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Abstract—The joint of multisource remote sensing (RS) data
for land cover classification has become a popular research topic.
Although studies have shown that the fusion of multisource data can
improve the accuracy of classification, the current limitation lies in
the inadequate exploitation of information, resulting in spectral
confusion categories overlapping, and varying visual differences
within the same category. To address these problems, this article
proposes a multiscale spectral–spatial attention residual fusion
network (MSSARFNet) that aims to enhance the classification
performance of multisource RS data through effective spectral–
spatial feature extraction and fusion. Specifically, three modules
are designed: the multiscale spectral attention residual module
(MSpeARM), the multiscale spatial attention residual module
(MSpaARM), and multiscale convolution fusion (MCF) module.
First, we divide the channels of the features into multiple paths
and apply spectral–spatial attention mechanisms on each path. To
further enhance connectivity, convolutional operation is utilized
to establish connections between different paths, thus forming
MSpeARM and MSpaARM. The MSpeARM suppresses redun-
dant features and enhances effective features along the channel
dimension to better differentiate spectral-confused categories. The
MSpaARM highlights that different visual patterns of objects in the
same category can mutually reinforce each other by weighting all
positional features, regardless of their spatial differences. Second,
to fuse these two sets of features, the MCF module is designed to
learn multilevel semantic features and enhance fusion at a granular
level. Experimental evaluations on three RS datasets demonstrate
that the proposed method achieves excellent classification perfor-
mance, indicating the effectiveness of MSSARFNet.
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I. INTRODUCTION

W ITH the continuous development of remote sensing (RS)
technology, different types of RS data can be acquired

in the same observation scene. In the past few years, these data
have presented new methods and challenges in various RS fields,
including land use and land cover classification [1], [2], hyper-
spectral anomaly detection [3], semantic segmentation [4], and
super-resolution [5]. Recently, Hong et al. [6] proposed Spectral-
GPT, a model specifically designed for handling RS data, which
has shown great potential in tasks such as scene classification and
semantic segmentation, offering new perspectives and avenues
for advancement in the RS community. In this article, our main
focus is on land cover classification, a crucial and challenging
task in RS. This task holds increasing importance in various
domains such as urban planning and precision agriculture.

In reality, hyperspectral image (HSI) has been widely studied
in land cover classification tasks due to its rich spatial and spec-
tral information and its ability to provide comprehensive spectral
information about the ground. For years, researchers have been
working on developing more efficient feature extractors for
HSI: for instance, Roy et al. [7] combined the morphological
operation and deep learning (DL) and proposed a morphological
CNN, which presented powerful nonlinear transformations for
feature extraction. Ding et al. [8] used an ARMA filter to
extract robust HSI features for classification. Furthermore, Ding
et al. [9] proposed a new method of combining graph convolution
with adaptive filters that learns spatial and spectral features to
improve the classification performance. These well-designed
feature extractors enable the potential of HSI in classification
tasks. However, different types of ground objects usually have
similar spectral curves. Furthermore, differences in regional
distribution can lead to different spectral curves even within the
same type of ground object. Therefore, relying solely on HSI
data for complex scene classification tasks is difficult. Unlike
HSI data, the light detection and ranging (LiDAR) can provide
elevation distribution information [10]. However, the existing
limitation lies in the insufficient utilization of spectral informa-
tion during the extraction and fusion process of multisource data,
resulting in spectral confusion, category overlap, and different
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visual differences for the same category due to insufficient
spatial information. This poses a challenge for multisource land
classification.

Recently, to fully leverage the HSI and LiDAR data, numerous
studies have proposed methods primarily focused on extracting
multiple features from them. The extracted features are subse-
quently fused to achieve accurate land cover classification.

To effectively utilize the diverse information from multisource
data and perform dimension reduction [12], massive feature
extraction methods have been proposed. Traditional machine
learning algorithms [12], [13], [14] and convolutional neural
networks (CNNs) are the most widely used feature extraction
methods. Support vector machines (SVM) [13] and Random
Forest (RF) [14] are frequently employed in the early works.
As for CNNs, the ability to automatically extract deep abstract
features has led to their widespread use as a feature extraction
method. Chen et al. [15] proposed a dual-stream model in which
depth data were extracted from the LiDAR using a 2-D CNN,
while spectral–spatial features from HSI were extracted using a
3-D CNN in another stream. Xu et al. [16] designed a complex
CNN architecture called two-branch CNN (TBCNN) for mul-
tisource classification. The TBCNN consists of two branches:
an HSI branch for spatial and spectral information extraction
from HSI data, and a LiDAR branch with especially designed
cascade blocks for LiDAR feature extraction. Hong et al. [17]
proposed a shared and specific feature learning model that
can extract more useful information from multisource RS data.
Although there may exists some redundancy in the extracted
features from multisource data, the feature fusion procedure
lacks refinement, resulting in an insufficient utilization of the in-
formation correlation between data sources. For the multisource
RS data classification, it is critical to effectively utilize the cor-
relation and complementary information among different data
sources.

To effectively fuse the features extracted from multisource
data, several feature fusion methods have been proposed. Liao
et al. [18] improved the morphological contour extraction for
feature fusion and classification of HSI and LiDAR data by
applying a graph-based fusion strategy. Rasti et al. [19] used total
variation component analysis to fuse feature. To further enhance
the classification accuracy, Feng et al. [20] proposed an adaptive
HSI-LiDAR fusion method, which effectively combines HSI and
LiDAR features in a more reasonable and natural manner. Hang
et al. [21] introduced a coupled CNN and developed simulta-
neous feature-level fusion and decision-level fusion strategies.
These strategies were designed to enhance the classification
performance by effectively fusing features and making decisions
in a coordinated way. Wu et al. [22] created a cross-channel
reconstruction module to enhance the feature fusion representa-
tions of various RS data. Zhang et al. [23] utilized Gram matrices
to enhance the preservation of complementary information from
multisource data in a TBCNN fused with HSI and LiDAR data.
While the aforementioned methods have significantly improved
the classification performance, they still suffer from spectral
information redundancy during the fusion process. This makes
it difficult to distinguish certain confusing objects, and the
insufficient utilization of spatial information leads to different
visual differences within the same category.

