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ABSTRACT The big data of rolling bearings for on-site monitoring usually contains very few failure
samples and easily affected by noise and monitoring errors, so it is difficult to extract and identify useful
fault information in normal samples. In addition, the rolling bearing samples of field test are un-labeled
dataset of unknown fault types. If the existing fault diagnosis approaches are directly used for extraction and
identification, it is easy to cause misjudgment or missing judgment. To solve this problem, a novel intelligent
fault diagnosis approach using deep transfer learning based on joint generalized sliced Wasserstein distances
(JGSWD) deep transfer learning is proposed. Firstly, the joint discrepancy between the data from real-case
scenarios (DRS) and the data from laboratory equipment (DLE) is minimized by calculating the generalized
sliced Wasserstein distances. Following, the marginal and conditional dataset distribution between source
domain and target domain is balanced by using the dynamic domain alignment. Then, the top K correlated
pseudo labels are calculated for reducing the conditional distribution and improving better transfer capability.
Finally, the deep transfer learning from laboratory bearing dataset to field bearing dataset is carried out.
The result shows that the proposed JGSWD method can achieve 97.56% fault diagnosis accuracy, which
is higher than the other methods. Therefore, it is a practical semi-supervised learning approach for bearing
fault diagnosis with small samples.

INDEX TERMS Fault diagnosis, rolling bearing, transfer learning, generalized sliced Wasserstein distance.

I. INTRODUCTION for example, the working performance and motion accuracy

Rolling bearing is one of the critical parts in rotating machin-
ery which has been widely applied in many necessary
engineering fields, such as aerospace, rail transportation,
petrochemical industry and so on. Rolling bearing usually
works in complex and harsh environments with heavy loads,
high temperatures, corrosion and high operating rates to
fulfill actual production needs, in addition, the complex
mechanical structure and changing operating conditions lead
to the failure of rolling bearings [1]. Many serious conse-
quences will be brought by the damage of rolling bearing
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might be reduced and increased vibration and wear, or even
lead to production stoppage, economic losses and casual-
ties [2]. Therefore, it is significant to develop a more scientific
and efficient method to diagnose the fault of the rolling
bearings.

Over the recent years, many fault diagnosis methods have
been proposed that provide useful solutions for bearing diag-
nosis problems. It can be rouvaluable,ghly divided into the
following categories: mechanism-based fault diagnosis meth-
ods, signal processing-based fault diagnostic methods, and
data-driven fault diagnosis methods. The mechanism-based
fault diagnosis method is mainly to establish a dynamic
model of the rolling bearing system to analyze the mechanism
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of its fault. The advantage is that it can reveal the essence
of the rolling bearing fault, but the disadvantage is that
the method involves more theoretical knowledge and slower
research progress.The fault diagnosis method based on signal
processing is to analyze and study the vibration signal of
the rolling bearing, its advantage is that it can find a more
accurate fault location, but it is difficult to diagnose the
fault of the rolling bearing accurately due to the noise of
the signal [3].The data-driven fault diagnostic method is to
use a large amount of rolling bearing fault data to establish
and train a network model to classify and identify its faults.
The advantage is that ideal fault identification results can be
achieved without a deep and specific understanding of the
fault diagnosis object, but the disadvantage is that a large
amount of labeled data is required to train the neural network.
The methods are mainly divided into intelligent diagnostic
methods based on traditional machine learning and intelli-
gent diagnostic methods based on deep learning. This paper
specifically researches the application of clever methods
based on deep learning in fault diagnosis of rolling bearings.
Deep learning fault diagnosis methods have the advantage of
classifying and predicting the bearing fault among machine
learning [4], [5]. Nevertheless, deep learning methods always
lead to bad performance with unlabeled data. Data collected
from real-case scenarios (DRS) are always unlabeled, so it
isn’t easy to train a reliable intelligent diagnostic model.
It is unrealistic to label the data with a large amount of
workforce [6].

It is convenient to collect sufficient labeled data from
laboratory equipment (DLE) by simulating the work of real-
case scenarios. Thus, a deep learning model can be simply
built to diagnose the DRS with the help of the massive labeled
data. However, the result is unsatisfactory if using the deep
learning model to train the DRS directly when the two data
have different feature distribution.

