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ABSTRACT The ability to accurately identify tomato leaves in a field setting is crucial for achieving early
yield estimation, particularly with the growing importance of Precision Agriculture. It may be difficult to
determine exactly what diseases are affecting tomato plants due to the overlap in symptoms between different
diseases. These are the earliest signs of disease that we found in the leaves of tomato plants. Yellow leaf curl
virus, leaf mold, light blight, early blight, Mosaic virus, Septoria leaf spot, and bacterial spot are just some
of the seven types of plant leaf diseases that were taken into account in this paper. For the development of
a testbed environment for data acquisition, the greenhouse at the university was utilized for data on the
leaves of tomato plants. This study proposes a target detection model based on the improved YOLOv7
to accurately detect and categorize tomato leaves in the field. To improve the model’s feature extraction
capabilities, we first incorporate the detection mechanisms SimAM and DAiAM into the framework of the
baseline YOLOv7 network. To reduce the amount of information lost during the down sampling process, the
max-pooling convolution (MPConv) structure is then improved. After that, this model arrived at a satisfactory
outcome. Then, the image is segmented using the SIFT technique for classification, and the key regions are
extracted for use in calculating feature values. After that, these data points are sent to a CNN classifier, which
has a 98.8% accuracy rate and a 1.2% error rate. Finally, we compare our study to previous research to show
how useful the proposed work is and to provide backing for the concept.

INDEX TERMS Tomato leaf diseases detection, YOLOv7, image classification, convolutional neural
network, SIFT, feature extraction.

I. INTRODUCTION
The tomato is cultivated in many different countries and
regions. The United Nations Food and Agriculture Orga-
nization (FAO) estimates that in 2021, the world produced
370.750 kilotons of tomatoes [1]. In 2021, Turkey produced
32,600 kilotons of tomatoes, ac-cording to the Turkish Statis-
tical Institute. Damage from pests and diseases has an effect
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on the yields of tomatoes. In order to protect crops from
diseases and pests, the agricultural industry uses a wide range
of pesticides and expensive methods. Using these chemical
methods on a large scale has negative effects on biodiversity,
human health, and agricultural productivity. The cost of pro-
duction increases as a result of these methods as well.

Scientists have devoted a lot of time and energy to studying
plant diseases, primarily examining their biological charac-
teristics. Studies conducted with tomato and potato varieties
provide an example of how disease-prone plants can be. The
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FIGURE 1. Some sample images from tomato diseases and healthy
leaves. (a) Bacterial spot (b) Early blight (c) Late blight (d) Leaf mold
(e) Mosaic virus (f) Septoria leaf spot (g) Yellow curl virus (h) Healthy leaf.

problem of plant dis-eases has global repercussions because
of its effect on food security. Plant diseases have a signifi-
cant negative effect on farmers regardless of location, media,
or technology. Early disease detection in the modern era
can be challenging and requires careful planning [2]. Image
processing is commonly used today. For use in agriculture
as evidenced by photo-graphs taken via remote sensing or
other field cameras. Image processing is used in a wide
variety of plant-related tasks, including species identification,
fruit grading, disease diagnosis, severity measurement, and
symptom description. Recently, researchers have tried using
deep learning for detection. Using deep learning, Mohanty
[3] were able to determine which plant diseases were present
by analyzing the leaves.

Tomatoes are used in a wide variety of cuisines for their
flavor and nutritional value. The thin skins, tender meat,
substantial sugar content, and high calories all contribute to
their popularity as one of the most commonly produced fruits
in the world. Black tomatoes, Momotaro tomatoes, golden
tomatoes, and cherry tomatoes are some of the most widely
grown types of tomatoes in Taiwan. About fifty different
kinds of tomatoes are produced there. Tomatoes are widely
grown in Taiwan. The primary growing regions for tomatoes
in Taiwan are located in the counties of Chiayi, Kaohsiung,
Tainan, Yunlin, andNantou, covering a total area ofmore than
5,000 acres of land. The average value of tomatoes produced
is close to TWD 30 billion, and it continues to rise [4].

Recognizing plant diseases is crucial in agriculture because
it is the fundamental step in preventing the spread of infection
and the final step in ensuring the quality of a harvested crop.
Tomatoes are grown in many parts of the world because they
are both a nutritious food source and a lucrative crop for
farmers. Diseases that manifest themselves on tomato plants’
leaves reduce both quality and yield. Figure 1 shows that
mosaic virus, yellow leaf curl virus, leaf mold, late blight,
early blight, bacterial Spot, Septoria, and healthy leaf virus
can damage tomato plants and their leaves.

Different diseases require different image-processing tech-
niques and feature sets, and it is up to the researcher to
determine which ones will be used in their investigation [5].
Disease in plants occurs when a pathogen (a virus, bacteria,
or fungus) infects a plant and renders it unable to grow. There
is a risk that the plant’s leaves will die or turn color as a result.
Viruses, nematodes, fungi, and bacteria are all represented in
Figure 1 as potential disease culprits.

• Bacterial Spot: Capsicum leaves are mostly destroyed
by bacterial spot. Tomato plants often die from bacterial
spot infection. Seeds, agricultural waste, and host plants
could spread the bacteria. Bacteria can spread during
times of heavy precipitation and wind power, or when
water is poured from on high, as in irrigation. In-sects,
animals, and machinery that pass through the crop could
also spread it.

• Early blight: Pakistan has early blight year-round, one
of among the most common tomato diseases. The plant
may begin to yellow at the roots, and the brown, spher-
ical spots may be as large as half an inch in diameter.
It wreaks havoc on the plant, reducing yields by damag-
ing the leaves, fruit, and stems

• Late blight: Tomato leaves, stems, fruit, and tubers are
susceptible to late blight. In damp, cold conditions, fun-
gus blooms spread the disease quickly.