Based on the aforementioned discussion, our motivation is
to allow models to mine and focus on key information in mul-
tisource data from both spectral and spatial dimensions. Thus,
a multiscale spectral–spatial attention residual fusion network
(MSSARFNet) is proposed. First, shallow features are extracted
from multisource data using a two-branch HSI and LiDAR
feature representation network. Then, two attention modules are
designed, one being the multiscale spectral attention residual
module (MSpeARM) and the other being the multiscale spatial
attention residual module (MSpaARM). The MSpeARM sim-
ulates the interdependence among channels at multiple scales,
emphasizing the independence of channels. In this way, it sup-
presses redundant features and enhances effective features along
the channel dimension to better differentiate spectral confusion
categories. The MSpaARM highlights that different visual pat-
terns of objects in the same category can mutually reinforce each
other by weighting all positional features, regardless of their
spatial differences in shape and distribution. Next, to integrate
the features of the two types, a multiscale convolutional fusion
(MCF) module is designed. This module aggregates contextual
information from spectral–spatial features and fully exploits
multiscale spectral–spatial information for effective fusion. Fi-
nally, the fused features are fed into the classification module to
obtain the final classification results. Experimental evaluations
on three multisource RS datasets demonstrate that the proposed
method achieves excellent classification performance, indicat-
ing the effectiveness of the proposed MSSARFNet.

The main contributions of our work can be summarized as
follows.

1) Two multiscale attention modules are proposed, which split
the feature channels into multiple paths. These paths incorporate
spectral and spatial attention mechanisms in both spectral and
spatial dimensions. By applying these mechanisms separately
to each path, the model is guided to emphasize the crucial in-
formation in the image through attention weights. By analyzing
the feature information of each path and correlating each path,
the multiscale spectral–spatial information in multisource data
can be fully exploited, which is more suitable for RS scene
classification.

2) To further integrate the extracted multiscale spectral–
spatial information, this article introduces the MCF module.
The MCF module adopts a multibranch approach to extract and
fuse features at different scales, enhancing the spectral–spatial
representation capacity and enabling the model to compre-
hensively understand multiscale spectral–spatial information.
Through effective fusion, the overall classification performance
is improved.

The rest of this article is organized as follows. In Section II,
related work is introduced. Section III describes the proposed
method. Extensive experiments and analyses are presented in
Section IV. Finally, Section V concludes this article.

II. RELATED WORK

A. CNNs-Based Multisource Classification

With the successful introduction and rapid development of
DL methods, it has achieved outstanding performance in mul-
tisource representation [24], [25]. DL methods can effectively
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learn spectral and spatial features from multisource data, demon-
strating significant potential in the joint classification of multi-
source data. Hong et al. [26] developed a deep encoder and
decoder network for pixel-level classification of multimodal RS
data. Hong et al. [27] also proposed a unified multimodal DL
framework that assembles pixel-level labeling guided by a fully
connected (FC) design and spectral–spatial joint classification
with CNNs-dominated architecture. To further enhance the joint
classification accuracy, Zhao et al. [28] utilized Octave con-
volution to reduce redundant features in the multisource data.
This was followed by fractional Gabor convolution to capture
multiscale, multidirectional spectral–spatial features and effec-
tively integrate them. Wang et al. [29] developed a method
to combine spectral information from HSI with LiDAR data
using spectral–spatial interconductivity modules and adaptive
multiscale mutual learning. Furthermore, Gao et al. [30] in-
troduced an adaptive multiscale spectral–spatial enhancement
network classification method that combines pairwise ensemble
operators, multibranch extraction, and adaptive feature fusion
to incorporate spectral and spatial information from HSIs and
LiDAR data. Dong et al. [31] utilized a method of dictionary-
based distribution alignment to facilitate the complementary
integration of multisource data, leading to improved accuracy
in classification.

B. Attention-Based Classification: From Single Source to
Multisource

Recently, the attention mechanism has shown significant per-
formance gains for different visual tasks [32], [33], [34]. It
allows a model to better focus on important regions and suppress
irrelevant features through self-supervised learning paradigms.
Attention have also been employed to RS classification by some
studies [35], [36]. Li et al. [37] developed a mechanism network
comprised of channel and spatial attention blocks. This enables
network to enhance and optimize the retrieved feature maps.
Haut et al. [38] created a novel attention-driven classification
network that enhances the feature extraction capability by in-
troducing residual learning [39] and the dual data path attention
modules as fundamental building blocks. Zhu et al. [40] investi-
gated the attention mechanisms in spectral and spatial informa-
tion that selectively captures useful features in both spectral and
spatial dimensions to enhance the classification performance.
Mohla at el. [41] used the self-attention mechanism to highlight
spectral features of HSI and the cross-attention mechanism to
accentuate the spatial features of HSI via a LiDAR-derived at-
tention map. Li at el. [42] integrates spectral and spatial attention
components to facilitate the interaction between HSI and LiDAR
data. The method leveraged the information from one modality
to enhance the performance of the other, improving the overall
classification accuracy.

