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Abstract— With the availability of several remotely sensed data
sources, the problem of efficiently visualizing the information
from multisource data for improved Earth observation becomes
an intriguing and challenging subject. Multispectral (MS) and
hyperspectral (HS) images encompass a wealth of spectral data
that standard RGB monitors cannot replicate directly. Thus, it is
important to elaborate methods for accurately representing this
information on conventional displays. These images, with tens to
hundreds of spectral bands, contain relevant data about specific
wavelengths that RGB channels cannot capture. Traditional
visualization methods often use only a limited amount of the
available spectral information, resulting in a significant loss of
information. However, recent advances in artificial intelligence
models have provided superior visualization techniques. These
artificial Intelligence (AI)-based methods allow for more realistic
and visually appealing representations, which are important
for the information interpretation and direct identification of
areas of interest. The main goal of our study is to process
aggregated datasets from various sources using a fully connected
neural network (FCNN), while considering visualization as a
secondary objective. Given that our data come from a variety of
sources, a significant emphasis in our study was placed on the
preprocessing stage. In order to achieve a consistent visualization
across datasets from different sources, proper preprocessing by
standardization or normalization procedures is essential. Our
research comprises numerous experiments to demonstrate the
effectiveness of the proposed technique for image visualization.

Index Terms— Multisource, multispectral (MS) and hyperspec-
tral (HS) images, neural network, normalization, remote sensing,
standardization, visualization.

I. INTRODUCTION

THE unique spectral properties of different types of
materials determine variations in the way they absorb

light, thus giving each material a distinct spectral finger-
print. Multispectral (MS) and hyperspectral (HS) sensors are
capable of capturing a rich spectral information that can
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cover hundreds of spectral bands, allowing them to detect
even the smallest changes in the reflectance or radiance of
objects. The resulting images produced by MS and HS sensors
include additional spectral information about the chemical
composition of objects. This additional information makes
them extremely useful in a series of applications in areas,
such as agriculture [1], [2], forestry [3], [4], environmental
monitoring and ecology [5], [6], object detection [7], land
cover classification [8], [9], as well as military and industrial
fields.

In this article, machine learning techniques allow for notable
progress in a large range of applications of remote sensing.
Examples include a Siamese Transformer Network designed
for HS image target detection [10] and some techniques
for HS image denoising and anomaly detection [11], [12],
[13], [14]. These advances highlight the growing ability of
machine learning strategies to refine the understanding and
interpretation of remote sensing data.

The first step in MS and HS interpretation is the visualiza-
tion of the data in a comprehensive manner for human users.
MS and HS images contain more spectral information than
standard RGB channels can display, providing important data
about specific wavelengths, beyond the RGB capabilities.

A realistically displayed spectral satellite image enables
direct human interpretation and identification of areas of
interest, but accurate visualization is challenging because
of the need to compress information from numerous bands
into three while preserving essential spatial and spectral
detail.

Several visualization techniques have been proposed in the
scientific literature in order to generate realistic RGB images
from spectral images. These include band selection [15], [16],
independent component analysis (ICA) [17], and principal
component analysis (PCA) [18], [19] based methods, linear
and nonlinear methods [20], and, relatively recent, machine
learning approaches [21], [22].

While the classical method based on band selection uses
a very small part of the available information, disregarding
the information available in the other unused bands, better
results of visualization with artificial intelligence (AI) models
have already been reported in recent research papers [23].
Such methods, like the proposed one, allow for a more
realistic rendering of colors and, at the same time, producing
more appealing images (vivid colors, good contrast, and large
dynamic range) while showing the color as close to the real
colors of the scene, as they would have been perceived by a
human observer.
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An accurate visualization of satellite images can facilitate a
direct human interpretation for spotting pixels or areas affected
by various degradation (e.g., in agriculture, spotting areas
affected by diseases of the agricultural crops). Moreover, satel-
lite images rendered in a more realistic manner can be used as
a first step to verify the accuracy of different approaches, such
as classification, which can be initially appreciated visually.

A major challenge in addressing different tasks on MS and
HS images is the variability of the image data (spectral range
and spatial resolution) when obtained by different sensors.
Thus the primary goal of our research, presented in this
paper, is a method of processing such aggregated datasets,
obtained from various sources, using a fully connected neural
network (FCNN). Visualization is merely a secondary goal,
as a test case specifically for this fusion.

Although research in the area of visualization is still limited,
as already described in [24] and [23], a neural network trained
on a set of MS images can be used successfully to visualize
spectral images acquired by different sensors. Challenges in
this field include limited labeled training data and spectral
variability between different sensors, as they capture informa-
tion at different spectral wavelengths. The spectral variability
can make it difficult for a neural network to extract significant
and meaningful features in a coherent manner, especially if the
training data does not cover the full range of spectral variation.

This article explores different approaches to normalization
and standardization, respectively, of the data from different
datasets and describes experiments with different preprocess-
ing approaches. Our FCNN methodology efficiently handles
both MS and HS images. It also addresses the challenges of
band selection and spectral variability, making it a versatile
and robust approach for different data settings. Furthermore,
the architecture of the network and training hyperparameters
are presented in detail.

