Accord-
ingly,  the  Ag/SiO2/Pt  and  Ag/Ti3C2/SiO2/Pt memris-
tors structures with and without taking into account Ag
ion diffusion  were  optimized,  respectively,  and  their  re-
spective  total  energy  were  calculated,  resulting  in Fig-
ures  3(a)–(d).  Revealed  from  the  developed  model,  the
total energies of the Ag/SiO2/Pt and Ag/Ti3C2/SiO2/Pt
structures were found to be −6024.865 Ha and −5119.575
Ha, respectively,  while  that  of  the  Ag  ions  was  estab-
lished to be −149.99 Ha. When including the Ag ions dif-
fusion into the optimized structures, the total energies of
aforementioned  two memristors  without  and with  Ti3C2
were  changed  to  −6171.998 Ha  and  −5266.649 Ha, re-
spectively.  This  implied  that  the  binding  energy  of  Ag
ions to the Ag/SiO2/Pt and Ag/Ti3C2/SiO2/Pt memris-
tors were  0.142  Ha  and  0.083  Ha,  respectively,  equiva-
lent to an electronic volt of 3.87 eV and 2.28 eV. It is ob-
vious that the insertion of the Ti3C2 can attractively fa-

cilitate the formation of the Ag conductive filaments in-
side the Ag/SiO2/Pt memristor due to its smaller binding
energy, which consequently lowers the “SET” voltage.
 

(a) (b)

(e) (f)

(c) (d)

Si Ti CO Ag Pt

 

Figure 3  The DFT calculations for the binding energies of Ag ions
into the SiO2 based memristors with and without Ti3C2. The total
energies  of  the  (a)  Ag/SiO2/Pt  and  (b)  Ag/Ti3C2/SiO2/Pt struc-
tures  were  found  to  be  −6024.865 Ha  and  −5119.575 Ha, respec-
tively.  The  total  energies  of  the  (c)  Ag/SiO2/Pt  and  (d)
Ag/Ti3C2/SiO2/Pt  structures  with  the  Ag  ions  diffusion  into  the
optimized structures were changed to −6171.998 Ha and −5266.649
Ha, respectively. (e) and (f) are differential charge analyses for the
Ag/SiO2/Pt and Ag/Ti3C2/SiO2/Pt structures, and the Ti3C2/SiO2
interface  exhibited  more  pronounced  charge  transfer  effect  than
SiO2/Pt interface,  which can be ascribed to the stronger adhesion
of Ag ions to the Ti3C2/SiO2 interface.
 

Such hypothesis  was  further  demonstrated  accord-
ing to the calculated charge density differences, as illus-
trated in Figures 3(e) and (f). As clearly suggested from
Figures  3(e)  and (f),  most  of  the  charge  difference  were
located at SiO2/Pt and Ti3C2/SiO2 interfaces, suggesting
that both  memristors  support  the  formation  of  Ag  con-
ductive filaments. Nevertheless, the Ti3C2/SiO2 interface
exhibited  more  pronounced  charge  transfer  effect  than
SiO2/Pt interface, which can be ascribed to the stronger
adhesion  of  Ag  ions  to  the  Ti3C2/SiO2 interface.  Based
on the analysis above, adding a MXene (e.g., Ti3C2) lay-
er into the SiO2 based memristor can reduce the binding
energy of Ag ions to resulting memristor regime, thus re-
quiring  a  smaller  “SET ”  voltage.  This  advantageously
benefits  the  Ag  ions  diffusion  inside  the  memristor  and
makes  Ag  ions  localized  at  certain  position  of  the
TiN/SiO2 interface.  Along  with  the  accumulation  of  Ag
ions, the Ag conductive filament begins to grow from the
Ti3C2/SiO2 interface  and extend through the  SiO2 layer
to cause LRS. As such filament is preferentially localized
at the Ti3C2/SiO2 interface, the positions where the fila-
ments start to grow show subtle variation among different
cycles, consequently maintaining its good repeatability.
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To achieve image recognition function, the designed
memristor  was  introduced  to  the  NeuroSim  framework
that was considered as a computer-in-memory simulator
for benchmarking  synaptic  devices  and  array  architec-
tures  [41],  [42].  The  simulated  neural  network  circuit
shown in Figure 4(a), consists of an array of the artificial
synapse build from a transistor and an Ag/Ti3C2/SiO2/Pt
memristor  (1T1R).  The  gate,  source,  and  drain  of  each
transistor  are  connected  to  the  word  line,  source  line,
and  bottom  electrode  of  the  memristor,  while  the  top
electrode of the memristor is connected to the bit line [43],
[44]. The  transistor  acts  as  a  device  selector  to  deter-
mine the programming and readout operations of the re-
lated memristor.  For  the  designed  circuit,  voltage  sig-
nals are  considered  as  the  input  vectors,  and  are  trans-
formed into the current signals when passing through the
memristor  array  [44].  Resulting  currents  are  collected
and amplified  at  the  end  of  the  source  lines  to  perform