• Leaf mold: Tomato leaves are susceptible to leaf mold,
especially in greenhouses. It’s easy to confuse the signs
of this disease with those of something else, like grey
mold or tomato blight, when leaves are affected. High
humidity (over 85%) exacerbates disease symptoms.

• Tomato mosaic virus: Weeds, infected seeds, and insects
can spread this plant pathogenic virus. Plants, on aver-
age, develop a fuller, lighter form. Leaves can curl.
Mosaic symptoms can cause fruit deformities [5].

• Septoria leaf Spot: Septoria leaf spot is caused by Septo-
ria lycopersici fungus. Symptoms of this fungus usually
appear when tomatoes develop into fruit on maturer,
lower stems, and leaves. Petioles stems, and calyx can
also show signs, but leaves usually don’t.

• Tomato Yellow Leaf Curl Virus: Tomato Yellow Leaf
Curl Virus is transmitted by whiteflies in early trans-
plants. Plants with the illness take up to three weeks
to show symptoms. When symptoms appear, you’ll see
changes in leaves, and flower buds, and growth.

It’s important to develop a system for quickly and cheaply
diagnosing plant diseases. Leaf diseases, detectable with
image processing tools, are evident on its leaves. This
work developed aMATLAB-based program to automatically,
cheaply, and accurately detect and classify leaf diseases. Web
images of damaged tomato leaves can be assessed using an
ANN-based clustering technique. Because of the advance-
ment of Matlab based computer software, farmers may be
able to boost output while saving time and money com-pared
to conventional methods of disease diagnosis. This study’s
practical application can boost tomato production while sav-
ing farmers time and money [6].
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The techniques described in provide workable and reli-
able solutions for tomato detection. More effort is needed to
improve their performance in tough greenhouse conditions.
The current group proposed a CNN-based strawberry disease
classification method [7]. The current study builds on by
classifying tomatoes on the vine into three categories: ripe,
immature, and damaged using the Yolov5 medium and four
different CNN classification models (Yolo5m, ResNet50,
ResNet-101, and EfficientNet-B0).

There is a lot going on in the background of a picture
of a plant leaf, so it’s not surprising that a single color
component can only tell you so much about the leaf’s hues.
Be-cause of this, the results of the feature extraction process
are less reliable. More is better than less when it comes to
the number of color elements used. Using the PlantVilliage
dataset’s tomato leaf images as inputs, the aforementioned
study trained a CNN model on their RGB components [8].
As a classifier, we decided to go with the Learning Vector
Quantization (LVQ) method due to the topology of it and
the adaptable model it uses. Knowledge of pests and dis-
eases, the need for specific environmental conditions during
the growing season, and corrective measures during tomato
planting are all largely determined by the closeness of peasant
communities and the experience gained from previous tomato
plantings. Commercial tomato cultivation suffers from these
logistical issues.

Precision agriculture is a farming method that maxi-
mizes agricultural yield while minimizing waste through
the utilization of technology. It involves collecting and ana-
lyzing data on soil conditions, weather patterns, and crop
growth using various technologies, including drones, sen-
sors, and machine learning algorithms. Farmers can make
informed decisions about planting, irrigation, fertilization,
and harvesting by leveraging this data. Precision agriculture
increasingly employs deep learning algorithms to detect
and classify plant diseases, such as those affecting tomato
plants. These algorithms categorize plant leaves based on the
presence of diseases by analyzing images using convolutional
neural networks (CNNs). This capability allows farmers
to detect illnesses early, enabling them to take necessary
precautions to prevent disease spread and enhance crop
yield [9]. AI technology and deep learning play pivotal roles
in advancing precision agriculture, revolutionizing how we
manage crops and optimize yields. One significant aspect
is predictive analytics, where AI algorithms analyze vast
datasets to forecast crop growth, disease outbreaks, and opti-
mal harvest times with remarkable accuracy. By leveraging
historical and real-time data, farmers can make informed
decisions, reducing resource wastage and increasing
productivity.

Previously published investigations have several limi-
tations that hinder their full applicability to the task of
diagnosing diseases in tomato leaves. These limitations
include the following:

• It may be difficult for small-scale Pakistani tomato
producers to identify and track diseases without ready

possession of resources like technological advances and
specialized knowledge.

• It can be difficult for algorithms using computer vision
to tell the difference between healthy and diseased
tomato leaves because some leaf diseases cause symp-
toms that are otherwise indistinguishable.

• One issue is that existing datasets do not contain
enough photographs of real-world settings that have
been meticulously annotated for machine learning pur-
poses. Therefore, training is performed with images
captured in a stable setting.

• Existing proposed algorithms are limited in their ability
to recognize multiple dis-eases within a single image or
multiple occurrences of the same disease within a single
image.

The following is a brief overview of the major findings and
contributions from this study:

• A robust framework is proposed for recognizing multi-
ple diseases on tomato plant leaves, which can be used
as a preliminary indicator of plant health.

• Leaf samples dataset from tomato plants were collected
from university greenhouses.

• Cropping, sorting and labelling the images into cat-
egories facilitates analysis and yields more accurate
results for training process.

• This study proposed a target detection model based on
the improved YOLOv7 to accurately detect and catego-
rize tomato leaves in the field.

• To improve the model’s feature extraction capabili-
ties, we first incorporate the detection mechanisms
SimAM and DAiAM into the framework of the baseline
YOLOv7 network.

• To reduce the amount of information lost during the
down-sampling process, the max-pooling convolution
(MPConv) structure is then improved.

• Then, the image is segmented using the SIFT technique
for classification, and the key regions are extracted for
use in calculating feature values.

• Finally, we compare our study to previous research to
show how useful the proposed work is and to provide
backing for the concept.

