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ABSTRACT With the rapid development of economic globalization and information technology, the
projects undertaken by enterprises are gradually becoming larger and more complex. The multi-project
management model has become the norm in enterprise management, and it shows a trend of decentralization
in terms of geographical distribution and management environment. This decentralization mainly manifests
in the fact that each project has its own private information and benefit objectives and shares limited
global resources with other projects during the execution process, forming a decentralized decision-making
environment. As an extension of the resource-constrained project scheduling problem, the decentralized
resource-constrained multi-project scheduling problem integrates single-project scheduling and global
resource coordination allocation in a decentralized decision-making environment with multiple independent
decision-makers. Furthermore, when considering global resources as multi-skilled staff, the decentralized
multi-project scheduling problem sharing multi-skilled staff studied in this paper is proposed. A two-layer
model containing local scheduling and global coordination decision-making is established to describe this
problem. A two-layer approach (TLA) is proposed to solve this problem. In the local scheduling layer, a bat
algorithm based on forward-backward scheduling (BAFBS) is developed to generate local baseline schedules
to minimize the single-project completion time. In the global coordination decision-making layer, a variable
neighborhood tabu search algorithm with greedy assignment strategy is designed to resolve global resource
conflicts to minimize the multi-project total tardiness cost. Computational experiments are conducted based
on the Multi-Project Scheduling Problem LIBrary dataset. The results show that the BAFBS can obtain
high-quality local baseline schedules. Compared to the existing decentralized and centralized methods,
our proposed TLA can get better solutions on most problem subsets, which proves that our approach can
effectively coordinate the allocation of multi-skilled staff among multiple projects.

INDEX TERMS Decentralizedmulti-project scheduling,multi-skilled staff, two-layer approach, tabu search,
bat algorithm.

I. INTRODUCTION
Project scheduling, as an important component of project
management, can provide scientific decision-making sup-
port for project managers [1]. The resource-constrained
project scheduling problem (RCPSP) studies the reasonable
scheduling of the start time of all activities while satisfying
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the priority relationship constraints between activities and
resource constraints to achieve the goals of project managers,
such as minimizing project completion time or cost [2], [3],
[4]. With the development of the global economy and the
intensification of market competition, the scale and quantity
of projects that enterprises need to manage simultaneously
have also increased. The multi-project operation mode has
become the primary way to manage complex tasks efficiently
for many enterprises. As an extension of the RCPSP,
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the resource-constrained multi-project scheduling problem
(RCMPSP) has been widely studied in recent years [5], [6],
[7], [8]. The RCMPSP not only needs to satisfy the priority
relationship constraints and local resource constraints, but
also involves the reasonable allocation of global resources
among projects. In the case of limited global resource avail-
ability, it is necessary to meet the requirements of all project
activities for global resources to construct a reasonable multi-
project schedule. The centralized management method is the
most commonly used to tackle RCMPSP [9], i.e., integrating
all the activities of multiple projects into a super- or meta-
network, and then a unified decision-maker with complete
information onmultiple projects makes a scheduling plan and
allocates resources.

With further globalization and the rapid development of
information technology, the dominant trend in multi-project
management is toward decentralization [10], such as some
large or multinational companies have branches in geo-
graphically distributed areas, each managed by its own
manager. Based on the practical background of decentralized
management, the decentralized resource-constrained multi-
project scheduling problem (DRCMPSP) is proposed, which
has been verified to be an NP-hard problem [11] and
has received extensive attention from many scholars [12],
[13], [14], [15]. In the DRCMPSP, multiple projects are
managed in a decentralized decision-making environment.
Specifically, the execution of each project requires local
resources and global resources with limited availability.
Local resources are only available to a single project, and
global resources are shared among multiple projects. Each
single project is directed by an individual project manager,
i.e., the local decision-maker. Project managers do not
exchange information with each other. Their only connection
is to compete for global resources. Global resources are
managed and allocated by a senior manager, i.e., the global
decision-maker. Since the information is not shared among
projects, it often leads to conflicts in using global resources.
The senior manager needs to coordinate global resource
allocation to eliminate conflicts. How to allocate global
resources reasonably and reduce the adverse impact of
limited resources on multi-project is the key of DRCMPSP
research. When global resources are multi-skilled staff, the
coordination of resources becomes more complex, such
as the matching relationship of ‘‘activity-skill-resource’’
needs to be considered, i.e., the execution of activities
requires specific skills, and skills are mastered by multi-
skilled staff. Thereby, the decentralized resource-constrained
multi-project scheduling problem sharing multi-skilled staff
(DRCMPSP-MS) is proposed [16].

The application scenarios of the DRCMPSP-MS can
be found in many real-life practices. Taking the software
development projects presented by Yu et al. [16] as an
example, introduce the scenarios involving project schedul-
ing and human resource management and explain how these
scenarios relate to DRCMPSP-MS. In order to satisfy user
demands, software development enterprises often execute

multiple software development projects in parallel, such
as e-commerce projects, network office platform projects,
etc. Each software development project is in charge of
different project teams. The internal staff of each project team
only execute their own projects. The leader of each project
team (i.e., the project manager) is responsible for managing
internal staff and making independent scheduling decisions
for their own projects, including determining the allocation
of internal staff and the start time of project tasks. Multi-
skilled staff with coding, testing, and other development
skills are shared among multiple software development
projects and managed by the senior manager of multiple
projects. Executing each project may require both internal
staff and shared multi-skilled staff. Due to the non-sharing
of scheduling information among project managers and
the limited number of staff, it often leads to conflicts in
the use of shared multi-skilled staff. The senior manager
needs to coordinate the allocation of multi-skilled staff to
resolve conflicts. Parallel execution of multiple software
development projects is equivalent to scheduling multiple
projects simultaneously in the DRCMPSP-MS. The internal
staff of project teams and the multi-skilled staff shared
among multiple projects are equivalent to the local resources
and global resources in the DRCMPSP-MS. The project
managers act as the local decision-makers of the DRCMPSP-
MS, who master all information about internal activities and
local resources, and determine the local scheduling plans
and local resource allocation schemes. The senior manager
corresponds to the global decision-maker in the DRCMPSP-
MS, who masters global resource information, identifies
resource conflicts among multiple projects, and coordinates
global resource allocation. Project scheduling and human
resource management are equivalent to determining the start
time of all multi-project activities and developing allocation
schemes for local and global resources in theDRCMPSP-MS.

The main reasons for solving the DRCMPSP-MS are as
follows: on the one hand, the DRCMPSP-MS involving
decentralized multi-project scheduling and multi-skilled staff
assignment is relatively common in practical applications.
The research in this paper can provide some methodological
support and decision-making reference for project managers
to solve such problems. Based on the reliable multi-project
schedules and global resource allocation schemes, project
managers can allocate resources to project activities effec-
tively and facilitate the optimization of project performance
objectives. On the other hand, as an extension of the
DRCMPSP, the DRCMPSP-MS also belongs to NP-hard.
Related studies on DRCMPSP-MS have been carried out
in the literature [16], and the research in this paper
has a certain theoretical foundation. Based on existing
research, this paper designs a new approach to solve the
DRCMPSP-MS in order to obtain better solutions and further
enrich the theory and methods of decentralized multi-project
scheduling.