Transfer learning, which can provide an excellent deep
learning methodology for tackling the above problem. The
concept of transfer learning is transferring knowledge from
one domain to a different but related domain. In other words,
the DLE is set as the source domain with a rich-labeled and
the DRS is designated as the target domain with a scarce-
labeled, the transfer learning utilizes the knowledge from the
source domain to improve the fault prediction performance of
the model for the target domain [7], [8].

Intelligent fault diagnosis of rolling bearings can be imple-
mented through various strategies. Based on deep learning,
[9] proposed a technique based on multi-synchrosqueezing
transform (MSST) and deep residual convolution neural net-
work to identify weak faults of rolling element bearing
(REB) accurately. Reference [10] had been implementing the
AdaBN into the deep convolutional neural networks which
increase the efficiency of fault diagnosis. Reference [11]
built a Dual-stage Attention-based Recurrent deep learn-
ing structure utilizes the image processing to alleviate the
imbalance rate of rolling bearings datasets. Reference [12]
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proposes a deep residual network based IFD method of
planetary gearboxes in cloud environments, it is valuable
to incorporating the beneficial characteristics of different
algorithms for promoting the efficiency of mechanical fault
diagnosis and prediction [13]. Deep meta-learning and vari-
ational auto-encoder (DML-VAE) are applied for coupling
fault diagnosis of rolling bearing under variable working
conditions in this paper [14]. The above intelligent fault
diagnosis methods have significantly increased the accuracy
and efficiency of rolling bearing fault diagnosis, but these
methods cannot perform unsupervised learning and rely on
a large amount of labeled data. Reference [15] proposed an
intelligent fault diagnosis method base on small imbalanced
data but it is not to finish unsupervised diagnosis. Based on
transfer learning, the central objective of the transfer learn-
ing is minimizing distribution distance between the source
domain and the target domain, which is called domain adap-
tation [16]. Many effective methods have been proposed for
domain adaptation. Reference [17] propose a feature-based
transfer neural network (FTNN) with the help of multi-layer
domain adaptation and pseudo label learning, the FTNN
model can reduce the feature discrepancy between the source
domain and the target domain. Meanwhile, the FTNN model
proposed by Yang can diagnose the fault of rolling bear-
ings with massive unlabeled data effectively.Still.the pseudo
label learning offered,in the FTNN model can’t get precise
label. [18] Propose a multi-layer domain adaptation CNN
network using a multi-kernel maximum mean discrepancies
(MMD) metric. Reference [19] using IJIDA mechanism and
I-Softmax loss, a deep discriminant transfer learning network
(DDTLN) was constructed to realize fault migration diag-
nosis. Reference [20] propose a transfer learning approach
with LSTM neural networks for bearing fault diagnosis, and
which uses the joint distribution adaptation (JDA) [21] to
reduce the differences in probability distributions between
a source domain dataset and target domain dataset. The
approach is robust greatly to noise and has a great perfor-
mance under different noise levels. Reference [22] constructs
a multiple-scale feature learner with the help of the modified
ResNet-50 to shorten the conditional distribution distance
between the two domains for bearing fault diagnosis, the
model can extract discriminative and robust features from
the two domains and avoid the loss of information, the
conditional distribution calculation of the above two meth-
ods without using measurement criteria and quickly leads
to the problem of gradient disappearance. Reference [23]
propose a applications of unsupervised deep transfer learning
to CWRU, which use the JAN, DAN as the measurement
criteria between the source domain and the target domain,
[24] propose a self-attention ensemble lightweight transfer
learning model achieve higher accuracy with small training
samples, but these methods can’t conduct the end-to-end
training. Reference [25] propose a transfer learning approach
with adversarial networks for bearing fault diagnosis combine
with the knowledge mapping-based method, the results show
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the proposed method proves ideal generalization ability, but
the accuracy of classification needs to be improved. Refer-
ence [26] propose an unsupervised domain adaptation with
Join Sliced Wasserstein Distance to provide an end-to-end
training and higher accuracy, but the calculation of Sliced
Wasserstein Distance is very complicated.