This paper’s organizational structure sets it apart.
Section II’s literature review suggests topics for the study
of tomato pathogen detection. Section III describes the anal-
ysis and proposes an approach for disease identification,
including a mathematical model. The experiments and results
are discussed in Section IV. The conclusion is presented
in Section V, along with some recommendations for future
directions.

II. LITERATURE REVIEW
The use and testing of fruit recognition algorithms based
on machine learning, especially deep learning, has increased
in recent years. When compared to conventional methods,
machine learning provides a more dependable and accurate
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alternative, offering a superior solution to problems such as
obstruction and green tomato detection. Since green tomatoes
and backgrounds are so visually similar, little research has
been done on the is-sue of green tomato recognition. This
is shown by the research of Siddiquee et al. [10]. They
tried out a system that uses the cascaded object detector,
a machine learning technique, in conjunction with more tradi-
tional image processingmethods like ‘‘color transformation,’’
‘‘color segmentation,’’ and ‘‘circular Hough transformation’’
to identify ripe tomatoes. Re-search shows that compared to
conventional methods, machine learning techniques im-prove
accuracy by 95%.

A ripe tomato identification algorithm was proposed by
Malik et al. [11], and it makes use of watershed segmentation
and the HSV (Hue, Saturation, Value) color space. Excluding
the background and detecting only ripe tomatoes required
the use of the HSV color space, and thresholding allowed
for the modification of the discovered fruits. The water-
shed segmentation method ‘‘separated’’ the clumped fruit.
When combined, these two methods resulted in a precision
of 81.6%.

Researchers Xiang et al. [12] evaluated a cluster tomato
ripeness recognition algorithm. There were four main phases
to the algorithm: Segmenting a tomato image using a normal-
ized color difference; identifying the clustered region using
the length of the greatest edge of the smallest circle enclosing
the rectangular shape of the tomato region; processing the
clustered region as a binary image using iterative damage
obviously to separate each tomato within the clustered region;
and restoring each seed region within the grouped region
obtained by the iterative erosion using a circulatory dilation
operation. They were able to detect at a rate of 87.5% within
500 mm, but this dropped to 58.4% be-tween 300 mm and
700 mm.

In most cases, authors use the plant canopies as their region
of interest (RoI) and Yolov5 to detect and segment tomatoes
within plants. Due to the presence of competing structures
in this RoI, it may be challenging to identify the fruits
and pinpoint their precise location [13]. These challenges
are exacerbated because of the high degree of color related
to leaves and tomato products during the initial phases of
ripening. However, most of the relevant research on tomatoes
that have been published looks at the time of year when the
tomatoes are already red, so color is a feature often utilized
in identifying the items that need to be recognized [14].
When analyzing the situation of fruit detection and segmen-
tation, the authors try to distinguish fruit from any external
and environmental factors, which at the plant level may be
quite complex. Besides using machine learning and statistical
methods, mathematical morphological approaches [15] have
been used for fruit recognition in obstruction and overlap
scenarios.

A faster and more accurate method for locating ripe toma-
toes was developed by Xu et al. [16], which builds on the
YOLOv3-tiny approach. The accuracy of the model was

enhanced by tweaks to the primary network, and detection
was bolstered by the addition of pictures in more diffi-
cult scenarios. Based on the numbers, the presented model
per-formed better than the YOLOv3-small technique by 12%
(F1-score = 91.92%).
Green tomatoes can be difficult to locate in greenhouses,

but Mu et al. [17] created an algorithm for detection that can
do so. The model, which is based on the Common Objects in
Context (COCO) dataset, uses a deep convolutional neural
network and a pre-trained Faster R-CNN architecture with
ResNet-101 and Yolov4 to achieve an accuracy of 87.83%
when recognizing tomatoes. To track the maturation of
tomato plants and ensure the production of fruit and flowers,
Luna et al. [18] created a computer visualization system. Both
the R-CNN and the SSD deep learning models were used.
When comparing the SSD and R-CNN models, we find that
the SSD model is significantly more effective at identifying
objects, with a 95.99% identification rate compared to just
19.48% for the R-CNN model.

Using YOLOv3 detection, Liu et al. [19] created the
YOLO-Tomato model. In order to accomplish this, we used
a dense framework for feature extraction and substituted the
proposed C-box for the more common R-box. The model
improved its detection accuracy by 4% in moderate occlu-
sions compared to severe occlusions, reaching an overall
accuracy of 94.58%.

The AdaBoost classifier was used to retrieve and catego-
rize grey-scale images and characteristics for the framework
proposed by Zhao et al. [20] for identifying ripe tomatoes.
The resulting false negatives (APV) were eliminated so that
the mean-based pixel value color analysis technique could be
used. The results showed that a 96% identification rate was
achievable when AdaBoost categorization and color assess-
ment were utilized together, despite the presence of 10% false
negatives and the absence of detection for 3.5%.

In [21], the authors use conditional generative adversarial
networks (C-GAN) to construct synthetic images of tomato
plant leaves in order to train a deep learning (DL) model
for disease detection in tomato plants. Next, we use TL to
teach aDenseNet-121 CNN to divide images of tomato leaves
into five, seven, and ten different disease categories. The
authors achieved an accuracy of 97.11% when classifying
images of tomato leaves into 6 categories, 8 categories, and
10 categories, respectively.

In order to extract the most important features, the authors
of [22] devised a novel method based on attention-based
dilated CNN and Yolov5. Both Otsu segmentation and bilat-
eral filtering were used in the preliminary processing of
the images. After the photos have been preprocessed, the
CGANmodel is applied to them to generate synthetic images.
In order to classify previously examined attributes, a logistic
regression (LR) classifier was used, which achieved an accu-
racy of 96.6%.