The main advantages of our method lie in the generalization
of the approach and adaptability to data of different spectral
and spatial resolutions. Furthermore, by combining publicly-
available datasets with appropriately labeled data for network
training, we ensure a principled and accessible foundation for
model learning.

Our proposed method also has the advantage of not requir-
ing further image postprocessing of the obtained RGB image,
which leads to a more polished and refined output straight out
of the model.

In the case of FCNN processing, information aggregation
is quite beneficial, especially when public data are lim-
ited. Such aggregation increases the methodology’s efficacy
despite related limitations. The visualization results demon-
strate potential even when dealing with datasets containing
fewer bands, indicating the versatility and robustness of
our methodology across various data configurations. Such
a methodology eliminates any doubt regarding the selection
criteria of the effective bands used.

This article is organized as follows. Section II describes
different MS and HS datasets used in our experiments,
pointing out the challenges of working with multisource
data. Section III presents the data preprocessing steps and
the proposed FCNN model architecture, together with the

model training process. The visual results of our experi-
ments for different strategies used are presented and discussed
in Section IV, and their comparative quality assessment is
outlined in Section V, showing the potential of the new
approach proposed in Section IV. Finally, the conclusions of
this article and some limitations of our study, which became
apparent after the completion of the research are empha-
sized in Section VI, together with future directions for our
research.

II. MATERIALS

A. Hyperspectral and Multispectral Imaging

MS and HS images are two types of remote sensing data
that capture information about the Earth’s surface by sensing
electromagnetic radiation. As mentioned in the introduction,
they are widely used in various fields, including agriculture
and environmental monitoring. The key distinction between
MS and HS images lies in their spectral resolution. HS images
have a far higher spectral resolution, catching data in several
narrow and contiguous bands, while MS images only capture
data in a small number of discrete bands. This higher spec-
tral resolution allows for a more detailed characterization of
surface materials based on their spectral signatures. MS and
HS images offer valuable insights into the Earth’s surface, and
the choice between them depends on the specific application
requirements and the level of spectral and spatial detail needed
for analysis.

Differences in sensor types used to capture MS and HS
images can introduce specific challenges and variations in
the data. Different sensors may have varying spectral band
configurations, capturing data in different wavelength ranges
or bandwidths. Multiple sources and sensor variety can result
in inconsistency when comparing or combining data from
different sensors. It is essential to carefully account for these
differences to ensure accurate and meaningful analysis. Also,
sensors used in MS and HS imaging require calibration to
ensure the accuracy and reliability of the captured data.
However, calibration procedures can vary between sensors
and platforms. Inconsistencies in calibration methods can lead
to differences in the radiometric or spectral accuracy of the
acquired data. Proper calibration and validation techniques
must address these issues and establish reliable and consistent
datasets. Each sensor has its characteristics and limitations,
such as spectral response functions, signal-to-noise ratios,
and dynamic ranges. These characteristics can also affect the
quality and reliability of the captured data. In spectral imaging,
sensors can have different spatial resolutions, affecting the
level of detail captured in the images. Combining or comparing
red multisource sensor data with different spatial resolutions
can introduce challenges, as the spatial variability may need
to align better.

In addition, researchers and analysts should be aware of
the sensor-specific characteristics and limitations and consider
them when interpreting and comparing data from different
sources. Standardization efforts are also conducted to facilitate
cross-sensor compatibility and consistency. While multisource
sensor differences can introduce challenges and variations
in the data, proper preprocessing and understanding of the
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sensor characteristics can be addressed to ensure accurate and
meaningful MS and HS imagery analyses.

B. Description of the Datasets

The availability of MS and HS imagery with high-resolution
spectral information has redefined our understanding of envi-
ronmental and ecosystem phenomena. These datasets are
increasingly accessible for both scientific and practical pur-
poses, and their analysis represents an initial step toward
gaining a deeper comprehension of the aforementioned phe-
nomena. Several datasets are recognized and used in this
article.

This study selected the CAVE and UGR datasets for the
model’s training due to their well-established reputation in
the literature. They offer a diverse range of colors, and the
images were captured under various environmental conditions.
Moreover, a corresponding RGB image is available for each
image in these datasets, facilitating a comprehensive analysis.

For the testing phase, three HS images were used, two
of them provided by the relatively recent PRISMA satellite
and one acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS-3) over Pavia University, Pavia, Italy.

1) CAVE Dataset: The CAVE dataset [25] comprises 32 MS
images captured indoors under controlled illumination condi-
tions. Each image has a resolution of 512 × 512 pixels in the
spatial domain. The spectral range is between 400 and 700 nm,
with a sampling interval of 10 nm, resulting in a total of
31 spectral bands. A corresponding RGB image with the same
spatial resolution is provided for each MS image. This dataset
does not contain any natural scenes.

2) UGR Dataset: The UGR dataset [26] contains 14 out-
door images of urban scenes. Most of these images possess
a spatial resolution of 1000 × 900 pixels. The spectral range
spans from 400 to 1000 nm, with a sampling interval of 10 nm,
resulting in 61 spectral bands, out of which 31 fall within the
visible spectrum. In addition, each MS image is accompanied
by a corresponding RGB image, sharing the same spatial
resolution.