In this paper, enlightened by generative adversarial
nets (GAN) [27] and Generalized Sliced Wasserstein Dis-
tances [28], an approach namely Joint generalized sliced
Wasserstein distances guided transfer learning (JGSWD) is
proposed in this article that utilizes the generalized sliced
Wasserstein distance for decreasing complex computational
cost and create top K correlated pseudo labels to calculate a
better conditional distribution. The JGSWD is consisting of
four structures: a feature generator composes with CNN [29],
a joint feature, a discriminator and a classifier, the network of
the JGSWD will be optimized to minimize different feature
distribution between the two domains. The main contribu-
tions of this paper are as follows

1) Joint generalized sliced Wasserstein distances guided
transfer learning(JGSWD) is proposed in this article as an
application of unsupervised intelligent fault diagnosis.

2) The joint distribution discrepancy is measured via
calculating generalized sliced Wasserstein distances which
decrease computational costs and improve the training speed
of the model.

3) The top K correlated pseudo labels are proposed
for ensuring more accurate prediction of target domain
labels.

4) A dynamic domain alignment is introduced in the article
for aligning marginal and conditional distributions and using
the loss to tune hyperparameters.

Il. THEORETICAL BASIS

A. THE BASIC DEFINITIONS OF TRANSFER LEARNING
Transfer learning method can apply knowledge and experi-
ence in familiar fields to related unknown fields, and can
solve the problem that training and test data are subject to
different distributions, resulting in difficult training and low
performance of the model. Therefore, it is suitable for fault
diagnosis in fields such as small training data, scene changes
and task changes.

In a fault diagnosis prpblem, there is a labeled source
dataset X° = {(x7, yf)}ln:1 of n® samples from the source
domain D*, domain D° is composed of two parts: a feature
space X and a marginal distribution P(X). In other words,
D’ = {X, P(X)}. And the symbol denotes an instance set,
which is defined as X = {x; € X}, and an unlabeled target

}’lt
dataset X' = { (xj’ ) } - of n’ samples from the target domain

D', D' = {X}. It is assumed that the two domains follow
different data distributions. The main point of the problem
is to extract the transferable features from the two domains.
Then the transfer learning method proposed in the paper is
mainly to minimize the joint discrepancy between the two
domains.
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B. GENERALIZED SLICED WASSERSTEIN DISTANCES
There are many existing works using Wasserstein distance
in deep networks for transfer learning and achieving excel-
lent performances. The advantage of choosing Wasserstein
distance as the metric criterion to calculate the joint fea-
ture distribution is that even if the feature distributions of
the source domain and the target domain do not overlap or
overlap very little, the distance can still measure the distance
of the two distributions in space, and will not cause the
problem of gradient disappearance. However, it is difficult
to measure the high dimensional distribution, and there are
many methods to accelerate the calculation of Wasserstein
distance, such as slicing Wasserstein distance, which is cal-
culated by the probability distribution related to the linear
fragment and pull transform [30]. Although slicing Wasser-
stein distances requires less computational complexity, the
number of randomly selected linear projections is very large,
and there is no guarantee that the selected linear projections
will provide an effective assessment of feature distribution
distances.Inspired by the generalized radon transform, a new
measurement distance called generalized sliced Wasserstein
distance is proposed in the paper by extending the linear
slicing to the non-linear slicing of probability measures to
reducing the number of required projections.

The generalized radon transform is evolved from the clas-
sical radon transform which extends the integration on a
hyperplane to the integration on a hypersurface like the
manifolds. The classical radon transform can be defined as
follows:

RPsr(t, w) = /R Psr @B — (e ()

The RPx,r represents the infinite set of integrals pro-
jecting the high-level distribution onto the low-dimensional
distribution hyperplane of R?. The Pg 7 means the proba-
bility distribution function of the source and target domains.
Vw € S971 and the S9! stands the unit sphere of d-
dimensional space. V¢ € R, §() represents one-dimensional
Dirac delta function. (x, w) represents the Euclidean inner-
product.