In the DRCMPSP-MS, multiple projects are scheduled
simultaneously. The execution of activities requires local
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and global resources. The local resources refer to the
ordinary staff who possess only one skill and are managed
within a single project. The global resources represent the
multi-skilled staff who master several skills and are shared
among multiple projects. Each single project is directed by
a local decision-maker, which makes scheduling decisions
according to the local information to minimize the project
completion time (local objective). The global decision-maker
is required to allocate global resources to minimize the
multi-project total tardiness costs (global objective). In addi-
tion, the heterogeneous characteristics of multi-skilled staff
and the decentralized management environment undoubtedly
increase the complexity of the scheduling problem and
make it more challenging to solve. We attempt to develop
a new approach to tackle the DRCMPSP-MS. The main
contributions are described as follows:

• Our work considers multi-skilled staff as shared
resources in a decentralized multi-project scheduling
environment. Moreover, a two-layer model con-
taining local scheduling and global coordination
decision-making is established to formulate the research
problem.

• A two-layer approach (TLA) is developed to solve
the DRCMPSP-MS. In the local layer, a bat algorithm
based on forward-backward scheduling (BAFBS) is
designed to handle the local scheduling problem. In the
global layer, a variable neighborhood tabu search algo-
rithm with greedy assignment strategy (VNTS-GAS)
is proposed to resolve global resource conflicts, where
the variable neighborhood tabu search identifies the
execution order of conflicting activities and the greedy
assignment strategy coordinates multi-skilled staff
allocation.

• The performance of BAFBS is evaluated based on
different-size problem instances. The experimental
results demonstrate that the BAFBS can obtain
high-quality local scheduling solutions. In addition,
comparing the results with that of three state-of-the-
art methods (TSA-SSM, PSGSMINSLK, and BRKGA)
in the existing literature, the effectiveness of the
proposed TLA is verified. When managers encounter
such problems in practice, they can use our approach to
make quick and effective decisions.

The remainder of the paper is organized as follows.
Section II reviews the relevant literature. Section III provides
the problem description and mathematical model. The
proposed two-layer approach is presented in Section IV.
Section V presents the computational experiments and
results. Section VI draws conclusions and discusses future
research directions.

II. LITERATURE REVIEW
The literature review contains the following parts: the
decentralized multi-project scheduling problem and the
multi-skilled project scheduling problem.

A. DECENTRALIZED MULTI-PROJECT SCHEDULING
PROBLEM
The existing literature on the DRCMPSP focuses on develop-
ing coordinated approaches to solve global resource conflicts.
Two main methods have been proposed: the auction-based
mechanism and the negotiation-based mechanism.

In the auction-based mechanism, Lee et al. [17] found that
large firms tended to manage multiple projects in a decen-
tralized way and coordinated shared resource allocation in
decentralized environments using an auction-based approach.
Confessore et al. [11] introduced the DRCMPSP with local
and global renewable resources and proposed the iterative
combinatorial auction mechanisms to tackle the problem.
Adhau et al. [12] developed a multi-unit combinatorial
auction-based approach to minimize the average project
delay. The local decision-makers submitted a bid consisting
of the resource requirement of the eligible activity and the
bid price, and the global decision-maker determined the
winner of each auction round via a heuristic procedure.
Liu et al. [18] proposed a combinatorial auction mechanism
to solve the decentralized surgical scheduling problem with
conflicting multiple renewable resource requirements. Other
researchers [13], [19] have also used the auction-based
mechanisms to deal with the DRCMPSP. In the negotiation-
based mechanisms, Lau et al. [20] developed an agent-based
model and negotiation-based algorithm for the DRCMPSP
in supply chains. During the negotiation process, project
agents and contractor agents proposed and counter-proposed
operation start times iteratively until an acceptable agreement
was achieved. Homberger [21] presented a restart evolu-
tion strategy for allocating global resources. Subsequently,
Homberger and Fink [22] developed two generic negotiation
mechanisms with side payments to address the DRCMPSP.
One mechanism randomly generates high-quality solutions
and divides monetary surpluses at the same stage. The
other identified a set of Pareto optimal solutions, and the
decision-maker requested a monetary surplus to choose
the final solution. Li and Xu [23] proposed a two-stage
decomposition approach to solve the DRCMPSP. In stage
one, the initial local schedules were generated. In stage
two, a sequential game-based negotiation mechanism was
developed to coordinate shared resource conflicts. Some stud-
ies [24], [25] also designed different negotiation mechanisms
to handle the DRCMPSP.

Some other project scheduling problems have been
extended based on the DRCMPSP. Adhau et al. [26] and
Zhao and Xu [27] further investigated the DRCMPSP with
transfer times and transfer costs of global resources between
multiple projects. Li et al. [9] addressed a new decentralized
multi-project time-cost trade-off problem, where multiple
projects competed for the limited global budget. Fu and
Zhou [28] considered information asymmetry and resource
heterogeneity based on the DRCMPSP. Liu and Xu [15]
proposed a multi-PR heuristic for DRCMPSP without
local resource constraints, in which activity durations were
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modeled as stochastic variables. Liu et al. [10] studied the
DRCMPSP subject to global resource disruption. A three-
stage algorithm with a task-scoring mechanism was proposed
to solve the problem, which was generic for scheduling
generation and repair processes. Zhao and Xu [14] designed
a rollout policy-based approximate dynamic programming
algorithm for solving the DRCMPSP with resource trans-
fers and uncertain activity durations. The primary relation
between the above studies and this paper is that they are
all extension problems of DRCMPSP. The solving process
of these extensions involves local project scheduling and
global resource coordination allocation. The main difference
is that different extension perspectives form different types
of project scheduling problems, and the above studies
further consider scenarios such as resource transfer, time-
cost trade-off, and global resource disruption based on
the DRCMPSP. In contrast, this paper focuses on global
resources as multi-skilled staff on the basis of the DRCMPSP,
which is not considered in the abovementioned studies.
The main contributions of these studies are to further
enrich the research content of the decentralized multi-project
scheduling problem and design some effective decentralized
scheduling methods, which provide method support and
decision-making reference for project managers to solve
related practical problems.

So far, only one paper has solved the DRCMPSP-MS [16].
The main relation between literature [16] and this paper is
that both papers study the same scheduling problem. The
main difference is that different approaches are designed
to solve the DRCMPSP-MS. Literature [16] proposes a
two-stage approach with softmax scoringmechanism to solve
the problem. The local scheduling plans are obtained by
the forward-backward scheduling genetic algorithm in the
local scheduling stage, and the softmax scoring mechanism
solves the global multi-skilled staff conflicts in the global
decision stage. This paper develops a new TLA to solve
the DRCMPSP-MS. Specifically, the BAFBS is designed
to handle the local scheduling problem in the local layer.
In the global layer, the VNTS-GAS is proposed to resolve
global resource conflicts. The contributions of this paper are
presented in the introduction section. The main contributions
of literature [16] are to propose the DRCMPSP-MS in
a decentralized multi-project scheduling environment and
develop a two-stage approach with softmax scoring mecha-
nism for solving the problem.