As can be observed from the description, the CAVE and the
UGR MS images have in common the first 31 wavelengths
from the visual domain. This makes them suitable for using
the same FCNN with 31 input neurons. From UGR images,
we thus considered only the spectral bands in the visual range,
as these are relevant for visualization.

3) PRISMA Images: The PRISMA images used for coloring
in this study are obtained from the PRISMA HS satellite
operated by the Italian Space Agency (ASI). Two specific
images were captured, one on October 18, 2022, in the
northern region of Brasov county, Romania, and the other
on March 24, 2023. The satellite’s HS sensors are capable
of capturing images within a wide wavelength range of
239 spectral bands, spanning from 400 to 2500 nm. Among
these bands, 66 falls within the visible-near infrared range
(400–1010 nm), while 173 bands reside in the short-wave
infrared range (920–2500 nm). The spectral sampling interval
for the satellite’s images is less than 12 nm. Regarding spatial
characteristics, the images possess a resolution of 1000 ×
1000 pixels, with a ground sample distance of 30 m [27].

Fig. 1. Original values of one HS pixel from the first PRISMA image (blue)
and interpolated values (orange).

The spectral bands used for the experiments are in the visible
domain, covering the range from 406 to 713 nm, with an
approximate sampling interval of 8 nm.

4) Pavia University Dataset: The Pavia University dataset
was made available by the Telecommunications and Remote
Sensing Laboratory, Pavia University, in 2001. This dataset
was acquired using the ROSIS sensor during a flight campaign
conducted over Pavia. The dataset comprises 610 × 610 pixels
and covers a wavelength range from 430 to 860 nm with
115 spectral bands. It has a spatial resolution of 1.3 m
and a spectral resolution of approximately 4 nm. However,
some samples within the image do not contain any useful
information and must be eliminated before analysis. Once the
broken bands are removed, the 103 remaining bands can be
used further in the investigation [28].

In order to test the PRISMA and the Pavia University
images on the FCNN trained on the CAVE or the UGR dataset,
it is necessary to adapt these images to the network’s input
layer. As this input is calibrated to receive pixels with the
spectral signature of CAVE images, each spectral pixel from
the test image has to be mapped on the wavelengths of a
CAVE image pixel. This has been done in this study by linear
interpolation. For each wavelength of a test image (PRISMA
or Pavia University), the value of a CAVE image channel is
interpolated from the values of the two neighboring channels
of the test image.

Fig. 1 represents the original HS pixel from a PRISMA
image together with the interpolated values of this pixel.

It can be seen from Fig. 1 that by linearly interpolating the
PRISMA HS image to fit the bands of the CAVE dataset, the
changes in the data profile are negligible, thus justifying this
approach.

C. Prerequisites

In the context of machine learning experiments, standardiza-
tion, and normalization are preprocessing techniques used to
transform input data into a specific range or distribution. These
techniques are commonly applied to improve the performance
and convergence of machine learning models [29].

Standardization (z-score normalization or feature scaling)
transforms the dataset’s features into zero mean and unit
variance. It entails dividing each data point by the standard
deviation after taking the mean value of the feature out of
each data point.



5510912 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

The formula for standardization is shown in the following
equation:

z =
x − µ

σ
(1)

where z is the standardized value, x is the original value, µ is
the mean of the feature, and σ is the standard deviation of the
feature.

Standardization ensures that each feature has a similar scale
and range, which is beneficial for algorithms that assume nor-
mally distributed data or when features have different scales.
It centers the data around 0, with a standard deviation of 1.

Normalization (min–max scaling) transforms the dataset’s
features to a standard range—typically between 0 and 1. Still,
the range depends on the specific normalization technique used
and the requirements of the dataset. It involves subtracting the
minimum value of the feature from each data point and then
dividing it by the range.

The formula for normalization is shown in the following
equation:

x ′ =
x −min(x)

max(x)−min(x)
(2)

where x ′ is the normalized value, x is the original value,
min(x) is the minimum value of the feature, and max(x) is
the maximum value of the feature.

Normalization preserves the shape of the distribution and
is suitable when the absolute values of the features are not
important but rather their relative values or ratios.

Both standardization and normalization help improve the
performance of machine learning models by ensuring that
features are on a similar scale and avoiding the dominance of
certain features due to their larger magnitudes. It is important
to note that the impact of standardization and normalization on
performance can vary depending on the dataset and the specific
machine learning algorithm used. Therefore, it is advisable to
experiment with both techniques and evaluate their impact on
the model’s performance before finalizing the preprocessing
approach.

III. METHODS AND PROCEDURES

The objective of this Section is to discuss some elements
crucial to the success of the tests conducted for this study.
For the proposed visualization to perform, it is of great
importance to comprehend the preprocessing steps and the
model employed.

A. Data Preprocessing Step

The preprocessing stage is essential to data preparation in
machine learning and data analysis. Its main objective is to
convert raw data into a format suitable for additional analysis
or modeling.