weighting and  sum  computation.  Such  circuit  corre-
sponds to  a  multilayer  perceptron  neural  network  com-
prising 400 nodes, 100 nodes, and 10 nodes for input lay-
er, hidden layer, and output layer, respectively, and the
data  set  adopted  here  is  the  MNIST  handwritten  digit
set  [45],  as  revealed  in Figure  4(b).  The  accuracy  for
MNIST  digit  set  recognition  was  therefore  calculated
based on the NeuroSim simulator in terms of different al-
gorithms that include stochastic gradient descent (SGD)
algorithm [46],  Momentum algorithm [47], RMSprop  al-
gorithm  [48],  and  adaptive  moment  estimation  (Adam)
algorithm  [49].  Calculated  results,  as  listed  in Table  1
and Figure 4(c), suggested that SGD and Momentum al-
gorithm exhibit the highest recognition accuracy of 77.39%
and 68.73% for set 2 and set 1, respectively. The recogni-
tion accuracy of the SGD algorithm for set 2 and set 1 is
77.39% and 65.26%, respectively, as shown in Figure 4(d)
and Table 1.
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Figure 4  (a) Schematic diagram of the neural network circuit, consisting of an array of the artificial synapse build from a transistor and an
Ag/Ti3C2/SiO2/Pt  memristor.  (b)  The  image  recognition  function  using  the  MNIST handwritten  digit  set  was  achieved  according  to  a
multilayer perceptron neural network based on memristor array. (c) The SGD and Momentum algorithm exhibit the highest recognition
accuracy of 77.39% and 68.73% for set 2 and set 1, respectively. (d) The SGD algorithm exhibits the recognition accuracy of 77.39% and
65.26% for set 2 and set 1, respectively.
 

To  further  optimize  the  accuracy  and  provide  the
design strategy for memristor-based synapse,  the perfor-
mance comparison between set 1 and set 2 was evaluat-
ed and elaborated in Table 2. It was clearly shown that
resulting accuracy strongly pertains to the weight lineari-
ty and OFF/ON ratio (the weight modulation window).
On the one hand, weight update with stronger nonlinear-