The generalized radon transform can be defined as:

GPsr(t, w) = /R Psyr(0d — gle widx (@)

The radon transform is a particular case of the generalized
radon transform when g (x, w) = (x, w), meanwhile, the gen-
eralized sliced Wasserstein distances can be defined via using
the generalized radon transform, W denote the d-dimensional
Wasserstein distances:

GSW (Ps, Pr) = /d 1 W (GPs (.,w), GPr (.,,w))dow (3)
gd—

C. JOINT DISTRIBUTIONS BETWEEN DIFFERENT
DOMAINS

In order to solve the problem of different probability dis-
tributions between the training data and the test data in
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mechanical fault diagnosis, the focus of the approach is
to measure the joint distribution discrepancy between the
DLE and DRS. The joint distributions are composed by
the marginal distributions and conditional distributions, The
marginal discrepancy D, between the two domains is
described as: Dy, = GSW (Ps, Pr), however, the target
domain is unlabeled data and the trained feature genera-
tor under the source domain data performs poorly in the
domain. In order to predict higher accurate target label, the
pseudo labels are proposed to keep unlabeled target data in
lots of researches. In this paper, the top k correlated labels
are used to mark the unlabeled target data. The conditional
discrepancy Do, between the two domains is described as:

Deon = i[ stw(PS(m | x5), Pr (0L Ixm))},

c=1 m=1
which the ¢ denotes the number of categories, m’ is the
number of samples in the Cth category in the source or target
domain. The y!* can be calculated via the top k correlated
labels.

D. TOP K CORRELATED LABEL

Aiming at the problem that the target domain sample data
lacks labels and the conditional distribution is difficult to
calculate, the top K correlated label is proposed in the paper,
which calculates the similarity of the sample feature space
in the source domain and the target domain.The number
is denoted as similar samples. The similarity of probability
between the xiT and the ij will be estimated by, which can be
written as:

M,C
Pij

= e st
1 @) (1) ot F @)= (1) 1,
P (n F@)F (x7) 1o+ F @) F (x7) ||2>
)

The e denote the probability conjunct function and the
F(-) represent features generator function, meanwhile, this
probability matrix in the target domain can be expressed by
M = ® EBm’l pl/l\]/l € , the K label measures the index of the
most simllar sample in the target domain and the y; represent
the first k index probability matrix that is operated by first
descending sorting. Thus the target label loss can be written

as:
£ preas Vi) = = Z (V)
l/j 1
The yp/rfe 4 represent the predicted label from the classifier,

the y ifJ represent top K correlated label matrix and the M is
almed to select the most frequent labels in the correlated
label matrix. Therefore, the joint distribution can be defined
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as follows:

D
= Dmar + Dcon = GSW (PS’ PT)

+Z ZGSW (s (v 1) Pr (v (0 151))
(6)

E. DYNAMIC DOMAIN ALIGNMENT

Many previous methods only considered the marginal distri-
butions alignment and the conditional distributions alignment
separately, or aligning the marginal distribution and condi-
tional distribution in a way with the same specific gravity,
without considering that the importance of these two ways
may be different in real applications, which cause the problem
of declining the transfer ability between two other domains.
The marginal distributions and the conditional distributions
will be dynamically aligned by calculating a balance factor
in the paper. The © € [0, 1] is denoted an adaptive bal-
ance factor to align the marginal distribution and conditional
distribution dynamically, the formula can be expressed as:
D= UDpar + (1 — 1) Deoy. The adaptive balance factor is
updated by calculating the domain alignment loss, which will
be introduced in the next section.

Ill. ESTABLISH THE DEEP MIGRATION MODEL OF JOINT
COUNTERMEASURE

A. THE COMPOSITION OF JGSWD NETWORK

The data obtained in laboratory equipment or the data with
tags on the real-case scenarios are used as the labeled source
domain (DLE), and the unlabeled data measured by other
laboratory equipment or the real-case scenarios are used
as the target domain (DRS), it is obviously that the two
domains have different distributions. Inspired by the adver-
sarial network, a new approach called Joint generalized sliced
Wasserstein distances guided transfer learning (JGSWD) is
proposed, the transfer learning overview framework is given
in Figure 1, of which consist a feature generator, a joint
feature, a domain discriminator and a classifier. The feature
generator which can be implemented by a convolutional neu-
ral network with batch normalization (BN) layer to extract the
domain invariant features, which can speed up the training
process and improve network generalization performance,
and better preserve the different feature distributions of each
domain, the detailed layers and size of feature generator
is illustrated in Table 1. Only the marginal features can
be extracted in the feature generator in general, and many
methods ignore the calculation of the conditional features.
A joint feature is added to general diagnostic neural network
structure, which is used for computing the joint distribution,
which is composed of conditional distribution and marginal
distribution. The conditional distribution can be calculated
by generating label of the DRS via utilizing the top K cor-
related label, and the prediction accuracy of labels can be
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FIGURE 1. The framework of JGSWD.