Standardization and normalization are two of the many
methods included in preprocessing. They seek to improve
the performance and efficiency of various algorithms by
bringing the data within a predictable and manageable range.
Depending on the particular dataset, the type of issue, and
the algorithms being applied, these preprocessing methods

can change. It is advisable to test several transformation
strategies and assess their effects on the model’s performance
to choose the best approach for a particular task.

In this study, various data preprocessing and transformation
variations were tried precisely to study the feasible strategies
and related results comprehensively. Thus, two strategies were
highlighted in this article.

1) A strategy involving preprocessing on each file, con-
catenation of data from all the input files, shuffle,
and separation by train subset and test subset ((3/4)

and (1/4), respectively, of all existing pixels). We will
further call this strategy individual preprocessing.

2) A strategy involving concatenation without any prepro-
cessing beforehand, shuffle, splitting into train and test
(with the exact percentages as the previous strategy),
and application on the training subset of one of the
proposed preprocessing methodologies (standardization
or normalization). After training, our learning algorithm
has learned to deal with the data in scaled form,
so we have to normalize/standardize our test data
with the normalizing/standardizing parameters used for
training data. We will further call this strategy global
preprocessing.

From a technical perspective, for both strategies, Standard-
Scaler() [30] and MinMaxScaler() [31] have been used for
standardization/normalization, respectively.

B. Proposed AI Model Architecture

The problem of consistent spectral image visualization is
of significant importance, as it enables the users to visually
interpret and understand the acquired data. For sensors like
those of Landsat or Sentinel, with a small number of spec-
tral bands overall and three bands in the visual range, the
visualization problem is straightforward, as the three bans for
red, green, and blue generate the corresponding RGB images.
With the upcome of multisource modern MS and HS sensors
with a wide range of spectral bands in the visual range,
the problem of correct and accurate visualization gets more
complex. Generally, classical methods like the ones mentioned
in the introduction, often result in low-quality images and
usually need adjustments.

Starting from the ideas in [23], an FCNNwas constructed
and trained on a set of MS images, as mentioned in [24],
in order to visualize spectral images acquired by different
sensors. Below, we provide a detailed description of the
network architecture and the hyperparameters utilized during
training.

1) Model Description: Consistently mapping n-dimensional
spectral pixel on a tridimensional RGB pixel can be considered
a regression problem, and thus, an FCNN is an appropriate
model for learning this mapping. The model, as illustrated
in Fig. 2, consists of five layers: an input, an output layer, and
three hidden layers.

The input layer consists of 31 neurons, as the number of
channels of the CAVE images is 31, all in the visual range,
and the number of spectral bands in the visual range of the
UGR images is also 31. The number of output neurons is 3,
one for each RGB color.
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Fig. 2. Model pipeline.

In the hidden layer, the number of neurons was chosen to
decrease from the size of the input toward the size of the
output by a factor of 2. From this consideration and taking
into account the computational advantage of data structured as
the power of 2, in the first hidden layer, we used 32 neurons,
in the second 16, and in the third 8. The activation function
on the hidden layers is the exponential linear unit (ELU) [32],
as we did not want to discard negative values.

Assessing machine learning models’ performance is crucial
for evaluating their effectiveness and suitability for specific
assignments. Two commonly used loss functions are mean
squared error (MSE) and mean absolute error (MAE). As MSE
is very sensitive to outliers, while MAE reduces their impact
almost completely, we chose the HuberLoss function, which
combines both errors in an balanced way [33]. The Huber loss
is defined as follows:

Lδ(y, f (x)) =


1
2
(y − f (x))2, |y − f (x)| ≤ δ

δ

(
|y − f (x)| −

1
2
δ

)
, |y − f (x)| > δ

(3)

where y is the true value, f (x) is the predicted value, and δ

is a parameter that determines the threshold for which, in the
loss function, the MSE is replaced by MAE.

For the data points where the distance between the label
and the predicted value is small, less than the threshold δ, the
function behaves like MSE. This makes it more robust to noise.
However, for data points with larger differences, it switches to
a linear loss. This makes it less sensitive to outliers and helps
in providing a more stable estimation. If the outliers comprise
20%–30% of the data, the MAE will ignore them entirely.
However, Huber loss will create a balance if the outliers are
significant, and therefore, it is a useful choice when dealing
with datasets that may contain outliers or noise.

The selection of δ plays a crucial role. In our case, the
value δ = 10.0 parameter for the HuberLoss was selected
empirically. We considered that a difference of 10 between two
values (of a color channel) is acceptable for using the MSE,
similar to just noticeable difference (JND) corresponding to
1E = 3 in CIELab.

2) Model Training: After substantial testing, 150 epochs
for training were determined to be adequate for accurate color
mapping. The number of pixels in a batch was 2048 to shorten
training time. In the backpropagation step, a common value for

the learning rate α = 0.005 and the Adam optimizer provided
by the Pytorch library was used.

The model was trained on Intel1 Core2 i7-7700 CPU at
3.60-GHz server with eigh CPUs, and the duration of the train-
ing on 150 epochs on the UGR dataset was approximately 2 h.