ity simply implies that conductances are majorly concen-
trated on the LRS and HRS regions with the sacrifice of
the intermediate resistance states. It is evident that lack
of  intermediate  resistance  states  increases  the  difficulty
in the convergence of the training process, and thus dete-
riorates  the  recognition  accuracy.  On  the  other  hand,
bringing  about  higher  OFF/ON  ratio  by  changing  the
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programming pulse amplitude and pulse width [50],  [51]
can  also  allow  for  more  intermediate  resistance  states
formed  between  the  LRS  and  HRS,  which  significantly
improves the weight adjustment and possibly leads to a
fine weight update during the training process. This also
benefits the recognition accuracy. But it is worth noting
that there is also a trade-off between high OFF/ON ra-
tio  and  high  endurance,  which  also  affects  the  final
recognition accuracy results. According to this design cri-
terion,  set  2  with  better  linearity  and  relatively  larger
OFF/ON  ratio  results  in  higher  recognition  accuracy
than set 1, which was also reflected in Table 1. In addi-
tion, higher OFF/ON ratio and linearity not only can ac-
complish higher recognition accuracy, but also make the
latency  and  energy  consumption  smaller  in  peripheral
circuits. Besides, the Horowitz equation was used to cal-
culate the latency of the peripheral circuit [37], [52]:
 

Latency = τf

√
ln(vs)

2
+

2

rampInput× τf
β(1− vs) (4)

vs
1/rampInput

β 1/ (gmR)

gm
τf = RC RC

C

where  is  the  normalized  threshold  switching  voltage
(typically  0.5),  represents  the  rise  time  of
the input voltage signal, =  is the reciprocal of
the normalized input transconductance  times the out-
put resistance R, and  is the total  time con-
stant at the output node, where  is the capacitance at
the logic gate level. The sub-circuit module latency is the
critical path latency multiplied by the number of repeti-
tions, and the total latency is the sum of latency of sub-

circuit modules. Similarly, the dynamic energy consump-
tion of the sub-circuit module is the energy consumption
of the  critical  path  multiplied  by  the  number  of  repeti-
tions, and the total energy consumption is the sum of the
dynamic  energy  consumption  of  the  sub-circuit  module
and the static  energy consumption of  the array.  Among
them,  dynamic  energy  consumption  and  static  energy
consumption are defined as follows [37], [53]:
 

dynamicenergy = CV 2
DD (5)

 

staticenergy = GV 2
wNTpulse (6)

C VDD

G Vw

N
Tpulse

where  is the capacitance at the logic gate level,  is
voltage,  is the conductance,  is the write voltage for
the  weight  update,  is  the  number  of  applied  write
pulses,  and  is  the  width  of  write  pulse.  Although
resulting accuracy from the simulated circuit is still low-
er  than  that  possessed  from  pure  software  training,  it
should be noted that pure software training assumes an
optimized  symmetry  and  linearity,  which  cannot  be
physically achieved for practical memristor circuits. As a
result,  the  proposed  Ag/Ti3C2/SiO2/Pt memristor  en-
ables  an  attractively  high  accuracy  of  MNIST  digit  set
recognition,  thus  demonstrating  its  promising  prospect
for neuromorphic computing applications.

 IV. Conclusions
In conclusion, the Ag/MXene (Ti3C2)/SiO2/Pt mem-

ristor has been fabricated and different electrical charac-
teristics  (i.e.,  volatile  and  nonvolatile  behaviors)  have
been  obtained  under  different  compliance  current  limits
of  100  nA  and  1  mA,  respectively.  The  first-principles
calculation  was  used  to  interpret  the  physics  governing
the  excellent  performances  of  the  proposed  Ti3C2/SiO2
structure  memristor,  such  as  smaller  “SET”  and  “RE-
SET” voltages and weaker cycle-to-cycle variations com-
pared with the pure SiO2 based memristor. Furthermore,
the conductances of the designed device were altered by
changing the number of the applied programming pulse,
and the typical LTP and LTD biological behaviors have
been achieved. Finally, the accuracy for MNIST digit set
recognition was  calculated  based  on  the  NeuroSim inte-
gration framework in  terms of  different  algorithms.  The
highest  recognition  accuracy  is  up  to  77.39%  by  using
SGD algorithm,  suggesting  that  the  recognition  accura-
cy is strongly related to the weight linearity and the ra-
tio  of  OFF/ON.  This  work  demonstrates  that  the
Ag/MXene/SiO2/Pt device has a promising prospect for
neuromorphic computing applications.
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