In addition, Yu et al. [29] studied the stochastic decen-
tralized resource-constrained multi-project scheduling prob-
lem with multi-skilled staff (SDRCMPSP-MS). The main
relation is that the SDRCMPSP-MS is the further extension
of the DRCMPSP-MS studied in this paper, i.e., based
on the DRCMPSP-MS, literature [29] further considers
that the activity durations are uncertain and uses stochastic
scheduling optimization methods to solve the problem. The
main differences are that this paper and literature [29]
studied the different problems of DRCMPSP-MS in deter-
ministic environments and duration-uncertain environments,

respectively. And different methods are designed to solve
the corresponding problems. Literature [29] proposes a
two-stage algorithm based on 12 priority rules to tackle the
SDRCMPSP-MS. The main contribution of literature [29] is
using the static stochastic scheduling optimization method
based on priority rules to solve the DRCMPSP-MS under
activity duration uncertainty.

Moreover, You et al. [30] studied the robust decentralized
resource-constrained multi-project scheduling problem with
multi-skilled staff (RDRCMPSP-MS). The main relation
is that the RDRCMPSP-MS is also an extension of the
DRCMPSP-MS. Both literatures [29] and [30] further
consider the uncertainty of activity durations based on
the DRCMPSP-MS. This paper and literature [30] studied
the different problems of DRCMPSP-MS in deterministic
environments and uncertain environments, respectively. The
main differences between literatures [29] and [30] are that
literature [30] employs the robust project scheduling to tackle
activity duration uncertainty, generating robust baseline
scheduling plans without considering that the durations obey
a specific probability distribution. In contrast, literature [29]
solves the problem using the stochastic project scheduling,
in which activity durations are assumed to obey known
distributions and scheduling strategies are obtained instead of
baseline schedules. The main contribution of literature [30] is
using the robust scheduling optimization method combining
time buffer addition and robust resource allocation to solve
the DRCMPSP-MS under activity duration uncertainty.

B. MULTI-SKILLED PROJECT SCHEDULING PROBLEM
Research on the multi-skilled resource-constrained project
scheduling problem (MS-RCPSP) primarily focuses on
single-project environments. Hegazy et al. [31] were the
first to propose the MS-RCPSP, and they implemented
resource substitution rules in order to include resources
that can handle multiple skills. Néron [32] proposed the
skillsets to characterize multi-skilled resources instead of
resource substitution rules and presented two possible lower
bounds for the problem. Then, some exact approaches and
heuristic algorithms have been developed for solving the
MS-RCPSP, including the branch-and-bound algorithm [33],
hybrid Benders decomposition approach [34], branch-and-
price algorithm [35], pareto-based grey wolf optimizer
algorithm [36], and genetic algorithm [37], etc. Furthermore,
Almeida et al. [38] and Snauwaert and Vanhoucke [39] stud-
ied different integer and mixed-integer linear programming
formulations for the MS-RCPSP. Myszkowski et al. [40] and
Snauwaert and Vanhoucke [41] generated new datasets based
on multi-skilled resource parameters for the MS-RCPSP.
More recently, research on MS-RCPSP has been extended
to multi-skilled resource-heterogeneous project scheduling
problems [42], [43], and multi-objective multi-skilled project
scheduling problems [44], [45].

Compared to single-project environments, studies about
the MS-RCPSP in the multi-project environment are rela-
tively less. Kolisch and Heimerl [46] considered scheduling
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IT projects and assigning multi-skilled resources simultane-
ously. They developed a meta-heuristic algorithm consisting
of the genetic algorithm and the tabu search postproces-
sor to solve this problem. Walter and Zimmermann [47]
constructed a mixed-integer linear programming model to
minimize the multi-project team size and applied central-
ized scheduling to assign multi-skilled heterogeneous staff.
Felberbauer et al. [48] extended the deterministic model
developed by Kolisch and Heimerl [46]. They presented
two stochastic optimization approaches to solve the multi-
skilled multi-project problem in an uncertain environment.
Cui et al. [6] developed a variable neighborhood search
algorithm to solve multi-model multi-skilled multi-project
scheduling problems. Haroune et al. [49] proposed a local
search and a tabu search algorithm to tackle the multi-project
scheduling and multi-skilled employees assignment prob-
lem with hard and soft constraints. Some studies [50],
[51] have proposed different approaches for solving the
multi-skilled multi-project scheduling problem. The above
literature mainly employs centralized scheduling to solve
MS-RCPSP in multi-project environments. Since informa-
tion is not shared between decision-makers in a decentralized
environment, the centralized scheduling methods with only
one decision-maker onMS-RCPSP are unsuitable for solving
the decentralized problem with multiple decision-makers.

To our knowledge, only one paper [16] addressed the
DRCMPSP-MS using a two-stage approach with softmax
scoring mechanism. Our primary work in this paper is to
develop a new approach expecting to obtain better solutions
for the DRCMPSP-MS.

III. MODEL FORMULATION
In this section, the DRCMPSP-MS is introduced in detail, and
a two-layer model is established.

A. PROBLEM DESCRIPTION
The DRCMPSP-MS considers n projects that need to be
scheduled simultaneously. Each project i has a release
time adi ≥ 0 denoting its earliest possible start time.
And each project i consists of Ji non-dummy activities
where activity aij indicates the jth activity of project i. Fij
represents the predecessor activity set of activity aij, and any
activity cannot start until all its predecessor activities have
been completed. Activities ai0 and ai(Ji+1) are two dummy
activities that represent the beginning and completion of
project i, respectively. The dummy activities have a duration
of zero and no resource demand. Each non-dummy activity
requires several types of local resources and at most one
type of global resource. The local resource stands for the
ordinary staff who has only one skill. The global resource
refers to the multi-skilled staff. The multi-skilled staff has
the characteristics of heterogeneity, i.e., each staff may
master several skills and have different levels for each skill.
Moreover, each multi-skilled staff can use at most one skill
to perform an activity at a time. Local resources are only
managed within a single project, and all projects share global

resources. There is no connection among projects except for
shared global resources.

After each single project arrives, project managers make
local decisions without considering global resource con-
straints to obtain local baseline schedules and submit global
resource requirement information to the senior manager
based on the local scheduling results. Then, under satisfying
the activity-skill-resource matching relationship, the senior
manager allocates global resources to each project according
to the global resource information and the global objective.
The coordination results are fed back to the project managers
and each project manager adjusts their respective local base-
line schedules. Through repeated communication between
senior manager and project managers, until all activities are
scheduled, the multi-project baseline scheduling plan and
resource allocation scheme are obtained. The scheduling
framework of the DRCMPSP-MS is shown in Fig. 1. The
notations are summarized in Table 1.

B. TWO-LAYER MODEL
The two-layer model integrating local scheduling and global
coordination decision-making is formulated based on the
multi-agent system (MAS). AMAS is a decentralized system
that includes a set of independent, autonomous, and self-
interested agents [52]. Here, the MAS consists of several
project agents (PAs) and a coordinating agent (CA). PAs
correspond to project managers, and CA represents the senior
manager.