The set used for training was preprocessed, as discussed
in Section IV-A2, by concatenating all the pixels from all the
images, shuffling, partitioning them into train and test sets,
and standardizing over the train set.

The training algorithm can be described as follows.
Model Training Steps
1) Load pixels from all the images of the dataset (CAVE

or UGR), shuffle the pixels, and partition into train and
test (75% versus 25%).

2) Preprocess data by standardization using scikit-learn
StandardScaler [30].

3) Split set in random batches of 2048 pixels.
4) Train the model using HuberLoss.
In order to enhance clarity and facilitate a deeper under-

standing of the proposed methodology, pseudocode has been
provided to describe key steps in detail in Algorithm 1.

Algorithm 1 Pseudocode for the Training of the FCNN
Require: path_dataset, model, lr = 0.005, epochs = 150
1: (data, labels)← load_pixels(path_dataset)
2: shu f f le(data, labels)
3: nr_train_data← ( 3

4 ) ∗ len(data)

4: nr_test_data← len(data)− nr_train_data
5: train_set ← (data.head(nr_train_data), labels.head(nr_train_data))

6: test_set ← (data.tail(nr_test_data), labels.tail(nr_test_data))

7: Initialize the StandardScaler and Standardize training data
8: Apply Scaler on test data
9: batch_si ze← 2048

10: Initialize weights of the model
11: optimizer ← AdamOptimizer(lr, weight_decay = 0.0008)

12: best_loss ← maxV alue
13: loss_ f unction← Huber Loss(10.0)

14: train_loss_vec← []
15: test_loss_vec← []
16: for epoch ∈ (1, epochs) do
17: train_loss ← 0
18: for batch, (x, y) ∈ train_set do
19: y_pred = model(x)

20: loss ← loss_ f unction(y, y_pred)

21: Backpropagation Step - backprop(loss)
22: train_loss ← train_loss + loss.i tem()

23: end for
24: train_loss ← train_loss/(batch_si ze)
25: train_loss_vec.append(train_loss)
26: if train_loss < best_loss then
27: Save current weights
28: best_loss ← train_loss
29: else
30: end if ▷ Now evaluate on test set
31: test_loss ← 0
32: for batch, (x, y) ∈ test_set do
33: y_pred ← model(x)

34: loss ← loss_ f unction(y, y_pred)

35: test_loss ← test_loss + loss.i tem()

36: end for
37: test_loss ← test_loss/(batch_si ze)
38: test_loss_vec.append(test_loss)
39: end for
40: Save current weights
41: plot (train_loss_vec, test_loss_vec)

The graphical representation of the loss decay on the
train and the test sets for the CAVE and UGR datasets are
represented in Fig. 3. It can be seen from this figure, that

1Registered trademark.
2Trademarked.
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Fig. 3. Loss decay on the train and test sets when training the model with
the CAVE dataset and UGR dataset, respectively.

Fig. 4. Visualization results of the experiments described in Section IV-A,
in which global preprocessing was done on the datasets. (a) One sample
of CAVE and UGR datasets, respectively. The other subfigures show the
results of the FCNN trained on (b) CAVE and (c) UGR, respectively, with
global normalization and on (d) CAVE and (e) UGR, respectively, with global
standardization of the training set.

on the train set, the loss decays very steeply during the first
epochs and then gets stabilized, while to achieve similar results
on the test set, the network needs more training.

IV. RESULTS FOR DIFFERENT STRATEGIES

A. Results With Global Preprocessing

In these experiments, the general strategy is that after
splitting into the train and test subsets, normalization or
standardization was performed on the entire training set, and
then, the results were applied to the test set. For inference, the
chosen method is applied to the image being colored, using
the parameters from the train.

1) Global Preprocessing With Normalization: Fig. 4(b) pre-
sented the results of the FCNN trained on the CAVE dataset,
and Fig. 4(c) presented the results when training the FCNN
on the UGR dataset, on one sample image, see Fig. 4(a), from
each of these datasets. The data was preprocessed by min–max
normalization on the respective training set using the MinMax
scaler.

The results of the FCNN trained on the CAVE and
UGR Datasets on the Pavia University image are presented
in Fig. 6(a) and (b). The results of the model on one of the
images acquired by the PRISMA Satellite in both treating

Fig. 5. Visualization results of experiments described in Section IV-B,
in which preprocessing was done on each image of the datasets separately.
(a) One sample of CAVE and UGR datasets, respectively. The other subfigures
show the results of the FCNN trained on (b) CAVE and (c) UGR, respectively,
with normalization and on (d) CAVE and (e) UGR, respectively, with
standardization on each image of the training set.

scenarios are presented in Fig. 7(a) and (b). The Pavia Uni-
versity and the PRISMA spectral images were interpolated,
to match the input spectral bands and were normalized using
the parameters obtained on the respective training sets.

2) Global Preprocessing With Standardization: The results
of the FCNN trained separately on the CAVE and the UGR
datasets, respectively, on one sample image of each of these
datasets [Fig. 4(a)] are presented in Fig. 4(d) for the CAVE and
in Fig. 4(e) for the UGR trained network. The standardization
in each case was done on the corresponding training dataset
using the standard scaler.