To distinguish between a disease-free tomato variety and
six others, Rangarajan et al. [23] trained a neural network
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TABLE 1. Comparative analysis of related works.

composed of VGG 16 and AlexNet. Performance was mea-
sured by varying training parameters like the number of
photos used, the batch size, the bi-as, and the weighted learn-
ing rate. AlexNet was found to be superior to VGG 16 in
terms of accuracy and performance speed. Given that the
goal of this work is to categorize the diseases that affect
tomato plants, it is important to note that the construction
of the suggested approach is based on the results obtained
from this comparison, providing support for the separation of
the task and choosing the architectures to deploy. VGG 16’s
implementation has flaws compared to AlexNet, especially
when it comes to computational cost, so it can be ignored.

To classify apple tree damage and nutrient deficiencies,
Nachtigall et al. [24] used convolutional neural networks.
They compared CNN’s AlexNet architecture to that of the
MLP and then analyzed the results with the help of seven
human experts. A total of 97.3% accuracy was achieved by
CNN, 96% by deep learning, and 77.3% by MLPs.

Using an EfficientNetB7 model, Kaur et al. [25] investi-
gated leaf diseases in the PlantVillage dataset for grape plants.
The fully linked layer was designed with the intention of
extracting the most vital characteristics. The feature extractor
vector was then cleaned up using the variance method to get
rid of any extraneous elements. Logistic regression was used
to reduce the influence of the features with a 98.7% accuracy
in classification.

One method proposed by Liu et al. [26] for distinguishing
between field-ripened and greenhouse-matured tomatoes is
to use the Histogram of Oriented Gradients (HOG) at-tribute
to train a support vector machine (SVM) classifier. Scratchy
scanning was used to find the fruit, and the Color Removal
(FCR) method was proposed to eliminate any false positives.
Non-Maximum Suppression (NMS) was ultimately used to
combine the previously separate results. The algorithm had
a 94.41% success rate in identifying fruits. Several recent
studies are summarized in detail in

Table 1 presents a comprehensive summary of recent
studies, outlining their contributions, methodologies, results,
limitations, and accuracy rates.

FIGURE 2. Proposed framework to recognition of the disease and health
of tomato leaves.

III. MATERIALS AND METHODS
The proposed tomato leaf disease detection system should
be explained in this section. Tomato leaf images are used
in the proposed framework to produce a set of labels that
each represent one of three distinct concepts. A healthy leaf
can be identified by first checking the input image for any
indications of a known disease. Second, when it comes to
categorizing things, segmentation comes first, followed by
dollar figures and rough estimates of percentages. Third,
in Figure 2, you can see the entire procedure by which we
used an efficient algorithm to identify and classify diseases
in tomato leaf

A. IMAGE ACQUISITION
A digital camera is used to capture images of the tomato
plant’s leaves, which are then uploaded to a computer for
further study. The image of the leaf is first transformed into
a format that can be read by a computer, then its RGB colour
structure is transformed into one that is independent of the
user’s screen resolution
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B. IMAGE PRE-PROCESSING
Images can be improved through the use of pre-processing
techniques such as noise reduction, rotation, and skew-
ing. Cropping, or clipping, an image involves selecting the
unwanted parts of a picture, particularly of leaves. When an
image needs to be smoothed out, a filter specifically designed
for that purpose is applied. Image enhancement is carried out
with the intention of increasing the contrast of the image.

C. DATASET SPLITTING
A text file with the same name as the image can be generated
by gathering all the images and using labeling to manually
label each one with its category and leaf. Following the estab-
lishment of the training and validation directories, 80 percent
of the images and their corresponding text files should be
transferred to the training directory, while the remaining
20 percent should be transferred to the validation directory.
The remaining 20% of the images, along with their associated
label files, are then transferred to a validation folder.

D. DISEASE DETECTION
Object detection algorithms typically take large sample sizes
from the input image before deciding whether or not those
sections contain any relevant features. The system then
adjusts the region’s border in order to better foresee the actual
boundary region box of the diseased portion of the leaf.
Direct analysis of complex field scenes is not possible with
the generic depth learning algorithm YOLOv7. In order to
achieve the desired Tomato dis-ease leaf detection, we opti-
mize and select the model parameters. The loss function
curve seen in this research shows a clear downward and then
upward trend when applied to the obtained validation set.
After tweaking and fine-tuning various parameters, a target
initialization rate for learning is established.

E. IMAGE SEGMENTATION
To segment an image means to divide it into subsets sharing
common characteristics. Segmentation can be accomplished
using a wide variety of techniques, one of which is translating
the colors of the RGB spectrum into the HIS model. After the
RGB image has been transformed into a HIS representation,
the segmentation is carried out using an edge and spot recog-
nition technique. Both boundary detection and spot detection
can be used to pinpoint the exact location of damage on a leaf,
and we employ these techniques to pin-point the damaged
area.

Segmentation, the next step to be discussed, makes use
of the SIFT method. Important landmarks can be identified
in images annotated with the HIS model with the help of
the SIFT method, which extracts relevant features from the
photos. Algorithm 1 below demonstrates the SIFT algorithm

This SIFT method utilizes a combination of hue and grain
to impart a unique character upon an image. For this purpose,
we first create an HSI image from the original RGB image.
Hue, saturation, and intensity (I) are the three components of
RGB (1)-(4), and their respective variables H, S, and I are

Algorithm 1 Production of Keypoints Using Scale-Invariant
Feature Transform (SIFT)