Furthermore, some studies have proposed multihead attention
mechanisms that incorporate spectral–spatial information. Hong
et al. [43] designed a spectral transformer model that aims to
capture local sequential features in the spectral domain. Sun

et al. [44] proposed a novel spectral–spatial feature tokeniza-
tion transformer (SSFTT) for capturing high-level semantic
information and spectral–spatial characteristics. Ding et al. [45]
designed a two-layer 1-D CNN spectral transformer mechanism
to extract the spectral features of images, with which the spectral
features can be acquired automatically. Roy et al. [46] proposed
a new multimodal fusion transformer (MFT) network for HSI
and LiDAR joint classification, which includes a multihead
cross-patch attention. This method, however, fell short in fully
integrating the relevant information from both data modali-
ties. To address this limitation, Zhao et al. [47] designed a
novel network that joints convolution and transformer to extract
spatial–spectral information and achieves effective fusion. Li
et al. [48] proposed a unified framework that incorporated a mul-
tihead cross-modal attention mechanism to capture the interplay
between multisource data and aggregate contextual information.
Yao et al. [49] proposed a general multimodal transformer frame-
work that designed a hybrid spatial vision transformer backbone
implemented with both self-attention and cross-modality atten-
tion mechanisms for better information fusion in classifying
multimodal RS data. Furthermore, Zhao et al. [50] designed
a fractional Fourier image transformer (FrFT), which was used
as a backbone network to extract multimodal global and local
contextual information extraction.

Throughout the aforementioned related works, although sig-
nificant improvements have been made in the evaluation of
multisource classification performance, some methods still do
not fully utilize spectral or spatial information, leading to in-
formation redundancy, spectral confusion, and different visual
modalities within the same category. In addition, most methods
treat the feature channel as a whole and do not consider dividing
it into multiple paths, allowing each path to learn, and correlating
the information obtained from each path using operations such as
convolution. Therefore, we divide the feature channel into mul-
tiple paths and apply spectral and spatial attention mechanisms
to each path to fully learn the spectral–spatial information.

III. METHODOLOGY

The framework of the proposed MSSARFNet is illustrated
in Fig. 1. It consists of six parts: HSI and LiDAR data prepro-
cessing, HSI and LiDAR feature learning via CNN, MSpeARM,
MSpaARM, MCF module, and classification module.

A. HSI and LiDAR Data Preprocessing

Given an HSI as XH ∈ RM×N×B and a LiDAR as XL ∈
RM×N , where M and N are the width and the height of the spatial
region respectively, and B is the number of HSI spectral bands.
There are typically massive spectral bands that provide useful
information. However, this leads to an increase in computation
cycles. To reduce the spectral dimension, PCA is used to extract
the first b principal components of XH , maintaining the spatial
dimensions but lowering the number of bands from B to b. After
PCA, the HSI data XH are transformed into Xpca

H ∈ RM×N×b.
Next, for each pixel, 3-D and 2-D patch extraction are per-

formed to obtain a small patch cube XP
H ∈ Rp×p×b and a small
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Fig. 1. Overview of the proposed MSSARFNet for multisource classification. Here, “replicate” represents a copy of the shallow information data obtained from
the two-branch convolution network. Pr is the combination of the convolution operation. The details of SpeARM, SpaARM, and MCF module can be seen in
Figs. 2–4.

patch XP
L ∈ Rp×p, where p× p is the patch size. For edge

pixels, the padding operation is applied to these pixels with a
size of (p− 1)/2. Based on the ground-truth map, the samples
are divided into a training set and a test set after removing the
pixel blocks with a label of zero.

B. HSI and LiDAR Feature Learning Via CNN

The CNN can automatically extract contextual and high-level
abstract features, and demonstrate powerful modeling capabili-
ties, which results in excellent performance in the HSI classifi-
cation. Furthermore, the HybridSN proposed by Roy et al. [51]
demonstrates that 3-D CNN promotes combined spatial–spectral
feature representation from a stack of spectral bands. After the
3-D CNN, a 2-D CNN is used to further learn more abstract spa-
tial representations. Therefore, spectral–spatial information and
elevation information are extracted from HSI data and LiDAR
data, respectively, using a TBCNN in the proposed framework.

As shown in Fig. 1, for the HSI data, sequential the Conv3D
and Conv2D layers are used. The HSI cubeXP

H of size p× p× b
is first unsqueezed into shape 1 × p× p× b, subsequently fed
into the Conv3D layer for training. In the Conv3D layer, a con-
volution with eight kernels of spatial size 3 × 3 × 3 is applied.
Then, the 3-D data are converted to 2-D data for subsequent
2-D convolution. The Conv2D layer uses a convolution with 64
kernels of spatial size 3 × 3. After the operation, feature maps
can be generated

Xout
H = Conv2D(Reshape(Conv3D(XP

H))) (1)

where the shapes of the output feature maps after the Conv3D
layer and the Conv2D layer are 8 × (p− 2)× (p− 2)× (b− 8)
and (p− 4)× (p− 4)× 64, respectively.

Unlike the HSI processing, the two Conv2D layers are used
to extract LiDAR elevation features. In the two layers, the
convolution with 16 and 64 kernels of spatial size 3 × 3 are
applied, respectively,

Xout
L = Conv2D(Conv2D(XP

L )) (2)

where the shapes of the output feature maps after the sequential
Conv2D layer are (p− 2)× (p− 2)× 64 and (p− 4)× (p−
4)× 64, respectively. To regularize and speed up the training
process, a batch normalization layer and rectified linear units
(ReLU) function are consecutively applied after each convolu-
tional layer.

C. Multiscale Spectral Attention Residual Module
(MSpeARM)

The redundancy of spectral information makes it difficult to
differentiate some confusing categories in multisource classifi-
cation. Therefore, the MSpeARM containing m groups spectral
attention residual modules (SpeARMs) (as shown in Fig. 1)
was designed to refine these spectral features to selectively
emphasize the different spectral channel. By highlighting or
suppressing some channel mappings, we can capture the spectral
dependencies between the multiple channels and enhance the
feature representation of specific categories.