TABLE 1. The parameters of the CNN.

Layers Parameters

Input 1*¥1024
Convl 16*1010 kernel-size=15 BN,RELU
Conv2 32*1008 kernel-size=3 BN,RELU

Max Pooling 32*504 kernel-size=2
Conv3 64*502 kernel-size=3 BN,RELU
Conv4 128*500 kernel-size=3 BN,RELU
Adaptwg Max 128%4
Pooling
Fcl 256*1

improved. The dynamic domain alignment is used to bal-
ance the marginal and conditional distribution to improve the
transferability of the model. Then the joint distributions can
be calculated by the joint generalized sliced Wasserstein dis-
tance criterion to decrease computational costs and improve
the training speed of the model. The domain discriminator
is used to distinguish the different domains for more com-
prehensive domain adaptation, which forms an adversarial
domain loss function. In addition, the final label would be
predicted in the classifier.

B. TRAINING PROCESS

The feature generator can be expressed by a function F with
parameter 6, that process the input big data directly. Input
the labeled source domain into the feature generator to pre-
training, obtain the initial parameters, and then input the
unlabeled target data into the pre-training network. Given an
instance x € R™ from either domain, the feature extractor
learns a function F, : R" — R? that maps the instance to
a d-dimensional representation with corresponding network
parameters 6,. The source domain data set {X*, Y*} consists
of the original data X* and its related label Y* composition.
While the target domain data {X'} consists of the unmarked
target domain data X’ composition. To align joint distribu-
tions between different domains, the joint feature has been
used to estimate the joint generalized sliced Wasserstein
distances by utilizing the Eq 6. Then build the classifier
discriminative loss function. The discriminator F,. : R¢ — R!
is used to compute the softmax prediction with parameter
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6. where is the number of classes. The classified losses are
written as follows:

Lo (Fe (Fg (7)) .5)

1 M E . .
() togFe (Fe () @
i 1

s
M
i=1 c=

Simultaneously, the function Fy is learned in the domain
discriminator to distinguish the different domains with
parameters 6, and the loss function is defined as follows:

1M

La (Fg (xs)’Fg (xt)) =T zlog(l —Fa (Fg (xzs)))
1L

= 2 log (Fu (Fe (+))) ®)

i=1

In the end, a dynamic distribution alignment is applied to
balance the marginal and conditional distribution to improve
the generalization ability of the model, the domain alignment
loss is expressed as follows:

Lpa = argmin L (F (Fg (x°)).)")
+ 0 |l Fe I +A (WDpmar + (1 — 1) Do) (9)

The n, A denote regularization parameters, || F, ||%< repre-
sent a squared norm of F,, and u denote the balance factor

v

—

-
Yes
No

FIGURE 2. The Flow Chart of JGSWD.
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to align the marginal distribution and conditional distribution
dynamically. The detailed algorithm of the combination is
given in Figure fig2 and the entire objective function of the
model proposed in the paper is expressed as follows:

L=L:+Lxx+Li+Lpa (10)

IV. EXPERIMENTAL

To evaluate the ability of the transferable ability of the pro-
posed approach in the field of mechanical fault diagnosis,
experimental verification under different data is being con-
ducted. Furthermore, comparing our approach with other
fault diagnosis methods, JGSWD achieves better perfor-
mance.

A. DATA DESCRIPTION

Bearing Data of Xi’an Jiaotong University [31]: The rolling
bearing failure test bench comprises AC motor, motor
speed controller, support shaft, two support bearings (heavy
roller bearings), hydraulic loading system, etc., as shown
in Figure 3. The bearing type is LDK UER204. The bear-
ing dataset is composed by three different speed conditions:
2100, 2250, 2400, each speed condition contains inner ring,
outer ring and cage faults, etc. The details information can be
seen in table 2.

AC motor

Support bearings

FIGURE 3. The rolling bearing failure test Bench Xi ‘an Jiaotong University.