1: calculating the Gaussian scale-space
2: Information of input: e for image
3: Information about Output: p is use for scale-space
4: difference Of gaussians ( dOg)
5: Information of input: p scale-space
6: Information about Output: o dOg
7: Finding a vital intersection (extrema of dOg)
8: Information of input: o dOg
9: Information about Output: {(fo, do, αo)}

assembling of various extremes (position and scale)
10: Keypoints for localization with sub-pixel accuracy
11: Information of input: o dOg and {(fo, do, αo)}

individual extremes
12: Information about Output: {(r, c, α)} severe

instances
13: Eliminate unstable extremes
14: Information of input: o dOg and {(f , d, α)}
15: Information about Output: {(f , d, α)} refined

keypoints
16: Filter edges with localised keypoints
17: Information of input: o dOg and {(f , d, α)}
18: Information about Output: {(f, d, α)} filtered

keypoints
19: Each point should have a reference orientation.
20: Information of input: (∂mv, ∂nv) scale-space

gradient and {(f , d, α)} list of keypoints
21: Information about Output: {(u, j, α, θ)} list of

oriented keypoints
22: Feature descriptor generator for SIFT
23: Information of input: (∂mv, ∂nv) scale-space

gradient and {(u, j, α, θ )} list of keypoints
24: Information about Output: {(r, c, 1 : α, θ, f )} list of

the most important points

used in the following equations.

H = cos−1

×
Ra−0.5 (Gb) −0.5 (Bc)

√
R
2
a + G2

b + B2
c − (RaGb) − (RaBc) − (GbBc)

if Gb > Bc OR (1)

H = 360 − cos−1

×
Ra−0.5 (Gb) −0.5 (Bc)

√
R
2
a + G2

b + B2
c − (RaGb) − (RaBc) − (GbBc)

if Gb < Bc (2)

S = 1 −
2

(Ra + Gb + Bc)
∗ [min (Ra,Gb,Bc)] (3)

I =
1
3

(Ra + Gb + Bc) (4)

where T represents the probability that a given c and u
value are located in neighbor-ing pixels of the actual image
within the given window. where u denotes the row and c the
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column, where c is the DN value of the pixel of interest and u
denotes its nearest neighbors. The GLCM quantization level
is denoted by the letter L. Power can also be referred to as the
‘‘angular second instant’’ or as homogeneity. It provides the
total square of the GLCMmatrix’s components. It’s common
practice to use homogeneous regions as a gate-way to less
uniform ones

Energy =

∑L=−1

c,u=0
(Tc,u)2 (5)

Contrast is the degree to which two neighboring pixels are
related to one another while examining a picture. To aid in
the process of determining contrast, the following equation is
provided.

Contrast =

∑L=−1

c,u=0
(C − U)2 (6)

An image’s degree of randomness is quantified by its
entropy. Therefore, the entropy of a uniform image will be
smaller. The following equation can be used to determine a
system’s entropy.

Entropy =

∑L=−1

c,u=0
ln (Tcu)Tcu (7)

The method of assessing the linear connections between
the various grey tones in a picture is referred to as ‘‘corre-
lation.’’ It shows how the individual pixels are connected.
There is a link that has been shown. The mean, represented
by, is used as an input in the GLCM calculation.

Correlation =

∑L=−1

c,u=0
Tcu

(c− µ)(u− µ)
σ 2 (8)

The degree of uniformity in the appearance of a picture’s
pixels is referred to as homogeneity. When the GLCMmatrix
value is 1, we know the image is perfectly smooth. If just
slight changes to the texture are needed, the cost is rather
minimal. Here, the homogeneity of the data is assessed using
the formula below.

Homogeneity =

∑L=−1

c,u=0
Tcu

Tcu
1 + (c− u)2

(9)

The statistical technique known as mean in GLCMmay be
used to determine how frequently two pixels in a picture have
the same value and orientation. Often quantized grayscale is
represented as a matrix with an equal number of columns and
rows.

µc =

∑L=−1

c,u=0
C(T cu) (10)

µu =

∑L=−1

c,u=0
U (T cu) (11)

µ =
(µc + µu)

2
(12)

Variance measures the range of the GLCM frequency val-
ues by calculating the statistical variance of the matrix in
respect to the GLCM mean. The GLCM Mean and GLCM
Var formulas are used to compute the mean and standard
deviation, respectively, in the GLCM equation.

σ 2
c =

∑L=−1

c,u=0
Tcu(c− µc)2 (13)

FIGURE 3. Tomato leaf images acquisition from plant nursery (a) Image
acquisition, (b) Sample of tomato leaf.

σ 2
u =

∑L=−1

c,u=0
Tcu(U − µu)2σc =

√
σ
2
cσu =

√
σ
2
u (14)

It assesses the distribution’s stability in relation to the
normal distribution.

Kurtosis =

∑L=−1

c,u=0

((c, u) − L)2

(L)σ 2 (15)

A distribution’s skewness can be measured to see how
asymmetrical it is. When the left and right sides of a distri-
bution do not mirror images one another, such distribution is
asymmetrical.

skewness =

∑L=−11
c,u=0 (µcu−µ)3

(L − 1)σ 3 (16)

RMS(Root mean square error) RMS values gradually raise
the value as the mistake progresses Yet, the inability to
offer information on the early stages of a defect while The
value steadily rises as the mistake manifests, as defined in
Equation 17.N is non missing data points, xi actual observa-
tions time series and x̂i estimated time series

RMS =

√∑N
i=1

(
xi − x̂i

)2
N

(17)

F. CLASSIFICATION
A CNN consists of at least one convolutional layer and at
most one maximum pool-ing layer. To process the input,
a convolutional layer uses a set of filters that are repeated
across the entire input space. A max-pooling layer is pro-
duced by using the highest possible filter activation from
different points within a defined window to generate a
lower-resolution variation on the layer of convolution acti-
vation. This provides additional translation in-variance and
allows for more lenient placement tolerances of object
components. In order to process the increasingly complex
elements of the input, higher layers’ employ filters with a
lower resolution and awider range of inputs. The highest fully
connected layers combine data from everywhere into a single
dataset before classifying it. The results are effective because
of the hierarchical structure.
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FIGURE 4. Cropped image (a) Original Image (b) Early blight (c) Healthy
Leaf.