1) LOCAL SCHEDULING MODEL
Each PA generates an local baseline schedule to minimize the
project completion time. The local model for project i(i =
1, 2, . . . , n) is the following.

min
T∑
t=0

t · xi(Ji+1)t (1)

s.t.
T∑
t=0

xijt = 1, ∀j ∈ Vi (2)

∑
j∈Vi

t+d̄ij−1∑
q′=t

xijq′ · w
r
ij ≤ Wir ,

∀r ∈ Ri, ∀t ∈ [0,T ] (3)
T∑
t=0

(
t − d̄ij

)
· xijt ≥

T∑
t=0

t · xiht ,

∀aih ∈ Fij, ∀j ∈ Vi (4)
T∑
t=0

t · xi0t ≥ adi (5)

xijt ∈ {0, 1} (6)

The local objective function (1) minimizes the project
completion time, i.e., minimizes the end time of dummy
finish activity. xi(Ji+1)t denotes the binary decision variable,
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FIGURE 1. The scheduling framework of the DRCMPSP-MS.

xi(Ji+1)t equals 1 if dummy finish activity ai(Ji+1) ends at
time t and equals 0 otherwise. Constraint (2) ensures that
each activity is non-preempt, i.e., each activity is assigned
exactly one end time. Constraint (3) represents the local
resource constraint to ensure that at any time point t , the
local resource r required by all activities does not exceed
the available capacity of resource r . Constraint (4) ensures
that the finish-to-start precedence relationships are fulfilled,
i.e., any activity cannot start until all its predecessor activities
have been completed. Constraint (5) indicates that the start
time of project i cannot be earlier than its release time adi,
where xi0t equals 1 if dummy start activity ai0 ends at time
t , and equals 0 otherwise. Constraint (6) denotes the decision
variable. The meaning of xijt is shown in Table 1.

2) GLOBAL COORDINATION DECISION-MAKING MODEL
The CA allocates global resources with the optimization
objective of minimizing the multi-project total tardiness
costs. The global model can be formulated in the following.

min
n∑
i=1

T∑
t=0

tci ·
(
t · xi(Ji+1)t − adi − CPDi

)
(7)

s.t.
∑
i∈N

∑
j∈Vi

∑
s∈S

egsijt ≤ 1, ∀g ∈ G,∀t ∈ [0,T ] (8)

∑
i∈N

∑
j∈Vi

yijt · psij ≤
∑
i∈N

∑
j∈Vi

∑
g∈G

(
bgs ·

(
1− egsijt

))
,

∀s ∈ S,∀t ∈ [0,T ] (9)∑
s∈S

zgst ≤ 1, ∀g ∈ G,∀t ∈ [0,T ] (10)

dij =

⌈
psij · d̄ij∑

g∈G mgs · e
gs
ijt · o

s
ij

⌉
,

∀i ∈ N , ∀j ∈ Vi, ∀s ∈ S, ∀t ∈ [0,T ] (11)

xijt , q
gt
ij , yijt , zgst , e

gs
ijt ∈ {0, 1} (12)

The global objective function (7) minimizes the multi-
project total tardiness costs, where

∑T
t=0

(
t · xi(Ji+1)t − adi

)

denotes the actual makespan of project i, CPDi denotes the
critical path length of project i, tci represents the unit tardiness
cost of project i, and

∑T
t=0 tci ·

(
t · xi(Ji+1)t − adi − CPDi

)
stands for the tardiness cost incurred as the delay penalty
of project i. Constraint (8) denotes the skill usage constraint
for multi-skilled staff, meaning that each multi-skilled staff
can only use one skill to perform one activity at any
time. Constraint (9) indicates the skill availability constraint.
In other words, at any time, the skill requirement for all
activities being performed cannot exceed the total amount
of available global resources in providing skills at that
time.

∑
i∈N

∑
j∈Vi yijt · p

s
ij represents the requirement for

skill s from all activities being performed at time t .∑
i∈N

∑
j∈Vi

∑
g∈G

(
bgs ·

(
1− egsijt

))
denotes total amount

of available global resources in providing skill s at time t .
To ensure that each multi-skilled staff can only use one skill
at any time, constraint (10) is implemented. Equation (11)
calculates the actual duration dij of activity aij. The actual
duration is affected by the skill level of assigned multi-
skilled staff. The higher the skill level of the multi-skilled
staff assigned to activity aij, the shorter the actual duration
of activity aij. If the calculated result of actual duration is not
an integer, round it up. Constraint (12) defines the decision
variables. The specific meanings of these decision variables
are shown in Table 1.

IV. TWO-LAYER APPROACH
This section proposes a two-layer approach to solve the
DRCMPSP-MS. In the local scheduling layer (Section IV-A),
each PA uses the bat algorithm based on forward-backward
scheduling to generate local baseline schedules. In the
global coordination decision-making layer (Section IV-B),
beginning at the time t = 0, each PA determines the
activities that start at the current time and require global
resources based on the local baseline schedule and submits
the global resource requirement information of the relevant
activities to CA. The CA adopts the variable neighborhood
tabu search algorithm with greedy assignment strategy to
determine the global resource assignment scheme. According
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TABLE 1. Notation and description.

to the coordination results at the current time, the relevant
PAs adjust their local baseline schedules. Time advances to
the next time, and the iterative process continues until all
activities are scheduled.

A. LOCAL SCHEDULING LAYER
The local scheduling problem does not consider global
resource constraints and belongs to the RCPSP, which is
known as NP-hard [5]. For small-scale problems, several
exact algorithms can be used to solve them. However,
for large-scale problems, exact algorithms usually cannot
obtain optimal or even feasible solutions in polynomial time.
In recent years, many heuristic and intelligent optimization
algorithms have been developed to solve the RCPSP [1].
Inspired by bat predation, the bat algorithm (BA) was intro-
duced by Yang [53]. The BA has been successfully applied in
job shop scheduling [54], streaming feature selection [55],
and other fields [56] due to its easy implementation and
good optimization performance. In this paper, the BA is
applied in the field of project scheduling and improved
according to the characteristics of the research problem.
In addition, the forward-backward scheduling algorithm [57]
is used to optimize algorithm results further. Therefore,
a bat algorithm based on forward-backward scheduling
(BAFBS) is developed to solve the local scheduling
problem.

In the BAFBS, the position of each bat represents a
candidate solution (scheduling strategy). The position of prey

is equivalent to the optimal solution. Bats use echolocation
to change their flight positions to keep approaching the prey.
The BAFBS mainly includes the following steps: population
initialization, forward-backward scheduling, position update,
and population update. The pseudocode of the BAFBS is
described in Algorithm 1. Fig. 2 shows the flowchart of the
BAFBS procedure.

1) POPULATION INITIALIZATION
The initial population is randomly generated, and the
population size is POP. Each bat Bk (k = 1, 2, . . . ,POP)

in the population can be described by a five-tuple Bk =
(lk , vk , fk , hk ,Ak). The details are as follows: (1) J+2 dimen-
sions random key vector lk =

(
lk0, . . . , lkj, . . . , lk(J+1)

)
(lkj ∈ [0, 1] , j = 0, 1, . . . , J + 1) represents the position of
the bat Bk , J indicates the number of non-dummy activities
in one project. The initial value of lk is generated randomly.
(2) J + 2 dimensions vector vk denotes the velocity of the
bat Bk , and the initial value of vk is set to 0. (3) The pulse
frequency of the bat Bk is represented by scalar fk , fk ∈
[fmin, fmax], and the initial value of fk adopts fmax . (4) Scalar
hk indicates the pulse rate of the bat Bk , hk ∈ [hmin, hmax],
the initial value of hk uses hmin. (5) Scalar Ak represents the
ultrasonic loudness of bat Bk , Ak ∈ [Amin,Amax], the initial
value of Ak is Amax . We set fmin = hmin = Amin = 0, and
the values of the remaining parameters (fmax , hmax ,Amax) are
determined by experiments (Section V-B1).
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FIGURE 2. The flowchart of the BAFBS procedure.