First, the feature map of the input is defined for the MS-
peARM, which is derived from the shallow information obtained
by TBCNN as follows:

F Spe
in = Concat(Xout

H , Xout
L )

F Spe = Conv1×1(F
Spe
in ) (3)

where F Spe ∈ Rc×s×s, c represents the number of multisource
data channels, s is the size of the feature map after TBCNN,
Concat(·) represents the joint operation, and Conv1×1(·) is the
2-D convolutional layer with kernel size 1 × 1.

Subsequently, the F Spe is first sliced into m groups of feature
maps: F Spe1 , F Spe2 ,..., F Spem , where m is a power of 2 and
m ∈ {1, 2, 4, . . ., c}. Second, to construct the spectral attention
maps, each group of feature maps is sent through the SpeARM.
Finally, the multiscale spectral feature maps may be generated
using these spectral attention mapsF Spe

out ∈ Rc×s×s through (10).
The kth group F Spek ∈ Rc/m×s×s is used to demonstrate the
SpeARM, where k ∈ [1,m]. In the SpeARM [as shown in
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Fig. 2. Illustration of the SpeARM.

Fig. 2(b)], the input feature map F Spe′k ∈ Rc/m×s×s is first exe-
cuted with a 1× 1 convolution operation and an ReLU activation
operation.

F Spe′k = ReLU(Conv1×1(F
Spek)) (4)

where ReLU(·) represents the activation function.
Inspired by Fu at el. [52], we introduce the channel attention

mechanism [as shown in Fig. 2(a)] to model the interdependence
across spectra feature, thereby capturing the interdependencies
among spectral information in the multisource data. Specifically,
put F Spe′k ∈ Rc/m×s×s into F Spe′k ∈ Rc/m×g, where g = s× s.
Thus, the channel attention map ASpek ∈ Rs×s can be formu-
lated as

A
Spek
ji =

exp
(
F

Spe′k
i × F

Spe′k
j

)

∑c
i=1exp

(
F

Spe′k
i × F

Spe′k
j

) (5)

where A
Spek
ji represents the influence of the ith channel on the

jth channel. F Spe′k
i represents the ith feature map of the F Spe′k .

Then, the results of matrix multiplication between ASpek and
F Spe′k are reshaped into Rc/m×s×s. The revised results are then
weighted using a learnable parameter λ. To maintain the original
feature information of F Spe′k , a sum operation is performed
between the weighted results and F Spe′k to get the kth group
spectral feature map F Spe′′k ∈ Rc/m×s×s as follows:

F
Spe′′k
j = λ

c∑
i=1

(A
Spek
ji ) + F

Spe′k
j . (6)

To further improve the representation of the spectral infor-
mation as well as the whole network, the information obtained
from the channel attention mechanism is multiplied as weights
with the original features F Spe′k . And the residual links are in-
troduced to prevent gradient explosion and network degradation
as follows:

F
Spek
out = σ(F Spe′′k)× F Spe′k + F Spe′k (7)

where σ(·) represents sigmiod function.

Fig. 3. Illustration of the SpaARM.

To construct spectral features F with a size of c/m× s× s
fromm-group spectral maps, the following operation is adopted:

F i =

⎧⎪⎨
⎪⎩

Pr(F Spei
out ) i = 1

Pr(F Spei
out + F

Spei−1
out ) i = 2

Pr(F Spei
out + Fi−1) 2 < i ≤ m

(8)

where Pr(·) represents the convolution operation, which is in-
tended to relate the information obtained between each group.

Then, to form the new feature map Fout ∈ Rc×s×s, all the
features F i are connected, and a 1 × 1 convolution is used to
enhance the correlation of feature for subsequent summation
with the original feature map F Spe

in :

Fout = Conv1×1(Concat(F 1, F 2, . . ., Fm)). (9)

Finally, the feature map that contains multiscale spectral infor-
mation F Spe

out ∈ Rc×s×s is obtained as follows:

F Spe
out = Fout + F Spe

in . (10)

D. Multiscale Spatial Attention Residual Module (MSpaARM)

For the multisource data, different locations may contain
different information, and the spatial attention mechanism can
assist the model in selectively focusing on features from spe-
cific locations. By weighting features at different locations, the
model can more effectively capture important spatial informa-
tion and better grasp the differences of objects, thus extracting
distinguishing features from objects with different appearances.
Therefore, the MSpaARM containing n groups spatial attention
residual modules (SpaARM) (as shown in Fig. 1) was designed
to establish associations between contexts at different locations
and extract discriminative features.

In the SpaARM (as shown in Fig. 3), we adopt a UNet-like
architecture [53] with a combination of upsampling and down-
sampling. After performing upsampling, we elementally add the
corresponding feature map from the preceding downsampling
stage. This can be seen as the creation of a new branch, lessening
the significance of depending on the original attention mask
alone of network output. It preserves the good properties of the
original features and bypasses the attention mask to propagate
to the top level, thus weakening the feature selection capability
of the mask branch. Some valuable information may be lost
during the attention mask procedure due to upsampling and
downsampling. This compensation enables improved transmis-
sion of features to deeper layers and enhances network stability,
which is crucial for handling complex features in RS data by
this new branch.
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First, the feature map of the input is defined for MSpaARM,
which is derived from the shallow information obtained by
TBCNN as follows:

F Spa
in = Concat(Xout

H , Xout
L )

F Spa = Conv1×1(F
Spa
in ) (11)

where F Spa ∈ Rc×s×s, c represents the number of multisource
data channels, and s is the size of the feature map after TBCNN.

Subsequently, the F Spa is first sliced into n groups of feature
maps: F Spa1 , F Spa2 ,..., F Span , where n is a power of 2 and
n ∈ {1, 2, 4, . . ., c}. Second, each group of feature maps goes
through the SpaARM to generate the spatial attention maps.
Finally, the multiscale spatial feature maps may be generated
using these spatial attention maps F Spa

out ∈ Rc×s×s through (15).
The kth group F Spak ∈ Rc/n×s×s is used to demonstrate the
SpaARM, where k ∈ [1, n].