TABLE 2. Transformations applied to the dataset with these values.

IV. EXPERIMENTAL SETUP AND RESULTS
In Figure 3, we observe how a digital camera with sufficient
resolution can be utilized to capture sharp images of the
tomato leaves available at the University Plant Nursery. The
photos were saved in JPEG format, ensuring that their quality
would remain high even after being archived. The changing
of seasons and the general upheaval of the environment have
reduced the prevalence of diseases that are genetically identi-
cal to one another. Collection of the afflicted leaves has been
accomplished in various ways.

A. IMAGE ACQUISITION
In order to obtain a clearer depiction of the tomato leaves,
we applied filters to the photos we took later. The steps
involved in this process are illustrated graphically in Figure 4.
The approach for merging an image with the dataset is con-
tingent upon its intended purpose. The proposed method and
classifier heavily depend on the optimal relationship between
image quality and the dataset, as well as the image acquisition
process.

The dataset includes images of healthy leaves as well
as leaves affected by a variety of diseases. Bacterial sport
disease, for instance, is depicted with the help of 1060 photo-
graphs of bacterial leaf spots and 1093 photographs of
Septoria leaf spots. The Mosaic Virus is represented on the
leaf by 950 photographs, the Yellow Leaf Curl Virus by 1226,
the leaf mold disease by 1009 photographs, the early blight
disease by 2000, and the late blight disease by 2000, with
999 photographs depicting healthy leaves.

B. IMAGE PRE-PROCESSING
The images of the diseased and healthy leaves of the tomato
were obtained. Figure 5 depicts the effects of applying aug-
mentation techniques to the original photographs, which

FIGURE 5. Pre-processing (a) Original image (b) Rotation, (c) Translation
(d) Blur,(e) Flip Horizontal (f) Scaling.

FIGURE 6. Leaf category labeling.

allowed for an increase in variability and the addition of new
data before the photographs were subjected to transforma-
tions such as rotation, translation, scaling, horizontal flipping,
and blurring. The diagram outlining the entire process, from
determiningwhich category each leaf belongs to finally label-
ing it, is shown below. By following the steps in Figure 6 to
acquire the entire image, you can classify each leaf into the
appropriate category. Their new values are shown in Table 2.

C. DISEASE DETECTION
The YOLOv7 model stands out from other recent object
detectors due to its faster speed and better precision, and as
a result, it has attracted a lot of attention. The system was
made available for testing on user-supplied data in the hopes
of improving its performance. The YOLOv7 consists of a
backbone, neck, and head. The backbone layer acts as the
central node and also as part of the other layers that make
up the whole network architecture. convolution, batch nor-
malization, and SiLU activation (CBS), Max-Poling (MP),
Extended efficient layer aggregation networks (ELAN), and
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FIGURE 7. Yolov7 network architecture.

Spatial Pyramid Pooling Cross-Stage Partial Connections
SPP-CSPC are just a few of its many modules. Fig. 7 shows
the hierarchy of the network model. It improves performance
while reducing parameters and is faster and more accurate
than other real-time object detectors. The detection speed of
our proposed yolov7 model was within an acceptable range,
and it outperformed competing models in terms of accuracy.
Therefore, it is more effective than the competing models to
recognize tomato leaf disease when applied in a complex field
environment. Figure 8 depicts the identification of tomato
leaves in accordance their category.

D. IMPROVEMENT ON YOLOv7
To recognize tomato leaves in a complicated field setting, sev-
eral elements must be taken into consideration. For instance,
many diseases are comparable modest variations in it due
to the varying sunlight and rain circumstances. The model
has to be able to recognize tomato leaves for this investiga-
tion [30]. According to the illness present on a tomato leaf,
there are eight distinct categories that may be used to detect
the disease. Consequently, it is to get better detection results,
it is not acceptable to employ YOLOv7 as the detection
model directly. Instead, enhancement strategies are required.
We enhanced the YOLOv7 model to make it more suited for
field tomato leaf recognition

E. IMPROVEMENT VERSION OF YOLOv7 NETWORK
STRUCTURE
The network architecture of YOLOv7 incorporates the
Dual Attention in Attention Model (DAiAM) as well as
a large number of attention mechanism modules from
SimAM [30]. The model’s ability to extract features from

FIGURE 8. The basic idea behind a parameter-free attention module.

FIGURE 9. DAiAM’s architecture for removing raindrops and rain streaks
together.

complex backgrounds is significantly improved by adjusting
the weights assigned to the network input portion. The atten-
tion mechanism’s SimAM module can only support a small
number of configuration settings for the underlying network.
It is capable of easy connect functionality and can be installed
in any location throughout the model. The basic concept
is depicted in Fig. 8. The attention weights that make up
the system are computed using the SimAM energy function.
Tomato leaf detection is hindered by a busy background, but
SimAM helps by highlighting the most important features
of the detected leaf against a simplified back-ground. The
method of calculation is detailed below

Ĉ = sigmoid
(
1
R

)
⊗ C (18)

U =
4

(
σ 2

+ λ
)

(u− µ)2 + 2σ 2 + 2λ
(19)

µ =
1
W

∑w

p=1
cp (20)

σ 2
=

1
W

∑w

p=1

(
cp − µ

)2 (21)

where Ĉ is the tomato leaf’s improved feature map. U is
every channel’s energy function. The divergence between the
tomato disease leaf is larger the lower the energy. The value of
Uwas constrained using the sigmoid function to avoid having
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FIGURE 10. Using a two-step convolution method to update the 3 × 3 convolution kernel.