2) POSITION UPDATE
There are two ways to update the position of bats: the local
randomwalk and the randomflying. Given a batBk , a random

number δ ∈ [0, 1] is generated accordingly. Compare the
random number δ with the pulse rate hk , if δ > hk , the
position of the bat Bk will be updated using the local random
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Algorithm 1 Bat Algorithm Based on Forward-Backward
Scheduling for PA
Input: population size (POP); total count (Gen); pulse frequency (fmin/fmax ); pulse

rate (hmin/hmax ); ultrasonic loudness (Amin/Amax ).
Output: local baseline schedule.
1: Generate initial bat population (POP individuals) randomly.
2: Decode the position of bat individuals.
3: Arrange activities in descending order of completion time as the priority list L.
4: Backward schedule activities according to the priority list L.
5: Record the start time of the first dummy activity as Hi0.
6: if Hi0 ≤ adi then
7: Determine the forward schedule as the initial local schedule of project.
8: else
9: Hi0 ← adi
10: Adjust the backward schedule by shifting all the activities left Hi0− adi units.
11: Update the position of bat individuals.
12: end if
13: Calculate the fitness function value (local objective function (1)) of bat positions

and save the current best position.
14: Set the generation counter c← 1; the total count Gen← number of generations.
15: while c ≤ Gen do
16: for each bat Bk (k = 1, 2, . . . ,POP) do
17: Generate a random number δ.
18: if δ > hk then
19: Generate a new positions lc+1k by the local random walk.
20: else
21: Generate a new positions lc+1k by the random flying.
22: end if
23: Perform forward-backward scheduling for the new bat position.
24: Calculate the fitness function value of the new bat position.
25: if f

(
lc+1k

)
< f

(
lck

)
&δ < Ack then

26: Accept the new bat position.
27: Update ultrasonic parameters.
28: end if
29: end for
30: Rank the bat positions and save the current best position.
31: c = c+ 1
32: end while
33: Return the local baseline schedule (best bat position).

walk. Otherwise, the position will be updated by the random
flying.

In the random flying, the position is updated by using the
following formulas:

fk = fmin + (fmax − fmin) · δ (13)

vc+1k = vck +
(
lck − l

∗
)
· fk (14)

lc+1k = lck + v
c+1
k (15)

The formula (13) determines the pulse frequency fk of
bat Bk based on the generated random number δ. Given the
pulse frequency fk , the formula (14) calculates the updated
velocity vc+1k of bat Bk , where c (c = 0, 1, . . . ,Gen) denotes
the number of iterations and l∗ represents the current best bat
position. vck and l

c
k denote the velocity and position of bat Bk

at the cth iteration, respectively. Based on the cth iteration
position lck and updated velocity vc+1k , the formula (15)
determines the updated position lc+1k of bat Bk . If the value of
any element in the newly generated lc+1k is outside the interval
[0, 1], the element with a value less than 0 will be reset to 0,
and the element with a value greater than 1 will be reset to
1. The mentioned rules are also applied to the local random
walk.
In the local random walk, the position is updated by the

following formula:

lc+1k = l∗ + ε · Āc (16)

The formula (16) implies that the updated position lc+1k of
bat Bk is generated based on the current best bat position
l∗, where ε ∈ [−1, 1] denotes a random number and Āc

represents the average loudness of all bats in the cth iteration.

3) POPULATION UPDATE
The previous position lck can be replaced by the new position
lc+1k , which needs to meet the following two conditions

simultaneously: f
(
lc+1k

)
< f

(
lck

)
and δ < Ack , where

f
(
lc+1k

)
and f

(
lck

)
denote the fitness function values of lc+1k

and lck calculated according to formula (1), respectively.
If the new position of the bat Bk is accepted, the

corresponding ultrasonic parameters are updated according
to the following formulas:

hc+1k = hmax · [1− exp (−χ · c)] (17)

Ac+1k = β · Ack (18)

The formula (17) determines the updated pulse rate hc+1k
of bat Bk , where hmax represents the maximum value of the
pulse rate, exp represents the exponential function operations,
and c represents the number of iterations. The formula (18)
calculates the updated ultrasonic loudness Ac+1k of bat Bk ,
where Ack denotes the ultrasonic loudness of bat Bk at the cth
iteration. χ and β are the adaptation parameters, which are
set to χ = β = 0.9 [53].

B. GLOBAL COORDINATION DECISION-MAKING LAYER
The global coordination decision-making layer mainly
addresses the global resources assignment. When multiple
activities require global resources simultaneously, the CA
needs to determine an activity sequence that indicates
which activity is assigned resources in priority. Moreover,
considering that global resources master multiple skills and
skill levels are heterogeneous, the CA needs to further
specify the priority order of resource assignment. Tabu search
algorithm (TS) was first developed by F. Glover based on
artificial intelligence systems [58]. TS is an iterative search
algorithm that searches the solution space by performing the
neighborhood search on the current solution. Due to its strong
exploring ability, TS has been widely applied in many areas
such as project scheduling [59], job shop scheduling [60], and
incremental graph drawing [61]. In this subsection, a variable
neighborhood tabu search algorithm (VNTS) is designed
to select the execution order of activities with resource
conflicts. Embedding variable neighborhood search into TS
can fully utilize the search advantages of both to find better
solutions. In addition, the greedy assignment strategy (GAS)
is adopted to assign global resources. The VNTS and the
GAS are combined to solve the assignment problem at each
decision point. The pseudocode of the VNTS-GAS is shown
in Algorithm 2. Fig. 3 shows the flowchart of the VNTS-GAS
procedure. The coordination process is mainly divided into
the following three steps.
Step 1: Identify the decision point.
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FIGURE 3. The flowchart of the VNTS-GAS procedure.

After all PAs complete the local scheduling according
to Algorithm 1, they submit global resource requirement
information to the CA based on the generated local baseline
schedules. The resource requirement information includes the
type and number of skills required for activities and which
activities start at the current time. Starting from the time
t = 0, the decision point is defined as the time when activities
require global resources.

Step 2: The CA assigns global resources.
At the decision point, if only one activity requires global

resources, the CA assigns global resources to the activity

according to the greedy assignment strategy (Algorithm 3).
When two or more activities compete for global resources,
these activities are called conflicting activities. The CA per-
forms the variable neighborhood tabu search for conflicting
activities and selects the optimal conflicting activity sequence
at each decision point. Moreover, the CA assigns global
resources to conflicting activities using the Algorithm 3. The
resource assignment results are fed back to the PAs.