TABLE 2. Bearing data of Xi'an Jiaotong University.

Data A B C
Rotating Speed 2100 2250 2400
Health Status Health/Defect ~ Health/Defect ~ Health/Defect
Defect Location IF/OF/RF/CF IF/OF/RF/CF IF/OF/RF/CF

Bearing Data of Southeast University: The test bed consists
of a motor, a motor controller, a planetary gearbox, a reduc-
tion gearbox, a brake and a brake controller, as shown in
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Figure 4. The data set is mainly divided into bearing data
set and gear box data set. Each fault type corresponds to
the two working conditions: speed 1200rpm-load O Nm and
speed 1800rpm-load 7.32Nm. The gearset and bearingset are
described in table 3.

Motor
controller i

FIGURE 4. The test bed of Southeast University.

TABLE 3. Dataset from Southeast University.

Data A B
Rotating Speed 20 0/30 2 20 0/30 2
Health Status Health/Defect Health/Defect
Dataset Bearingset Gearset
Defect Location IF/OF/RF/CF  Chip/Miss/Surface/Root

Bearing Data of real-case scenarios [32]: The dataset is
collected from a compressor with a bearing power of S00kW
under changing loads and operating conditions, as shown in
Figure 5. The fault category is divided into fatigue, pitting,

FIGURE 5. The compressor of real-case scenarios.
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TABLE 4. Bearing data of real-case scenarios(DRS).

Data DRS

Rotating Speed 800-1500

Health Status fatigue, pitting, plastic deform and indentations

Defect Location IF/OF

plastic deform, indentations in inner race and outer race. The
data detail is shown in Table 4.

B. COMPARATIVE APPROACHES

The proposed approach is mainly compared with conditional
adversarial domain adaptation (CDAN), domain adversar-
ial neural network (DANN) [33], deep correlation align-
ment (CORAL) [34] and joint maximum mean discrepancy
(JMMD). The purpose of our proposed method (JGSWD)
and the comparison method is mainly to reduce the domain
discrepancy.

1) S-ONLY

The source domain data is used to train the convolutional
network and tested on the target test data directly without
using the domain adaptive method.

2) CDAN

The CDAN is used to extract the high-level features of
the source domain and the target domain and capture the
multimodal structure of data features by multi-linear map-
ping, which measures the divergence between two probability
distributions.

3) DANN

The DANN architecture includes a deep feature extractor,
a deep label predictor and a domain classifier. The minimax
optimization is used to solve the data coming from similar but
different distributions.

4) CORAL

The CORAL uses a linear transformation method to align
the second-order statistical features of the source and target
domain distributions, it relies on linear transformations and
is not end-to-end training.

5) JMMD

JMMD is a deep transfer learning method adopted by
Long et al. [35], further proposes joint maximum mean
discrepancy to align the domain shift and comprehensively
utilizes the low-level and high-level features of the convolu-
tional neural network to combine Domain adaptation to better
realize feature matching.
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C. IMPLEMENTATION DETAILS

The convolutional network in this article is composed by three
convolutional layers with Batch Normalization and a fully
connected layer as the basic network architecture, the details
can be seen in Table 1. In contrast with our method, the S-only
without the domain critic structure, the MMD method mainly
changes the measurement metric of our proposed approach
to the MMD metric. The DANN tries to distinguishing the
source and target features by using an adversarial repre-
sentation learning approach. The MLDAN method used the
Multi-layer MMD metric based on MMD.

For XJTU-SY bearing Data, there are three different work-
ing conditions: A, B, C, six transfer tasks for bearing dataset
have been seen in Table 5, for the bearing dataset and gear
dataset from Southeast University, there are two transfer tasks
have been constructed in Table 6. The XJTU-SY bearing
dataset and the dataset from Southeast University can be
chosen as the DLE, the transfer learning from DLE to DRS
can be shown in Table 7.

TABLE 5. Six transfer tasks for bearing dataset.

Transfertask A—-B A—->C B—>A B—->C C—>A C-B

Source speed 2100 2100 2250 2250 2400 2400
Target speed 2250 2400 2100 2400 2100 2250
Source sample 3125 3125 3150 3150 3134 3134

Target sample 3150 3134 3125 3134 3125 3150

TABLE 6. Transfer task from bearingest to gearset.