First, the spatial features using 3 × 3 convolution is extracted
to get maps F Spak

1 ∈ Rc/n×(s−2)×(s−2), then the deeper spatial
features are extracted using 3× 3 convolution to obtain the maps
F

Spak
2 ∈ Rc/n×(s−4)×(s−4). The reason for using convolution for

downsampling instead of pooling is that pooling loses some
details of the feature map. We use the bilinear interpolation to
upsample F

Spak
2 into a feature map F

Spak
3 ∈ Rc/n×(s−2)×(s−2).

The recovery process will inevitably result in the new loss of
information, so to compensate for the loss of useful information,
F

Spak
1 is added to F

Spak
3 to obtain F

Spak
4 ∈ Rc/n×(s−2)×(s−2),

which allows for a better transmission of the features into deeper
layers. Similarly,F Spak

4 are upsampled toF Spak
5 by using bilinear

interpolation. Then, a sigmoid function is used to generate the
weights W Spa, which are multiplied with the original feature
maps, and then, added to the original feature maps to obtain

F
Spak
1 = Conv3×3(F

Spak)

F
Spak
2 = Conv3×3(F

Spak)

F
Spak
3 = BiLinear(F Spak

2 )

F
Spak
4 = F

Spak
1 + F

Spak
3

F
Spak
5 = BiLinear(F Spak

4 )

W Spa = σ(F
Spak
5 )

F
Spek
out = W Spa × F Spak + F Spak (12)

where Conv3×3(·) is the 2-D convolutional layer with kernel size
3 × 3, and BiLinear(·) represents the bilinear interpolation.

To construct spatial features F with a size of c/n× s× s
from n-group spatial maps, the following operation is adopted:

F i =

⎧⎪⎨
⎪⎩

Pr(F Spai
out ) i = 1

Pr(F Spai
out + F

Spai−1
out ) i = 2

Pr(F Spai
out + Fi−1) 2 < i ≤ n.

(13)

Then, to form the new feature map Fout ∈ Rc×s×s, all the
features F i are connected, and a 1 × 1 convolution is used to
enhance the correlation of feature for subsequent summation

Fig. 4. Illustration of the MCF module.

with the original feature map F Spa
in :

Fout = Conv1×1(Concat(F 1, F 2, . . ., Fn)). (14)

Finally, the feature map that contains multiscale spatial infor-
mation F Spa

out ∈ Rc×s×s is obtained

F Spa
out = Fout + F Spa

in (15)

E. MCF Module

Multiscale spectral–spatial information can enhance the clas-
sification task performance. However, it is important to investi-
gate how to integrate such information, as it is a concern. Inspired
by this issue, a simple yet effective MCF (as shown in Fig. 4)
module is designed. In the MCF module, we use five paral-
lel convolutional layers to capture different scale information.
Combined spectral–spatial feature informationF Spe

out andF Spa
out as

F are fed into model.
To be specific, the bottleneck structure is employed in each

layers, consisting of 1 × 1 convolution, to decrease the number
of channels in the feature map plus a 3× 3 conv-layer. Second, to
reduce the number of parameters and introduce deeper nonlinear
layers, we replace the 5 × 5 convolution with two stacked 3 × 3
convolutions. For the same reason, we use a 1 × 3 plus a 3 × 1
convolution to take place of the original 3 × 3 convolution

F1 = Conv1×1(F )

F2 = Conv1×1(Conv1×3(F1))

F3 = Conv1×1(Conv3×1(F2))

F4 = Conv1×1(Conv3×3(F3))

F5 = Conv1×1(Conv3×3(Conv3×3(F4))) (16)

where Conv1×3(·) and Conv3×1(·) are the 2-D convolutional
layer with kernel sizes 1 × 3 and 3 × 1, respectively. Combined
the five layers of features and adjust the number of channels with
1 × 1 convolution as follows:

Fout = Conv1×1(Concat(F1, F2, . . ., F5)). (17)

To obtain the output of the whole MCF module, a residual
connection with learnable parameter α is then used

Fend = αFout + (1− α)F. (18)

The performance of fused features in the spectral and spatial
domains can be improved by successfully integrating the benefits
of the two branches using the aforementioned procedures.
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Fig. 5. Impact of different parameters on the OA. (a) Spectral dimension. (b) Patch size. (c) Learning rate.

Algorithm 1: MSSARFNet.

Input: HSI data XH ∈ RM×N×B , LiDAR data
XL ∈ RM×N , ground-truth data Y ∈ RM×N .

Output: Classification map R.
1: Initialize all weights and bias terms.
2: Obtain the Xpca

H after PCA transform.
3: Create all sample patches XP

H and XP
L from Xpca

H and
XL, and divide them into a training set and a test set.

4: for epoch < epochs do
5: Perform TBCNN to extract features Xout

H and Xout
L

from XP
H and XP

L by (1) and (2).
6: Perform MSpeARM to extract multiscale spectral

features F Spe
out from Xout

H and Xout
L by (3)–(10).

7: Perform MSpaARM to extract multiscale spatial
features F Spa

out from Xout
H and Xout

L by (11)–(15).
8: Perform MCF module to aggregate the

spectral–spatial information F Spe
out and F Spa

out , and
obtain the final fusion result Fend by (16)–(18).

9: Input the Fend to the classification module, and
obtain the predicted value to identify the labels.

10: end for
11: Obtain classification map R.