FIGURE 11. A graphical representation of improved mpconv method.

an excessively high value. ⊗ is the dot product operation.
C is the input tomato feature map’s leaf, and m is the mean
value of each channel’s input tomato leaf characteristic map’s
channel. σ 2 is each channel’s variation in the tomato leaf
feature map’s input. λ is a super-parameter and u is the target
disease leaf.

It becomes increasingly challenging to eliminate rain drops
from leaf images captured in the field. DAiAM is used to
remove both heavy raindrops and rain streaks at the same
time. Both the first and second attention-in-attention models
contribute to the occurrence of raindrops and rain streaks,
but the former is responsible for the heavier variety. The
first attention model causes torrential downpours, while the
second model is responsible for more moderate precipitation
such as light rain or rain streaks. Figure 9 depicts the central
concept of DAiAM. the optimized DAM uses rainy photos
as its input to extract features J from the first-step encoder
N. Following that, two attention sub-networks are supplied
with the feature maps to produce heavy-rain-aware and
light-rain-aware maps, respectively. The definitions of the
light-rain-aware attention map R− and the heavy-rain-aware

attention map R+ are

R+
= h(Q ∗ J + v) (22)

where ∗, Q and v denote respectively convolution, convolu-
tion filters and biases h is the sigmoid function
The image of the raindrops and the rain streaks is supplied

into our suggested DAiAM, which contains two branches
to focus on the removal of the relevant elements [32]. The
primary distinction is that the attention loss function R_attis
computed using themask of raindrops rather than rain streaks.
So, the DAiAM first concentrates on two types of rain vari-
ations before concentrating on two types of rain intensity
in various branches. This is a description of the DAiAM’s
ultimate loss function

RDAIAM = Rstreak + Rdrop (23)

where Rdrop and Rstreak are two loss functions that may be
used to eliminate raindrops and streaks, respectively. They’re
loss functions are

Rstreak = α.Rstreakatt (β1.Rstreakheavy + β2.R
streak

light
) (24)

Rdrop = α.Rdropatt (β1.R
drop
heavy + β2.R

drop

light
) (25)

where theα, β1 and β2 parameters are used to balance various
loss terms. Based on the masks of raindrops and rain streaks,

the attention loss Rdropheavy and R
drop

light
function is derived,

respectively
The MPConv is primarily used to downscale data, which

could lead to some loss of features while simultaneously
decreasing feature size. It’s important to note that the 3 ×

3 convolution kernel matrix is used for convolution opera-
tion in the YOLOv7 bottom branch of the MPConv module.
Figure 10 shows that when the step size is set to 2, the network
may learn features inefficiently due to the loss of some feature
information. In order to up-date the 3×3 convolution kernel,
which was itself inspired by the focus module in YOLOv7,
we introduced the focus module in the branch below the
MPConv. Figure 7 shows that by cutting the feature map in
half, we were able to reduce feature loss, boost the learning
efficiency of the features, and improve the effectiveness of
tomato leaf recognition against a complex background.

The validation graph shown in Figure 14 after training
a YOLOv7 model on a custom dataset typically shows the
model’s performance on a separate validation set. These
graph can provide insights into the model’s accuracy and loss
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FIGURE 12. Improved YOLOv7 network structure.

FIGURE 13. Flow diagram of tomato leaf disease detection in field.

during training. Unfortunately, the provided search results do
not contain specific information or examples of the validation

graph after training a YOLOv7 model. However, based on
general knowledge, the validation graph usually displays
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FIGURE 14. Valdition graph from improved yolov7 model.

FIGURE 15. Detecting tomato leaf with their category utilizing Improved yolov7 model.

metrics such as mean average precision (mAP) and loss over
the training epochs, allowing users to assess the model’s
performance and potential overfitting.

F. IMAGE SEGMENTATION
The segmentation results are shown in Figure 16 below, and
they were generated us-ing the SIFT Image Algorithm to

locate the diseased area of the leaf. This method employs a
combination of multiple feature extracts, as mentioned above,
to locate the diseased area of the leaf and then calculate its
area: Plant disease detection using image processing involves
the extraction of features from plant images to identify the
presence of disease. The features used for plant disease detec-
tion include Kurtosis, Mean, Entropy, Variance, Contrast,
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FIGURE 16. Significant points on leaf to extract feature using SIFT.

TABLE 3. Feature extraction from segmented leaf images significant points.

Energy, RMS, Correlation, Homogeneity, and Skewness.
These features are used because they provide information
about the texture, shape, and color of the plant images, which
can be used to differentiate between healthy and diseased
plants. Feature selection is an important step in plant disease
detection, and various feature selection strategies have been
proposed to identify the most relevant features for accurate
disease detection.

The use of these features in combination with machine
learning algorithms has been shown to produce high

classification and detection accuracy, precision, recall, and
F-measure performance, with a low false rate [33].

G. CLASSIFICATION PROCESS
In order to classify data, we’ve implemented a Convolutional
Neural Network (CNN) architecture, and we’ve used it to
predict the accuracy of our classifications. Features with a
highmean entropy, variance, correlation, homogeneity, RMS,
kurtosis, skewness, and contrast are used in the computation
of feature values. The main reason put forward in support
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TABLE 4. Performance comparison with other plant disease recognition research.

FIGURE 17. Proposed CNN architecture between features and leaf
categories.

of the selection of these characteristics is that they have
some connection to the version of Plant leaf that is currently
in use. Diseased leaves, healthy leaves, and the emergence
of uncertainty in the recognition of phytopathogens are all
excellent indicators of the efficacy of the entire process and
reaction time. The transform signals’ peculiar sights are now
easily identifiable by the CNN, thanks to its inherent capacity
for classification and generalization [34]. Figure 17 shows
the proposed CNN architecture for disease detection in plant
leaves

FIGURE 18. Performance graphs samples using Convolutional neural
network architecture.