Transfer task bearingset — gearset
Source speed 30 2
Target speed 30 2
Source sample 3492
Target sample 3492

TABLE 7. Transfer learning from DLE to DRS.

Transfer task XJTU-SY — DRS gearset - DRS

Source speed 2100,2250,2400 30 2
Target speed 800-1200 800-1200
Source sample 6200 3492
Target sample 3000 3000
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V. RESULTS AND DISCUSSION

A. ADAPTIVE WAVEFORM DECOMPOSITION ALGORITHM
The selection of optimal parameter: A—B, B—C, C—A
transferring learning task are choosed as the object of param-
eter selection experiment to select the optimal k and p. The
model achieves the best effect when u € [0.5, 0.7] shown in
Figure 6, and the highest classification prediction accuracy is
achieved when k=8.

Different working condition: As shown in Table 8 can
see the comparison results of our experiments on these
approaches. It is obviously that the JGSWD method proposed
in this paper outperforms other compared approaches on the
seven tasks, the S-only has the lowest accuracy among these
approaches. In addition, the JGSWD also can as the adversar-
ial adaptation approaches, which achieves better performance
than the DANN.

The B—C transferring learning task is choosed as the
object of t-SNE visualization in randomly, the results of their
feature visualization are shown in Figure 7. In these figures,
the fault in inner race, outer race, roll and cage are represented
by IF, OF, RF and CF respectively, the four different fault

4 4 0.95308 0.95475

0.97137

~ 097162 097416  0.97593  0.97199

0.96984

0.97367

097125  0.97538  0.97542 0.9783 0.97583

05 055 06 065 07

u
b. k

FIGURE 6. The selection of optimal parameter.
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TABLE 8. Classification results of SEVEN transfer tasks.

Transfer

task S-only DANN CORAL CDAN DDC

JMMD JGSWD

A—B 09627 09729 09731 0.9760 0.9561 0.9789 0.9891
A—C 09607 09638 09688 0.9729 0.9502 0.9777 0.9946
B—>A 0961 0.9654 0.9648 0.9732 0.9571 0.9785 0.9943
B—C 09605 0.9715 0.9727 0.9830 0.9617 0.9835 0.9967

C—>A 09650 0.9662 09716 0.9742 0.9602 0.9789 0.9919

C—>B 09642 096102 0.9721 0.9741 0.9593 0.9801 0.9925

categories are represented by four different colors and the cir-
cle shape points represent the target domain, on the contrary,
the other shape points represent the source domain. It is clear
that the feature mapping of the JGSWD is achieving better
than other approaches, which cluster circle shape and cross
shape points together and classify the ten colors easily.

Transfer learning from bearingset to gearset: The classifi-
cation prediction results of proposed method (JGSWD) and
comparison methods are shown in Figure 8. The results show
that the final classification and recognition of the transferring
experiment using the S-only, CORAL,DDC, CDAN, DANN
and JMMD methods are not good, the accuracy only reach
around 50%. On the contrary, the recognition accuracy of
the model is improved using the proposed method (JGSWD)
that can reaching about §9.56%. Moreover the experiment
is visualized through the t-SNE method, the feature visu-
alization of the unprocessed bearingset and gearset can be
seen in Figure 9. It is can be seen clearly that the feature
distributions of the bearingset and gearset are different. Then
feature visualization after using the approach proposed in this
paper is seen in Figure 10 which have an excellent clustering
result for the target domain.

Transfer learning from DLE to DRS: The challenge of this
experiment lies in the fault bearing data is obtained in differ-
ent mechanical equipment and the target domain is unlabeled
data, which leads to other distribution. The XJTU-SY Bearing
Dataset and gearset are choosed as the DLE, dataset collected
from a compressor which work in real scenarios as the DRS.
The specific dataset is shown in Table 4, and the classification
performance of the transfer experiment from XJTU-SY. Bear-
ing Dataset to the DRS in comparison approaches has been
shown in the Figure 11 that get the classification accuracy
is up to 96%, in the same way the classification accuracy of
transfer experiment from gearset to the DRS can get around
80.67%. Moreover, The XJTU-SY Bearing Dataset —DRS
transferring learning task is choosed as the object of t-SNE
visualization in Figure 12, the results show the proposed
method (JGSWD) could achieve better clustering and make
the feature distribution of the source and target domains more
consistent.
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FIGURE 7. Feature visualization of the B to C task in XJTU-SY bearing
dataset.
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FIGURE 8. Classification result from bearingset to gearset.