F. Classification Module

The Fend is fed into a classification module for the final
classification. The classification module (as shown in Fig. 1)
consists of a maxpool layer, and two FC layers. In the classifica-
tion module, the spectral–spatial semantic features are extracted
using a maxpooling operation, and the two FC layers produce a
predicted value. The last linear layer, which is designed to obtain
the final labels used in classification, incorporates a softmax
function. For each pixel, the category corresponds to the label
with the maximum probability. The cross-entropy function is as
follows:

Lcls = −
N∑
t=1

q(xt) log(p(xt)) (19)

where q(xt) represents the probability value assigned to class
t for the result predicted by the model. p(xt) represents the
expected probability value assigned to class t.

The overall training process of the proposed MSSARFNet is
illustrated in Algorithm 1.

IV. EXPERIMENTS AND ANALYSIS

Three HSI-LiDAR RS datasets are used to verify the effective-
ness of the proposed network. All experiments are implemented
on the PyTorch platform, using an Inter Xeon Silver 4110
2.1-GHz CPU, 128-GB RAM, and an NVIDIA GeForce RTX
2080Ti GPU with 11 GB of RAM. Three commonly used evalua-
tion metrics, overall accuracy (OA), average accuracy (AA), and
Kappa coefficient (Kappa), are adopted to intuitively quantify
the experimental results. In addition, the Adam optimizer was
chosen as the initial optimizer to optimize the network. The
minibatch size and the number of training epochs were set to
64 and 100, respectively, for the training stage. The general
organization is as follows: Section IV-A introduces the datasets
used for experiments. The corresponding parameters setting
and analyses are performed in Section IV-B. The experimental
results of the proposed method, along with a comparison to
other methods and an analysis of the results, are presented in
Section IV-C. In Section IV-D, ablation experiments are con-
ducted to demonstrate the effectiveness of the various modules
within the proposed framework.

In Table I contains a list of three HSI-LiDAR datasets, along
with the names of the land cover categories, the number of
training samples, and the number of test samples.

A. Data Description

To evaluate the effectiveness of the proposed framework, three
HSI-LiDAR datasets are selected for the experiment: Missouri
University and University of Florida (MUUFL) Gulfport [54],
[55], Houston2013 [1], and Trento [19].

1) MUUFL Dataset: Captured in November 2010 at the
University of Southern Mississippi, Gulfport Campus in Long
Beach, MS, USA. The dataset consists of HSI and LiDAR-based
digital surface modeling with a pixel size of 325 × 220, with
72 spectral bands for the hyperspectral data. Due to noise,
the first and last eight bands were removed, yielding a total
of 64 spectra with a spectral resolution ranging from 375 to
1050 nm and a spatial resolution of 0.54 × 1.0 m. The LiDAR
image contains two rasters of elevation data with a resolution of
0.60 × 0.78 m. This dataset consists of 11 different land cover
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TABLE I
TRAINING AND TEST SAMPLE NUMBERS IN THE MUUFL DATASET, THE HOUSTON2013 DATASET, AND THE TRENTO DATASET

Fig. 6. Classification performance of different numbers of both the spectral and the SpaARM on three HSI-LiDAR datasets. (a) MUUFL dataset. (b) Houston2013
dataset. (c) Trento dataset.

classes. Fig. 7(a)–7(c) visualizes a pseudocolor composite image
of the HSI data, a grayscale image of the LiDAR data, and a
ground-truth map.

2) Houston2013 Dataset: The University of Houston dataset
was collected in 2013 as part of the IEEE Geoscience and
Remote Sensing Society data fusion competition using the Com-
pact Airborne Spectral Imager. The dataset comprises HSI and
LiDAR imagery, covering the University of Houston campus
and the surrounding urban area in Houston, TX, USA. Both the
HSI and LiDAR images have dimensions of 349 × 1905 pixels
and a spatial resolution of 2.5 m. There are 144 spectral bands
in the HSI data, and their spectral resolutions range from 0.38
to 1.05 μm. Only LiDAR images are provided for the same
area. The ground truth of the dataset has 15 different land cover
classes. Fig. 8(a)–(c) visualizes a pseudocolor composite image
of the HSI data, a grayscale image of the LiDAR data, and a
ground-truth map.

3) Trento Dataset: Captured in a rural area south of Trento,
Italy, with 63 bands of HSI in the wavelength range 0.42−
0.99 μm and one raster in the LiDAR data providing elevation
information. The spectral resolution is 9.2 nm and the spatial
resolution is 1 m per pixel. The pixel sizes are all 600 × 166 and
the dataset describes six different land cover classes. Fig. 9(a)–
9(c) visualizes a pseudocolor composite image of the HSI data,
a grayscale image of the LiDAR data, and a ground-truth map.

B. Parameter Setting and Analysis

Several hyperparameters that may affect the classification
performance were set and analyzed, including the spectral di-
mension b, the patch size p of input data patches, the learning
rate, the number of the SpeARM, and SpaARM.

1) Spectral Dimension: To evaluate the effect of the spec-
tral dimension, b are chosen for comparison from the set
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Fig. 7. Classification maps obtained by different methods on the MUUFL dataset. (a) Pseudocolor composite image for HSI. (b) Grayscale image for LiDAR.
(c) Ground-truth map. (d) SVM (81.65%). (e) SSFTT (87.56%). (f) S2FL (77.62%). (g) EndNet (82.84%). (h) CoupledCNN (87.22%). (i) MFT (85.10%).
(j) FGCN (89.04%). (k) HCT (88.47%). (l) AMSSE-Net (91.41%). (m) MACN (90.58%). (n) Ours (92.15%).

Fig. 8. Classification maps obtained by different methods on the Houston2013 dataset. (a) Pseudocolor composite image for HSI. (b) Grayscale image for
LiDAR. (c) Ground-truth map. (d) SVM (93.34%). (e) SSFTT (99.57%). (f) S2FL (81.26%). (g) EndNet (90.18%). (h) CoupledCNN (95.48%). (i) MFT (99.41%).
(j) FGCN (98.50%). (k) HCT (99.78%). (l) AMSSE-Net (92.26%). (m) MACN (99.80%). (n) Ours (99.67%).