The results of this method on the Pavia University image
can be seen from Fig. 6(c) and (d), and the results on PRISMA
HS image are presented in Fig. 7(c) and (d).

B. Results With Individual Preprocessing

In these experiments, before concatenating all the images
and separating them into train and test subsets, each image
is taken and brought into the same range of values by
normalizing/standardizing each one according to its own
values.

1) Individual Preprocessing by Normalization: Each image
is considered separately, and then normalized according to the
min/max in the image, thus transforming all values into the
range [0, 1]. All the images are then concatenated and
the resulting pixel set is split into train and test subsets,
respectively. At inference, an image is normalized and colored
according to its associated min/max values.

Fig. 5 presented the results of the coloring using the FCNN
trained on CAVE and UGR datasets, respectively, normalizing
each image before concatenating with the others.

Fig. 6(e) and (f) presented the coloring results on Pavia
University and Fig. 7(e) and (f) those on the PRISMA image,
with the CAVE, respectively UGR-trained FCNN, normalizing
each image with respect to its own min–max values.

2) Individual Preprocessing by Standardization: In this
approach, each image is considered separately, and then stan-
dardized according to the mean/average deviation in the image,
so all values are brought into the standard range [−1, 1].
The processed images are then concatenated and the resulting
pixel set is split into train and test subsets, respectively.
At inference, an image is standardized and colored according
to the distribution of values in the image.
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Fig. 6. Visualization of the results on the Pavia University MS image using
the FCNN trained in the described scenarios on (a) CAVE and (b) UGR,
respectively, with global normalization and using for inference the same scaler
as for the training set; on (c) CAVE and (d) UGR, respectively, with global
standardization and using for inference the same scaler as for the training set;
on (e) CAVE and (f) UGR, respectively, with normalization of each image
with respect to its own min–max values; and on (g) CAVE and (h) UGR,
respectively, with standardization of each image with respect to its own mean
and standard deviation.

Fig. 5 presented the results of the coloring using the
FCNN trained on CAVE and UGR datasets, respectively,
standardizing each image before concatenating with the others,
on samples of these datasets.

Fig. 6(g) and (h) presented the coloring results on Pavia
University and PRISMA using the CAVE- and UGR-trained
FCNN, respectively, normalizing each image with respect to
its own mean/std values. The visualization results of the FCNN
on a PRISMA HS image are presented in Fig. 7(g) and (h).

C. Different Approach

The experiments interpreted from the previous figures show
that the best coloring results on the CAVE and UGR datasets
were obtained when normalizing or standardizing the training
set (global preprocessing) and using the respective parameters
on the test set. This strategy follows the standard practice in
machine learning flows. On the other hand, the results were not
acceptable on the Pavia University and the PRISMA images.
This is not surprising, as these images are bound to.

Fig. 8 illustrated the distributions on the green channels
(650 nm) for the CAVE Fig. 8(a) and the UGR Fig. 8(b)
datasets, together with those of Pavia University Fig. 8(c)
and the first PRISMA image Fig. 8(d), both calculated after
interpolation. We selected the green channel for illustration,
but the observation is valid for any other 31 channels of the
spectral images considered.

As we aimed to obtain a model that should be able to
visualize images from different acquiring sources with differ-
ent distributions and spectral signatures, we tried following a
nonstandard approach. We considered the FCNN model, with
global preprocessing by standardization in the training stage.
After training, to visualize Pavia University and PRISMA
images, these were standardized concerning their own mean

Fig. 7. Visualization of the first PRISMA HS image using the FCNN trained
in the described scenarios on (a) CAVE and (b) UGR, respectively, with global
normalization and using for inference the same scaler as for the training set;
on (c) CAVE and (d) UGR, respectively, with global standardization and
using for inference the same scaler as for the training set; on (e) CAVE
and (f) UGR, respectively, with normalization of each image with respect to
its own min–max values; and on (g) CAVE and (h) UGR, respectively, with
standardization of each image with respect to its own mean and standard
deviation.

and standard deviation to obtain for each channel the mean
of 0 and the standard deviation of 1.

The following algorithm can express the inference step.
Visualization Algorithm
1) Interpolate image to fit CAVE spectral range.
2) Load the pixels of the interpolated image.
3) Standardize the pixels with PyTorch StandardScaler rel-

ative to their mean and variance.
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Fig. 8. Distributions on the green channel (considered at 550 nm) for CAVE
and UGR datasets and for Pavia University and PRISMA spectral images.
(a) Distribution for CAVE. (b) Distribution for UGR. (c) Distribution for
Pavia University. (d) Distribution for PRISMA.

Fig. 9. Visualization of the results on Pavia University (a), first PRISMA
image (b) and second PRISMA image (c) when standardizing those images
according to their own distribution using the CAVE trained FCNN. Visualiza-
tion of the results on Pavia University (d), first PRISMA image (e) and second
PRISMA image (f) when standardizing those images according to their own
distribution using the UGR trained FCNN.