Ablation experiment: To better demonstrate the effective-
ness of each proposed innovation on classification accuracy,
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FIGURE 9. Feature visualization of the unprocessed data.
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FIGURE 10. Feature visualization of the processed data through.

an ablation experiment is presented in the article. G: gen-
eralized, K: Top K correlated label, DA: dynamic domain
alignment. “JGSWD-G/DA/K” is implemented without gen-
eralized sliced Wasserstein distances, Top K correlated label,
and dynamic domain alignment. As shown in Figure 13, it is
obvious that each proposed innovation is effective in improv-
ing performance and the accuracy of classification prediction.
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FIGURE 11. Classification results from DLE to DRS.

The time for predicting the fault type of test sample is greatly
reduced.

To some extent, the proposed method is not only a bearing
diagnosis model, but also a set of mechanical fault diagno-
sis methods. Ome Its application can be extended to other
scenarios, such as spindle blade tools, gearboxes, and other
mechanical equipment. We hope to expand its application in
more scenarios in future work.

On the other hand, although the proposed method can
achieve excellent and stable bearing diagnostic transmission
performance in cross-airfield scenarios, there are still unre-
solved problems in some experimental results that need to
be considered in future work. Firstly, the model is tested
and applied in more actual factory scenarios to improve
the portability of complex data. Secondly, through com-
parative analysis and erosion analysis, it is found that the
accuracy of some tasks is relatively poor. In future work,
when modifying network structure and adjusting network
parameters, the stability or robustness of the diagnostic
framework needs to be improved. This is critical for diag-
nostic systems to handle more types of transfer tasks/cases
or real-world factory scenarios with complex data distri-
bution. In the following studies, we will explore how to
build advanced neural network structures and conduct a
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FIGURE 12. Transfer learning performance from DLE to DRS.

more detailed analysis of the formalization of distribution
differences. Third, there is still a lack of consideration for
the impact of model computation overhead, which can affect
actual deployment in a real factory environment. Therefore,
more efficient transmission algorithms need to be developed
to reduce the computational overhead and realize the trade-off
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between transmission performance and computational
overhead.

VI. CONCLUSION

This paper proposes a deep transfer learning method for fault
diagnosis of rolling bearings based on domain adaptive, joint
generalized slice Wasserstein distance-guided transfer learn-
ing JGSWD), which mainly solves the problem that DRS
and DLE have different feature distributions. The joint differ-
ence between the two domains is minimized by dynamically
balancing the edge distribution and the conditional distribu-
tion. In this paper, by calculating the Wasserstein distance
of generalized slice, the complexity of calculation is signif-
icantly reduced and the speed of fault diagnosis is greatly
improved. In addition, in order to reduce the conditional
distribution and improve the transmission capability, the top
K related pseudo-tags are calculated. The network structure
is composed of feature generator, domain discriminator, joint
feature and classifier. The feature generator is composed of
multiple convolution layers. It adopts batch normalization
method to extract transferable feature knowledge from DLE
and DRS to make its feature distribution more stable, and then
uses domain discriminator to reduce domain differences by
using maximum and minimum adverssion idea. Using joint
features to calculate joint differences. Finally, the traditional
deep learning fault diagnosis is carried out by using the
classifier. The validity of the JGSWD model is verified by
the actual operation of XJTU-SY bearing data set, gear set
and compressor bearing data set. The experimental results
on the XJTU-SY bearing dataset show that the average clas-
sification accuracy of JGSWD method is about 99%. The
experimental results of transfer learning from bearing data
set to gear set show that the average classification accuracy
of JGSWD method is about 89.56%. In addition, the clas-
sification accuracy of XJTU-SY bearing data set to DRS
transfer experiment can reach 97%, similarly, the classifica-
tion accuracy of JGSWD method from gear group to DRS
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transfer experiment can get 80.67%. Superior to the methods
compared, this paper provides a new and effective method for
fault diagnosis.
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