Fig. 9. Classification maps obtained by different methods on the Trento dataset. (a) Pseudocolor composite image for HSI. (b) Grayscale image for LiDAR.
(c) Ground-truth map. (d) SVM (82.44%). (e) SSFTT (99.20%). (f) S2FL (85.11%). (g) EndNet (92.92%). (h) CoupledCNN (98.79%). (i) MFT (99.09%). (j)
FGCN (99.32%). (k) HCT (99.60%). (l) AMSSE-Net (98.79%)., (m) MACN (99.73%). (n) Ours (99.83%).
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TABLE II
COMPARISON OF THE CLASSIFICATION PERFORMANCE WITH DIFFERENT METHODS FOR THE MUUFL DATASET

{5, 10, 15, 20, 25, 30}. The OA performance of the proposed
network is shown in Fig. 5(a) for three datasets with different
b. We found that the classification performance is the best when
b = 30.

2) Patch Size: Similar to the analysis of spectral dimension,
patch size p was selected from the set {9, 11, 13, 15, 17} to
evaluate its effect. Fig. 5(b) shows the influence of different
p on OA. It found that the best OA value is achieved on all three
datasets when p = 11.

3) Learning Rate: In DL models, learning rate is a crucial
hyperparameter that controls how fast the objective function can
approach its minimum. To evaluate its impact, we choose the
learning rate for our experiment from the set {1e-5, 5e-5, 1e-
4, 5e-4, 1e-3, 5e-3}. Learning rate is an important hyperparam-
eter in DL models, as it determines how quickly the objective
function can reach its minimum. Fig. 5(c) shows the OA of the
proposed network on three datasets with different learning rates.
When the learning rate is 1e-3, the classification performance
of all three datasets achieves the best.

4) Number of the SpeARM and SpaARM: The number of
SpeARM determines the number of subspaces required for
the MSpeARM, while the number of SpaARM determines the
number of subspaces needed for the MSpaARM. Therefore,
it is crucial to refine the extracted spectral and multiscale
spatial features using an appropriate number of SpeARM and
SpaARM, respectively. In our experiment, the numbers from
the set {1, 2, 4, 8, 16, 32} were selected to evaluate its effect.
Fig. 6 shows the OA of the proposed network on three datasets
with different numbers of the SpeARM and the SpaARM.
When both number of the SpeARM and the SpaARM is 4,
the proposed network achieves the best OA value on three RS
datasets.

C. Experimental Results and Analysis

To validate the effectiveness of the proposed MSSARFNet,
comparative experiments were conducted using several rep-
resentative classification methods, including SVM [13], SS-
FTT [44], S2FL [17], EndNet [26], CoupledCNN [21],
MFT [46], FGCN [28], HCT [31], AMSSE-Net [29], and

MACN [48]. To ensure a fair comparison, the network param-
eters of these methods were set the same as described in their
respective articles. And the training and test sample sets for the
aforementioned methods were selected at random, as shown in
Table I.

1) Quantitative Results and Visual Evaluation: The OA, AA,
Kappa, and accuracy for each class of the proposed method
on the MUUFL, Houston2013, and Trento datasets are pre-
sented in the findings as a qualitative categorization of different
data in Tables II, III, and IV. The best results are shown in
bold. For each of the three datasets, the classification maps
of several comparison methods are shown in Figs. 7–9. When
compared to the other methods, the maps show that the proposed
method yields an excellent classification performance with more
distinct boundaries, which is consistent with the numerical
results.

For the MUUFL dataset, an OA of 92.15% is obtained,
moreover, it is the best in all 11 categories, and the accuracy
of C04 DirtandSand, C05 Road, and C08 Buildings is
greatly improved due to the use of the two multiscale atten-
tional residual modules. From Table II, it can be seen that the
results of C05 Road, C08 Buildings, and C09 Sidewalk
do not perform very well except for our method, and we can
see from the ground truth that the sample distributions of the
three categories are mostly adjacent and relatively scattered.
The reason for the poor classification performance of these
two categories is due to the fact that the categories have the
same land cover material, very similar spectral reflectance
curves, and similar elevations, resulting in many misclassified
samples between the two categories. Contrarily, our method
improves 4% on C05 Road and C08 Buildings and also
improves 1% on C09 Sidewalk and as evident from the results
presented in Fig. 7, the features extracted by the proposed
network show good continuity and smoothness within these
regions. In addition, the boundaries between different material
regions are sharper in our results, closely resembling the ground
truth.

For the Houseton2013 dataset, from Table III, our results are
not the best in the three commonly used evaluation metrics,
which are lower than HCT and MACN, and ranked in the
third position. We analyzed that our network failed to extract
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TABLE III
COMPARISON OF THE CLASSIFICATION PERFORMANCE WITH DIFFERENT METHODS FOR THE HOUSTON2013 DATASET

TABLE IV
COMPARISON OF THE CLASSIFICATION PERFORMANCE WITH DIFFERENT METHODS FOR THE TRENTO DATASET

complete species information from this dataset compared to
the HCT and MACN model, and it also did not fully utilize
the extracted information during the fusion process. This is a
point that needs to improve in the future. However, our model
are superior to HCT and MACN in some individual classes.
For classes with similar materials, e.g., C02− C04, grass,
and tree, respectively, the proposed method achieves 99.91%,
100%, and 99.91% accuracy. As shown in Fig. 8, they are
clearly distinguishable. It is shown that the proposed network
has some differentiation between classes composed of similar
materials.