4) Use the model to predict the corresponding (R, G, B)

triplet for each interpolated image pixel.
5) Construct the RGB image with respect to the original

size of the input image.
To enhance clarity and promote a thorough understanding of

the proposed methodology, we have incorporated pseudocode
of Algorithm 2 to provide detailed descriptions of inference
step.

Algorithm 2 Pseudocode for Visualization using the FCNN
Require: path_ms_image, model, input_ f req, target_ f req
1: image← load(path_ms_image)
2: inter polated ← Interpolate(image, input_ f req, target_ f req)
3: Scale inter polated with StandardScaler
4: predicted ← model(inter polated)

5: Make RGB image from predicted

The results of this approach are presented as follows:
for the Pavia University image in Fig. 9(a) (CAVE-trained

Fig. 10. Illustrations of the artifacts in the PRISMA image in a region
of interest. (a) Region from the image in Fig. 7(g). (b) Region from image
in Fig. 7(h).

FCNN) and 9(d) (UGR-trained FCNN), for the first PRISMA
image in Fig. 9(b) (CAVE-trained FCNN) and 9(e) and
for the second PRISMA image in Fig. 9(c) and (f),
respectively.

V. DISCUSSION AND COMPARISONS

Various experiments have been carried out in this study,
all aiming to better visualize the considered spectral images.
And since we want to determine which of the discussed
approaches is better, a variety of data from different types
of sensors were used.

All the results to be commented on are presented from
Figs. 4–13. We will comment on each experiment, in the same
order in which they were performed.

Fig. 4 shows the results of the experiments in the case of
global preprocessing by normalization over the whole training
set. As can be noticed, visually, the results are quite similar in
terms of colors. However, on closer inspection, it can be seen
that there are also pairs with better contrast, in the sense that
the coloring of an UGR image works better with a network
trained with UGR images and similarly for CAVE images.

Fig. 5 shows the results of the experiments when each
image is normalized/standardized according to its own values.
As can be seen, normalization works better than standardiza-
tion, which makes sense because during the preprocessing by
normalization each feature undergoes a transformation to fit
within a new range, while preserving its original relationships
with the other features in the data, meaning that all the
relational properties within the data remain intact [34].

Following these tests, this type of preprocessing with nor-
malization seems to be a consistent option. The alternative
with standardization is not plausible because this transforma-
tion step tends to change the relationships between colors,
which leads to artifacts, especially for images that are not part
of the training dataset, see Fig. 10(a) and (b).

Figs. 6 and 7 represent the results of tests performed on
images obtained from different types of sensors and having
different characteristics than the images in the training sets.
To use the network on images such as Pavia University image
or the images acquired by PRISMA, a mandatory step was
the interpolation one, which is necessary to map the spectral
bands of those images on the input with 31 channels of the
model.
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Fig. 11. Selection of neurons with highest absolute values on the first layer.

Regardless of the training dataset, CAVE or UGR, if we
normalize or standardize over the whole training set and at the
inference step we use the scaler/properties from the training
stage, the results for the images taken from other sensors are
very bad in terms of brightness and contrast, on Pavia even
worse than on PRISMA [see Fig. 6(d)—standardization on
UGR versus Fig. 7(d)].

Normalization on each image yields good results on
Pavia [Fig. 6(e) and (f)] and acceptable on PRISMA
[Fig. 7(e) and (f)]. In contrast, standardization on each
image generates significant artifacts, see Figs. 6(g) and 7(g)
for the standardization on each image in CAVE, and
Figs. 6(h) and 7(h) for the standardization on each image in
UGR. These artifacts can be seen more clearly on a selected
region in PRISMA image, as illustrated in Fig. 10.

In Fig. 9, we presented different experiments for visualiza-
tion of spectral images by means of a FCNN. As could be seen
from all previous figures compared with Fig. 9, the best results
on images that were acquired by other sensors than those used
for the images in the training set and with another spectral
signature, were obtained by using global preprocessing in the
training step, but standardizing these images according to their
own mean and standard deviation at inference.

We also compared our results with some conventional
methods of spectral image visualization namely band selec-
tion and XY Z space [35] as well as two other methods:
decolorization-based HSI visualization [36] and multichannel
pulse-coupled neural network (MPCNN)-based HSI visual-
ization [37]. Figs. 12 and 13 displayed the results of the
visualization of the first PRISMA image and the second
PRISMA image, respectively, using these methods.

Moreover, we studied if our method favors certain wave-
lengths with respect to others, as is the case for band selection.
By plotting the weights between the input and the first hidden
layer, we found out, that all the bands contribute in a balanced
manner to the final results. Fig. 11 displayed a selection of
these weights. Each color represents the weights of one input
neuron to the neurons on the next layer, while each input
neuron corresponds to one wavelength.

In conclusion, the results of our tests are better than the
results of conventional methods, at least on PRISMA, our use
case, regardless of how the preprocessing stage is performed.
Given the fact that the standardization for other types of
images is done relative to their mean and variance, we believe
that a network that has been trained on images with a good
distribution of light and contrast will tend to produce images

Fig. 12. Comparative results of classic and advanced visualization tech-
niques with the new approach for the first PRISMA image. (a) Band
selection. (b) Coloring with XY Z space. (c) Decolorization-based visual-
ization. (d) MPCNN visualization. (e) Results with CAVE-trained FCNN.
(f) UGR-trained FCNN.

with good contrast and light, even if the original images are
affected by the atmospheric conditions. These results justify
using this type of approach in the case of satellite images.