Step 3: The PAs adjust the local baseline schedules.
Firstly, the PAs update the start time of conflicting

activities. Secondly, the PAs adjust the original local schedule
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Algorithm 2 Variable Neighborhood Tabu Search Algorithm
With Greedy Assignment Strategy for CA
Input: local baseline schedule ℜB for each project; multi-skilled staff occupancy

matrix res_occupy = zeros(M ,C), M is the number of multi-skilled staff, C is
the number of non-dummy activities in multi-project; number of neighborhood
structure µmax ; number of activity sequence Numstop; tabu list TL; initialize t = 0.

Output: multi-project baseline schedule and multi-skilled staff assignment scheme.
1: while t < T do
2: PAs determine the activities that start at time t and require global resources

based on the ℜB, and submit global resource requirement to CA.
3: CA integrates all related activities to form activity set Act , len = length (Act).
4: if len > 0 then
5: if len == 1 then
6: CA allocates global resources to the activity according to the greedy

assignment strategy (Algorithm 3), and updates the res_occupy.
7: PAs adjusts the local baseline schedule ℜB.
8: else
9: Randomly arrange the activities in set Act to form the initial activity

sequence ASint .
10: Assign global resources in order of ASint according to Algorithm 3, and

calculate the total tardiness costs, noted as TTCint .
11: Define current activity sequence AScur = ASint , Optimal activity

sequence ASopt = ASint , Optimal tardiness costs value TTCopt =
TTCint , µ = 1, and Num = 0.

12: Based on AScur generates a neighborhood activity sequence ASnei by
the shaking method for NSµ, and Num = Num+ 1.

13: Assign global resources in order of ASnei according to Algorithm 3, and
calculate the total tardiness costs, noted as TTCnei.

14: if ASnei is forbidden by the tabu list TL then
15: if TTCnei < TTCopt then
16: Record AScur = ASnei, ASopt = ASnei, TTCopt = TTCnei,

µ = 1, and update TL.
17: Return to step 12.
18: else
19: µ = µ+ 1
20: if µ ≤ µmax then
21: Return to step 12.
22: else
23: if Num ≤ Numstop then
24: µ = 1
25: Return to step 12.
26: end if
27: end if
28: end if
29: else
30: Record AScur = ASnei and update TL.
31: if TTCnei < TTCopt then
32: Record ASopt = ASnei, TTCopt = TTCnei, and µ = 1.
33: Return to step 12.
34: else
35: Return steps 19.
36: end if
37: end if
38: Determine the optimal activity sequence ASopt .
39: CA allocates global resources to activities using the Algorithm 3

according to ASopt , and updates the res_occupy.
40: PAs adjusts the local baseline schedule ℜB.
41: end if
42: end if
43: Update time t = t + 1.
44: end while

for the activities whose start time is later than the decision
time by using the translation strategy, i.e. the start time
of activities is moved to the right to satisfy the priority
relationship and resource availability constraints. Finally, the
PAs provide new global resource requirement information
to the CA based on the adjusted local baseline schedules.
Continue looping the above process until all activities are
scheduled.

1) VARIABLE NEIGHBORHOOD TABU SEARCH
The following features are involved in the VNTS:

a: INITIAL SOLUTION
Each solution is represented by a sequence of conflicting
activities in the VNTS. The activity sequence is randomly
generated in the initial solution ASint .

b: NEIGHBOURHOOD STRUCTURE
The CA uses the VNTS, which combines deterministic
and stochastic changes to the neighborhood, to search for
desirable solutions. Considering the representation of solu-
tions, the neighborhood structure NSµ (µ = 1, 2, . . . , µmax)

is defined as the set of all neighborhood activity sequences
ASnei in which only µ pairs of elements are different from
the corresponding elements in the current activity sequence
AScur .

c: SHAKING METHOD
Based on the above definition of the neighborhood structure,
the shaking method is presented as follows: for the current
activity sequence, select µ pairs of activities randomly and
swap their positions, thus obtaining a new neighborhood
activity sequence.

d: TABU LIST
The tabu list TL is managed according to the first-in-first-
out (FIFO) rule [62]. Whenever a neighboring solution is
obtained, the corresponding reverse move is stored in the
TL, and the oldest existing move is deleted. Normally, all
the moves in the TL are forbidden. However, if the solution
generated by a tabu move is better than the best solution
obtained so far, then its tabu status may be canceled, and the
move will be accepted (aspiration criterion). Reference [63],
the size of tabu list is defined as

√
�, where � denotes the

number of conflicting activities at each decision point.

e: STOPPING CRITERION
The stopping criterion of the VNTS is defined as an assumed
number of activity sequences visited, denoted as Numstop.
We describe the optimal activity sequence found and the
number of activity sequences visited during the searching
process as ASopt and Num, respectively.

2) GREEDY ASSIGNMENT STRATEGY
The global resources considered in this paper have the charac-
teristic of multi-skilled heterogeneity, i.e., each resource mas-
ters multiple skills and has different skill levels. Therefore,
when assigning global resources to activities, the CA needs
to design relevant assignment strategies that take into account
the characteristics of multi-skilled resources. The GAS is
designed based on the skill level and the number of skills
mastered by global resources, and each allocation is locally
optimal. This strategy indicates that resources with high skill
levels are assigned priority. When skill levels are the same,
priority should be given to assigning resourceswith the lowest
skill numbers, and the minimum resource serial number is
used to break the tie.
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Algorithm 3 Greedy Assignment Strategy
Input: set of activities requiring global resources at time t , noted as Act t ; multi-skilled

staff occupancy matrix at time t , noted as res_occupy (t)temp.
Output: global resource assignment scheme at time t .
1: Determine the sequence of conflicting activities ASt

2: Based on res_occupy (t)temp, record the resource-skill set RS and the available of
skill AOS.

3: for α = 1 : length
(
ASt

)
do

4: aij = ASt (α)

5: if psij ≤ AOS (s) then
6: Global resources that master skill s are selected in RS to form resource set

RStemp.
7: Record the skill level

(
mgs

)
and number of skills

(
nsg

)
mastered by each

global resource g in RStemp.
8: Sort the resources in RStemp in decreasing order of mgs, break the tie with

nsg ascending order.
9: Select the first psij resources to form resource set RSfi, and assign them to

aij.
10: Calculate duration dij based on formula (11).
11: Record res_occupy (t)temp.
12: Update RS = RS \ RSfi, AOS (s) = AOS (s)− psij.
13: else
14: Act t+1 = Act t+1

⋃
ASt (α)

15: end if
16: end for

a: HIGHEST SKILL LEVEL FIRST
This priority rule assigns resources based on the skill level.
Global resources are sorted based on the level of skills
mastered. Resources with the highest skill level will receive
the highest priority. This rule aims to prioritize the allocation
of the most efficient resources, effectively reducing the actual
duration of activities and the total project completion time.

b: LOWEST SKILL NUMBERS FIRST
This rule uses the number of mastered skills to allocate global
resources. Each global resource can only use one skill to
perform an activity. Prioritize the allocation of resources
with fewer skills, and resources with more skills are more
available to be allocated to other activities. Therefore, this
rule increases the usage of resources and improves the
flexibility of assignments.