Some of the methods suffer from noise due to loss of spatial
information or inadequate extraction of spatial–spectral infor-
mation. For the Trento dataset, in particular, it can be seen in Fig.
9(e)–(g) that it is difficult for SVM to maintain spatial continuity
due to the lack of spatial information. The spectral–spatial
information is not sufficiently extracted making it difficult for
S2FL and EndNet to maintain spectral–spatial smoothing, which
results in a lower accuracy of 10% as listed in Table IV. On the
contrary, in homogenous regions, our method and other meth-
ods produce smoother results, and thus, superior classification
performance. For C06 Roads, the accuracy reaches 99.50% in
this category compared to other methods.

The aforementioned three HSI-LiDAR datasets have vali-
dated the effectiveness of the proposed model.

2) Robustness to Percentage of Training Samples: As shown
in Fig. 10, 2%, 4%, 6%, and 8% labeled samples were ran-
domly selected as training data for the MUUFL and Trento
datasets, and 5%, 10%, 15%, and 20% labeled samples were
randomly selected as training data for the Houston2013 dataset
in order to measure the stability and robustness of the proposed
method with different percentages of training samples. Even
with a limited number of samples, the proposed method still
performs well. Furthermore, for the MUUFL dataset, other
methods have lower accuracy when the sample percentage is
2%. Since the accuracy was about 100% even for the small
samples, the OA did not show a significant change for the
Houston2013 and Trento datasets as the number of samples
rose. It is evident from the experiments conducted on the three
datasets that the proposed method consistently achieved the
best classification results across the entire range of sample
sizes.

3) Time Cost Comparison: As shown in Table V, we com-
pared the computation time of our method, including SSFTT,
EndNet, CoupledCNN, MFT, FGCN, HCT, AMSSE-Net, and
MACN. It is obvious that our method is relatively faster than
other methods except EndNet. Therefore, our method can ef-
fectively reduce the computation time and improve the clas-
sification efficiency. SSFTT, MFT, HCT, and MACN adopt the
transformer architecture with more attention layers, which make
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Fig. 10. Classification performance with different training samples percentages. (a) MUUFL dataset. (b) Houston2013 dataset. (c) Trento dataset.

TABLE V
TRAINING TIME IN MINUTES AND TEST TIME IN SECONDS BETWEEN THE

CONTRAST METHODS AND PROPOSED METHOD

TABLE VI
ABLATION ANALYSIS OF DIFFERENT MODAL DATA INPUTS

their training and testing process take a relatively long time,
and each iteration consumes a large number of computation
cycles.

D. Ablation Analysis

1) Due to the diverse impact of different modalities of input
data on the classification performance of the model, three sets
of experiments were designed: single LiDAR data input, single
HSI data input, joint input of HSI, and LiDAR. The experimental
results, as presented in Table VI, demonstrate that the proposed
network achieved superior classification results by comparing
the OA, AA, and Kappa metrics across the three datasets. This
indicates that both HSI and LiDAR data positively contribute
to enhancing the classification performance. Furthermore, it

confirms that the network effectively utilizes the valuable in-
formation from different modalities of RS data.

2) Considering the influence of different components in the
network on the classification performance of the model, ab-
lation experiments were conducted to analyze the individual
contributions to the classification performance. Specifically,
the proposed MSSARFNet in Section III includes components
such as spectral feature extraction, spatial feature extraction,
spectral–spatial joint extraction, and multiscale feature fusion.
The utilization of different modules in the network, as shown
in Table VII, including feature extraction and fusion, can have
an impact on the overall performance. In Table VII, the MS-
peARFN represents a network that uses only spectral infor-
mation, the MSpaARFN represents a network that uses only
spatial information, spectralspatial Network (MSSARN) is a
spectral–spatial unification network, and the MSSARFN is with
MCF module. Taking the MUUFL dataset as an example, it was
observed that both MSpeARFN and MSpaARFN resulted in a
decrease in OA by 0.65% and 0.64%, respectively, compared
to MSSARN. This implies that while utilizing both spectral
and spatial information simultaneously might improve the clas-
sification accuracy, relying solely on either one may result
in a decline in performance. In contrast to MSSARFN, the
MSSARN reduced the OA by 1.09%. Therefore, it is confirmed
that multiscale spectral–spatial feature fusion can enhance the
classification performance. Quantitative analysis demonstrates
that the separability between different classes may be effectively
demonstrated via the successful utilization of several processes.
The effect of different steps on the three datasets is evident in the
T-SNE [56] visualization shown in Fig. 11. It can be observed
that the different categories within the datasets become more dis-
tinguishable after these steps. This improved distinguishability
contributes to achieving better joint classification accuracy.

In conclusion, when analyzing the effect of each compo-
nent on the three datasets, it is observed that in MSpeARFN,
MSpaARFN, and MSSARN, the OA of the classification is
lower compared to the MSSARFN. This demonstrates that solely
relying on one type of the feature information or not having
an effective module to combine the two types of information
does not yield better classification results. It further validates
the effectiveness of each component within the network.
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TABLE VII
ABLATION ANALYSIS OF DIFFERENT COMPONENTS IN MODAL OF OA(%), AA (%), KAPPA×100(%) ON THE THREE DATASETS

Fig. 11. Feature visualization for different feature extraction strategy in three RS datasets. (Top) MUUFL. (Middle) Houston2013. (Bottom) Trento.

V. CONCLUSION

In this article, an MSSARFNet is proposed for accurate joint
classification of HSI and LiDAR data. Combining spectral–
spatial information based on a network of attention mecha-
nism, a novel network framework is designed for effective
spectral–spatial feature extraction. A effective MCF module is
designed to fuse the spectral–spatial features. Three multisource
RS datasets are used for experiments, and the findings demon-
strate that the method performs excellent classification results
compared with current classification methods. In the future, most
of the existing classification of multisource data is based on
the time-domain aspect, our next step is to consider designing
an attention mechanism in the frequency domain, and a joint
spectral–spatial attention mechanism in the time domain to form
a three-branch attention mechanism to extract multisource data
information.
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