The next step in validating the data is to determine whether
or not the retrieved characteristics are accurate. In Figure 13,
we can see the results of the testing conducted on the neural
network thanks to the training performance graph for the
CNN design. Figure 13 below displays the training and val-
idation results for the proposed CNN network model. There
are a total of seven diseases that need to be taken meticu-
lously: Diseases that can strike plants include bacterial spot,
early blight, late blight, leaf mold, mosaic virus, Septoria
leaf spot, yellow curl virus, and healthy leaf that were under
consideration in this re-search. By multiplying the confusion
matrices together, we can estimate the test-target training
error. Confusionmatrix networks are constructed utilizing the
system depicted in Figure 15 and a database of test highlight
data. Training data for comparing predicted and actual classes
can be found in a graph’s confusion grid. Eight distinct types
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FIGURE 19. Confusion matrices of disease & healthy samples using
targeted and output classes (D1) Bacterial Spot, (D2)Early Blight, (D3)Late
Blight, (D4)Leaf Mold, (D5)Mosaic Virus,(D6)Septoria leaf spot,(D7) Yellow
Curl Virus,(D8)Healthy Leaf.

of tomato leaf are represented in the con-fusion matrices
shown in Figure 18. Confusion matrices are two-dimensional
arrays in which each row represents a class instance and
each column represents a prediction. Prediction accuracy is
represented by values that fall on the diagonal of the matrix,
while off-diagonal ones indicate an error. A 98.8 percent
accuracy was found in these tests

V. CONCLUSION AND FUTURE DIRECTIONS
Identification of plant diseases is a significant and practical
agricultural issue because it is the initial step in disease pre-
vention and the final step in product preservation. Tomatoes
are cultivated globally due to their status as both a healthy
food source and a financially rewarding crop for farmers.
Diseases that develop on tomato plants’ leaves re-duce both
quality and yield. Several common diseases can severely
impact tomato plants and their leaves. These include the
mosaic virus, the yellow leaf curl virus, leaf spot, leaf mold,
late blight, early blight, and bacterial spot. This research
established a re-liable framework for recognizing leaf symp-
toms of disease in tomato plants. To back up the concept
presented in this paper, the authors developed a target detec-
tion algorithm based on an improved version of YOLOv7 and
described how it performed admirably under harsh field con-
ditions when identifying tomato leaves. Tomato leaf samples
were collected in a wide range of conditions, and pathogens
such as mosaic virus, yellow leaf curl virus, leaf spot, leaf
mold, late blight, early blight, Mosaic Virus, Septoria leaf
spot, and bacterial spot were taken into account in this study.
By incorporating a mechanism for focus, improving the orig-
inal network module, and altering the post-processing mode,
we were able to improve the model’s detection speed and
accuracy. The university green-house served as the source for

a data sample gathered from the leaves of tomato plants. The
cropped images can then be pre-processed using a variety of
techniques, such as rotation, translation, blur-ring, flipping
horizontally, and scaling, to achieve the best possible results.
After that, these pictures spread throughout the training and
the validation process. The YOLOv7 model has been greatly
enhanced and can now detect disease. The SIFT method
of image segmentation is used to extract and select crucial
features for determining the health of the leaves on a tomato
plant. There are seven diseases that require special care: In
this study, we looked at a number of plant diseases, including
bacterial spot, early blight, late blight, leaf mold, mosaic
virus, Septoria leaf spot, yellow curl virus, and healthy
leaf. As an approximation of the test-target training error,
we can multiply the confusion matrices together. The system
depicted along with a collection of test-highlight data is used
to build confusion matrix networks. The confusion matrix
of a graph can be used to train models through comparisons
between predicted and actual classes. The conflation matrices
include eight distinct tomato leaf types. CNN architectures
are then fed these feature points to verify the data even
further. The experimental results show that the proposed
model can accurately identify the state of a plant’s health at
an early stage 98.8 percent of the time. Finally, a compar-
ison is drawn between the proposed research and existing
studies. We looked at the various disease classifications,
feature selection classifiers, extracted features, and accuracy
rates.

Tomato plant multi-disease recognition using CNN and
YOLOv7 has great potential to advance agricultural produc-
tivity in the future. Here are some suggestions for the future
to consider.

• Pre-training the CNN with massive datasets of plant
diseases across related plant species is a great way
to explore the possible benefits of transfer learning.
In order to improve generalization and convergence
speed, fi-ne-tuning the machine-learning model on
tomato-related data sets may help.

• Advanced data augmentation techniques like rotation,
flipping, and color jittering can be used to add to the
training dataset. This can improve the model’s disease
detection accuracy in a wide range of settings and light-
ing conditions.

• Explore the benefits of ensemble learning, where dif-
ferent CNN and YOLOv7 frame-works with different
architectures are used to make predictions. The reliabil-
ity and precision of predictions may be improved as a
result.

• Research unsupervised anomaly detection methods to
spot diseases that haven’t been seen before in tomato
plants. Additionally, look into unlabeled data’s potential
for boosting the model’s disease detection accuracy.

• Create online methods of learning to consistently
improve the model with new in-formation as more
samples of the disease are gathered. Because of this,
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the model can easily accommodate shifting disease
trends.

• Investigate techniques for cross-domain adaptation,
in which the model is trained using information gathered
from a variety of environments (such as farms in differ-
ent regions) to better handle variations in environmental
conditions.

• To facilitate instantaneous disease detection in off-
the-grid agricultural areas, the model’s framework and
computational needs must be optimized for placement
in environments with limited resources, such as those
con-strained by resource-edge mobile devices.
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