When a conflicting activity sequence is determined, the
CA assigns global resources to activities based on the
GAS mentioned above. Calculate the actual duration dij of
activities, and update the multi-skilled staff occupancymatrix
res_occupy (t)temp, the resource-skill set RS and the available
of skill AOS. The pseudocode of the GAS is described
in Algorithm 3. Fig. 4 shows the flowchart of the GAS
procedure.

V. COMPUTATIONAL EXPERIMENTS
A series of computational experiments are conducted to
study the performance of proposed approach. All program
codes are written using Matlab R2018b, such as the BAFBS
program, the VNTS-GAS program, reading programs for
instances, etc. All experiments are performed on an Intel
Core i7-8700K processor computer with 3.70 GHz clock
speed and 16 GB RAM. Section V-A presents a experimental
design. Section V-B discusses the parameter settings of the
BAFBS and evaluates its performance. Section V-C analyzes
the impact of problem size and skill utilization factor on

the global coordination results. Section V-D verifies the
performance of the proposed TLA by comparing it with
distributed and centralized methods.

A. EXPERIMENTAL DESIGN
The proposed approach is tested on 60 problem instances
taken from the Multi-Project Scheduling Problem LIBrary
(MPSPLIB) (http://www.mpsplib.com). These instances are
classified into 12 problem subsets. Each problem subset is
named ‘‘MPJi_n’’, where Ji is the number of non-dummy
activities in each project and n is the number of projects in
each instance. Specifically, the number of projects includes 2,
5, 10, and 20, where every single project consists of 30, 90,
or 120 activities. Each problem subset contains 5 instances.
Further information required to generate instances are:

• Each problem instance is provided with four types of
resources, including three types of local resources and
one type of global resource.

• The total skill demand types with activity numbers of 30,
90, and 120 are set to 3, 5, and 7, respectively.

• The types of skills mastered by each multi-skilled staff
are generated in the range of [2,3] uniformly.

• The skill requirements psij of each activity are generated
in the range of [1,3] uniformly

• The level of each skill mastered by multi-skilled staff is
randomly generated in 0.6, 0.8, and 1, respectively.

The problem subsets and parameters are shown in Table 2.
Problem size is the total number of activities in each instance.
The average skill utilization factor (ASUF) is the average
of the skill utilization factor (SUF) of 5 instances in each
problem subset. SUF is calculated as formula (19). It denotes
the maximum degree of restriction on each skill requirement.
The larger the SUF , the scarcer the global resources with
relevant skills and the stronger the resource conflicts among
projects [16].

SUF = max
s∈S

SUFs, SUFs =

∑n
i=1

∑Ji
j=1 P

s
ij

Ws × GCPD
(19)

where SUFs denotes the utilization factor of skill s. GCPD
represents the global critical path length without considering
resource constraints. Psij indicates the skill requirement of
activity aij for skill s within the whole duration.

B. ANALYSIS OF LOCAL SCHEDULING RESULTS
1) PARAMETER SETTINGS OF BAFBS
This subsection uses the Taguchi’s design of experiment
(DOE) technique [64] to determine the parameter settings of
BAFBS. The MP30_20 problem subset is used to carry out
the test. This subset contains 100 single project. The BAFBS
involves four key parameters: the population size (POP),
the maximum pulse frequency (fmax), the maximum pulse
rate (hmax), and the maximum ultrasonic loudness (Amax).
We have set 5 different level values for each parameter,
as shown in Table 3.
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FIGURE 4. The flowchart of the GAS procedure.

TABLE 2. The problem subsets and parameters.

Firstly, average response variable (ARV ) is calculated by
the formula (20).

ARV =

∑num
u=1 [(obju − optu)

/
optu]

num
(20)

where num represents the total number of project, i.e., num =
100. obju and optu are the local objective value (minimizing
the project completion time) corresponding to the uth project
obtained by the BAFBS and the exact branch-and-bound
(B&B) algorithm, respectively.
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TABLE 3. Parameter levels.

TABLE 4. Response table for ARV and rank for each parameter.

Next, we conduct the DOE test on the scale of L25
(
54

)
, i.e.,

we have a total of 25 treatments and 5 levels for each of the
4 parameters. The ARV values are obtained by running the
BAFBS with various combinations of the parameter settings
given in Table 3. The termination criterion of BAFBS is to
reach the maximum number of generations Gen = 100.
The response table for ARV and rank for each parameter are
presented in Table 4. The second to the sixth row of Table 4
shows the average value of the ARV for a parameter with
different levels, and the best parameter setting is bold. The
row ‘Range’ represents the range of the average ARV of each
parameter. The significance rank of each parameter is shown
on the row ‘Rank’.

It can be seen from Table 4 that POP has the largest
impact on the ARV and hmax has the least significant impact.
We select the level that results in the smallest ARV value for
each parameter. Therefore, the parameters for the BAFBS
are set as POP = 150 (level 5), fmax = 0.001 (level 3),
hmax = 0.7 (level 4), Amax = 0.9 (level 5), and Gen = 100.

2) EFFECTIVENESS ANALYSIS OF BAFBS
We compare the project completion time of each local
schedule obtained by the BAFBS with the results obtained by
the B&B algorithm embedded in RESCON software [65] (all
solutions obtained by the exact B&B algorithm are optimal
results and if RESCON runs out of memory, no solutions can
be found). Both of them are performed on 555 single projects
from the 12 problem subsets. The BAFBS is only compared
with the B&B algorithm for the single project that can be
solved exactly by the B&B algorithm. Table 5 shows the
comparison results of the two algorithms. The table includes
the average project completion time (APCT ), the number of
projects with solvable solutions (NPSS), and the number of
projects with optimal solutions (NPOS), respectively. The
second column shows the total number of projects (TNP)
in each problem subset. The last column represents the
average relative deviation (ARD) of the solutions solved by
the BAFBS and the optimal solutions for each subset obtained
by the B&B algorithm.

The results show that out of the 555 single projects, the
B&B algorithm can obtain optimal solutions for 352 projects
and 89.77% of which are also obtained by the BAFBS.
Moreover, the more activities involved in a project, the less
likely it is for the B&B algorithm to obtain a feasible solution
before running out of memory, especially for projects with
120 activities. However, the BAFBS can find a feasible
solution efficiently for any size project. In addition, for each
problem subset, the results for the APCT obtained by BAFBS
and B&B are very close. The maximum average relative
deviation is 2.15% (MP30_2), while the others are less than
1%. The average relative deviation of all 12 problem subsets
is 0.42%. It fully turned out that the BAFBS performs well
on local scheduling problems and can provide high-quality
solutions (satisfactory local baseline schedules).

C. ANALYSIS OF GLOBAL COORDINATION RESULTS
The global coordination results for each problem subset
are evaluated using the multi-project total tardiness cost
(TTC), as presented in Table 6. Considering theCPU running
time, the result is the average of 10 runs of each instance.
Moreover, similar to the pre-experiment in Section V-B1,
the parameters of the VNTS-GAS are configured as follows:
number of neighborhood structure µmax = 3, number of
activity sequence Numstop = 100. Subsequently, the impact
of problem size and ASUF on global coordination results is
analyzed.