A. Comparative Quality Assessment

In order to perform a numerical quality comparison between
the results presented in Figs. 12 and 13, some no-reference
image quality assessments [38], [39] like entropy, which
estimates information quantity, fractal dimension, which esti-
mates the complexity and standard deviation, which estimates
nonuniformity, were used. These values were calculated using
adequate scripts offered by Ivanovici and Richard [40] for
entropy and Ivanovici [41] and Caliman et al. [42] for fractal
dimension, and the MATLAB std2 function for the standard
deviation of an image. The PRISMA images were correspond-
ingly scaled as the scripts were calibrated for 256 × 256. For
calculating the fractal dimension, the parameters used were
LMAX ∈ {41, 71, 101}, representing the maximum size of
the hypercubes and a threshold of 0.00001 for the standard
deviation [43].
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Fig. 13. Comparative results of classic and advanced visualization tech-
niques with the new approach for the second PRISMA image. (a) Band
selection. (b) Coloring with XY Z space. (c) Decolorization-based visual-
ization. (d) MPCNN visualization. (e) Results with CAVE-trained FCNN.
(f) UGR-trained FCNN.

It is important to note that the actual entropy values of color
images will depend on the specific content and distribution
of pixel intensities in the image. Images with complex color
patterns, a wide range of intensities, and diverse color distribu-
tions are likely to have higher entropy values. Hence, a higher
value of the entropy indicates a higher informational content,
and a higher value of the fractal dimension indicates higher
complexity of the scene and is directly correlated with the
contrast of the image. A larger variance is also characteristic
of images with a larger variety, thus greater informational
content.

When satellite land cover images include agricultural areas,
as well as urban and nonagricultural surfaces, as seen in
the PRISMA images presented in this study, we expect a
consistent visualization to exhibit large values for the entropy,
the fractal dimension, and the variance.

The processed values for these measures in the case of
the visualizations presented in Figs. 12 and 13 are displayed
in Tables I and II. It can be observed that the largest
values for entropy and variance are obtained in the case
of the MPCNN method, closely followed by the results

TABLE I
COMPARATIVE QUALITY ASSESSMENT FOR THE FIRST PRISMA IMAGE

TABLE II
COMPARATIVE QUALITY ASSESSMENT FOR THE SECOND PRISMA IMAGE

provided by our FCNN. As the visualization results presented
in Figs. 12(d) and 13(d), the MPCNN method provides images
with large variability, but with completely unnatural colors,
being thus unusable in the case of the PRISMA images. Thus,
the visualizations obtained by our method, exhibit the best
visual results and almost the best quantitative ones. Conse-
quently, it is evident that the FCNN visualizations yield the
best results for all the measures, with slightly greater contrast
for the CAVE-trained FCNN. These quantitative results further
justify the approach proposed in this article.

VI. CONCLUSION

Processing multisource spectral images is still challenging
as more satellites with different sensor characteristics are
launched, and their products are freely available for scientists
and other users. This article aims to resolve part of the
problems posed by a consistent and qualitative visualization
of such images, using an FCNN trained on two of the most
known public spectral datasets appropriate for this purpose.

Furthermore, we studied and performed several prepro-
cessing procedures, which are very important in this FCNN
approach to visualize multisource images exhibiting different
spectral signatures.

The results we obtained were evaluated both visually and by
conventional measures of information content. This evaluation
has shown that the images generated by our method can
provide a deeper understanding of various aspects, such as
identifying agricultural patches and urban centers.

The visual and quantitative results indicate that the proposed
methodology is a promising direction for a consistent and qual-
itative multisource spectral image visualization. There are still
some limitations of this approach. For example, in cases where
the source image exhibits minor variance, the application
of standardization may compromise the realism of coloring.
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The reliance on labeled data for training limits our dataset
choices to those that are annotated and publicly accessible.
This limitation could affect the diversity and representativeness
of the training data; hence, further research is needed to
address these issues. In addition, when combining datasets,
we must either interpolate or truncate information to balance
the dataset differences, each option having its trade-offs.

Our future research efforts will be based on addressing
some of these limitations. This preliminary work can prepare
the ground for our next objective that is interpreting the
data through the perspective of vegetation indices and other
elements relevant to the agricultural sector, thus increasing the
usefulness of our approach in this sector.
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of Braşov, Braşov, Romania, in 2011.

She is currently a Lecturer with the Faculty of
Mathematics and Computer Sciences, Transilvania
University. She is also a member of the Depart-
ment’s Machine Learning Research Group, founded
in 2018 and part of the Project Artificial Intelligence

and Earth Observation for Romania’s Agriculture (AI4AGRI). Her research
interests include machine learning, image processing, spectral imaging and
remote sensing, formal languages, algorithms, and data structures.
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