The problem size is expressed as multiplying the number
of projects and activities in each instance. Fig. 5 shows the
bubble chart of TTC changing with problem size. It can be
seen from Fig. 5 that when the number of projects is fixed,
the more activities of a single project, the greater the TTC
value. Similarly, in the case of a certain number of activities,
the more the number of projects, the higher the TTC value.
All problem subsets are divided into two types according
to ASUF< 1 and ASUF> 1. ASUF>1 indicates a relatively
strong resource conflict, while the opposite indicates a weak
one. The comparison bar chart of the average TTC for two
types of problem subsets under different ASUF is presented
in Fig. 6. As revealed in Fig. 6, the stronger the resource
conflict degree, the higher the multi-project total tardiness
cost. In addition, Fig. 7 illustrates bubble chart of TTC under
different problem size and ASUF . The size of the bubbles
is proportional to the TTC value. Comparing Area A (with
smaller problem sizes and ASUF) and Area B (with larger
problem sizes and ASUF), the results show that the larger the
problem size and the stronger the resource conflicts degree,
the higher the TTC value.

To sum up, the problem size and resource conflicts degree
have an impact on TTC . Managers can adjust the total number
of resources appropriately to prevent excessive resource
conflicts from delaying the project for too long, thereby
increasing the cost of the delay.

D. PERFORMANCE OF TWO-LAYER APPROACH
So far, only one paper [16] proposed a two-stage approach
with softmax scoring mechanism (TSA-SSM) to solve the
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TABLE 5. Comparison of results obtained by B&B and BAFBS.

TABLE 6. Global coordination results.

FIGURE 5. Bubble chart of TTC changing with problem size.

FIGURE 6. Average TTC under different ASUF .

DRCMPSP-MS. In this subsection, we compare the TLA
with TSA-SSM to verify the performance of the proposed
approach. In addition, to further evaluate the effectiveness
of the TLA, we further compared it with two centralized
methods (i.e., non-two-stage methods): PSGSMINSLK and

FIGURE 7. Bubble chart of TTC under different problem size and ASUF .

BRKGA. The centralized method is to integrate all the
activities of multiple projects into a super- or meta-network,
and then a unified decision-maker with complete information
on multiple projects makes a scheduling plan and allocates
resources. The algorithms used for comparison are introduced
as follows.

1) TSA-SSM
A two-stage approach with softmax scoring mechanism
is introduced by Yu et al. [16]. TSA-SSM belongs to a
decentralized method (i.e., a two-stage method) that includes
local scheduling stage and global coordination decision
stage. According to the local scheduling plan obtained by
the genetic algorithm, the softmax scoring mechanism is
presented to resolve global resource conflicts.

2) PSGSMINSLK
A heuristic approach PSGSMINSLK is introduced by
Villafáñez et al. [66]. PSGSMINSLK belongs to a centralized
method, i.e., a non-two-stage method. The main reason for
comparing algorithms is that the PSGSMINSLK performs
well, and this algorithm outperforms other algorithms
published in the multi-project scheduling problem library in
16% of the cases and holds the best result in 27% of the cases.
The PSGSMINSLK combines the priority rule minimum
total slack (MIN-SLK) and the parallel schedule generation
scheme (P-SGS) and adopts the same strategy for assigning
multi-skilled resources as in this paper.
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TABLE 7. Comparison results of TLA and other algorithms.

FIGURE 8. Comparison of CPU runtimes for different algorithms.

3) BRKGA
A biased random-key genetic algorithm is developed by
Almeida et al. [67]. BRKGA also belongs to a centralized
method, i.e., a non-two-stage method. BRKGA is more used
for the project scheduling problem with flexible resources
and proved to have good performance. In this algorithm,
a population of chromosomes evolves over a number of
generations until the defined stopping criteria are met. The
relevant parameters are configured as follows: population
size = 100, number of generations = 100, crossover rate =
0.8, mutation rate = 0.1.

Table 7 shows the comparison results of different algo-
rithms, including the TTC and CPU runtimes. The results
in the table denote the average of the 10 runs of each
algorithm, and the best-found result of each problem subset
is marked in bold. The Gap indicate the relative deviations
between the results of TLA and the best-found result. The
calculation formula is shown in equation (21), where Best
is the best-found result of each problem subset. Fig. 8
shows a line chart comparing the CPU runtimes of different
algorithms, where the runtimes represent the average time of
each instance in each problem subset.

Gap =
TLA− Best

Best
× 100% (21)

It can be seen from Table 7 that the TLA obtained the
best-found results in 7 out of 12 problem subsets. Compared
to other algorithms, the solution results of the TLA are
slightly worse on specific problem subsets (e.g., MP30_2,
MP90_2). However, the TLA can get better results on most
problem subsets, and the average relative deviation of all

problem subsets is 6.86%, which reflects the effectiveness
of the TLA. In terms of CPU runtimes, Table 7 and Fig. 8
show that although the PSGSMINSLK has the shortest
runtimes, it has poor performance compared with the other
algorithms. The TLA takes slightly more runtime than the
TSA-SSM, but less than the BRKGA. The TLA can update
the found-best results on most problem subsets within a
reasonable runtime. Therefore, when managers encounter
such problems in practice, they can use our approach to make
quick and effective decisions

VI. CONCLUSION AND FUTURE RESEARCH
This paper studies the DRCMPSP-MS. We formulate this
problem as a two-layer model based on the MAS and propose
the TLA to solve this problem. In the TLA, the BAFBS
is introduced to deal with the local scheduling problem in
layer one. The VNTS-GAS is developed to resolve global
resource conflicts in layer two. Different size instances are
solved to examine the performance of the proposed TLA.
Computational results show that the BAFBS performswell on
the local scheduling problem. High-quality solutions can be
obtained by the BAFBS for all problem instances. It is further
verified that the problem size and resource conflicts degree
have an impact on global coordination results. In addition,
compared with a decentralized method (TSA-SSM) and
two centralized methods (PSGSMINSLK and BRKGA), the
proposed TLA can obtain lower total tardiness cost on most
problem subsets. This proves that TLA is suitable for solving
DRCMPSP-MS and can effectively allocate multi-skilled
staff shared among multiple projects.

The shortcomings of this paper and possible future
research directions are described as follows. One short-
coming is that the initial solutions of both BAFBS and
VNTS-GAS are randomly generated, and the quality of the
initial solutions has a certain impact on the performance of the
algorithms. Therefore, more effective methods for generating
initial solutions can be designed in the future to further
improve the approach proposed in this paper. Another short-
coming is that TLA involves some algorithm parameters,
such as population size, number of neighborhood structures,
etc. The setting of these parameters also affects the solving
performance of the algorithm. Therefore, in future research,
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more efficient and fewer parameters new approaches can
be developed to solve the DRCMPSP-MS. Moreover, the
DRCMPSP-MS studied in this paper only considers the
deterministic environment. However, resource availability
may change in practice due to staff leave, resignation,
or recruitment. Therefore, it will be a promising research
direction further to consider the staff availability uncertainty
in the DRCMPSP-MS. In addition, this paper assumes that
the skill level of staff remains unchanged during project
execution. Since the skill level of staff tends to be a very
dynamic concept, it can also be a promising addition to the
DRCMPSP-MS to incorporate an adjustable skill level that is
affected by the learning or forgetting effect.
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