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By applying the bilinear-tangent (BLT) guidance law, a near-
optimal and computationally efficient BLT constant-thrust guidance
(BCG) algorithm is introduced for orbital transfers about a binary as-
teroid system. This algorithm is accomplished by using the BLT guid-
ance law combined with the Newton–Raphson predictor–corrector
algorithm and manifold patching techniques. BCG can plan a va-
riety of fuel efficient constant-thrust state/orbit to state/orbit trans-
fers based on the types of the initial/target orbits and the selected
maneuver types, including single-burn transfers and multiple-burn
transfers leveraging manifolds. For the study case of 66391 Moshup,
a 600-kg, BCG-guided spacecraft with a 24-mN thruster performed
an aggressive noncoplanar transfer between L1 and L2 Halo orbits
at the cost of only 3.38 g of fuel. Then, the BCG-guided trajecto-
ries’ robustness is validated thoroughly by N = 600 Monte Carlo
simulations, respectively. Finally, BCG’s excellent tradeoff between
computational efficiency and near-optimality is well demonstrated by
comparison with well-established optimization methods. For example,
in a coplanar transfer with a 1.5-mN thruster, BCG can converge
over 200 times faster than interior point optimization with only a 9%
cost surplus in fuel compared to the optimum. It is indicated that the
BCG algorithm is a promising option for autonomous orbital control
in binary asteroid missions considering its computational and fuel
efficiency.
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I. INTRODUCTION

In recent decades, binary asteroid systems have been
receiving increasing interest in terms of planetary science
and resource utilization. Several missions have been or are
going to be launched to binary asteroid systems, such as
NASA’s Lucy flyby mission to Trojan binary asteroids 3458
Eurybates and 617 Patroclus [1] and the Asteroid Impact and
Deflection Assessment missions heading to asteroid 65803
Didymos, consisting of NASA’s Double Asteroid Redirec-
tion Test (DART) mission and ESA’s Hera mission [2], [3].

Hitherto, most of the deep space missions are propelled
by chemical thrusters when executing maneuvers, such as
the ones Lucy is equipped with, whose maximum specific
impulse is only 324 s [4]. Meanwhile, chemical thrust is
so strong that the proportional errors would be driven larger
when executing finer maneuvers in the weaker gravitational
fields near binary asteroids because of the extremely short
burns [5]. In contrast, the electric propulsion system is an
ideal choice for deep space and long-term asteroid missions
thanks to its high specific impulse of over 1000–10 000 s
and a thrust ranging from 0.1 mN to 50 N, enabling longer
and more versatile missions [6].

Current missions with low-thrust electric propulsion
heading toward asteroids are either simple flybys like
DeepSpace-1 [7] or direct impact like DART [2]. Another
type is Hayabusa and Hayabusa2, which were equipped with
ion thrusters for heliocentric cruising but later switched to
a bipropellant hydrazine system after rendezvousing with
asteroids [8], [9]. In these missions, the communication
difficulties to the ground-based control (e.g., minute-level
latency, bandwidth limits, etc.), time-critical decisions,
and maneuvers about the asteroids were devised by the
spacecraft’s real-time autonomous guidance navigation and
control (GNC). Despite their success, these missions only
orbited or contended with the complex dynamical environ-
ment about asteroids quite fleetingly, and then, cruised he-
liocentrically, forsaking the potential of electric propulsion
systems in fuel efficiency and precision in flight control. On
the contrary, with respect to the binary asteroid missions
involving probably extended mission durations and more
arduous operations (e.g., close-range orbital transfers, mul-
tiple proximities, station-keeping maneuvers, etc.) in more
perturbed dynamical systems, electric propulsion systems
will become increasingly indispensable.

Thus, the autonomous and computationally efficient
GNC for low-thrust propulsion systems (e.g., autonomous
orbit determination, starlight navigation, autonomous guid-
ance algorithms, etc.) is required to perform the time-critical
maneuvers with real-time in situ data directly obtained and
processed by onboard sensors and computers. This article
will be focused on autonomous algorithms for the transfer
trajectory design.

The most common approaches for solving optimal low-
thrust trajectory can be divided into three categories: indi-
rect approaches relying on Pontryagin’s minimum princi-
ple, direct approaches on Karush–Kuhn–Tucker conditions,
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and dynamic programming [10], [11], involving techniques
like collocation methods [12], [13], [14], single-shooting
or multiple-shooting methods [15], [16]. From a more
specified perspective in the circular restricted three-body
problem (CR3BP), the low-thrust trajectory optimal design
algorithms include indirect shooting [17], [18], [19], [20];
machine-learning-based shooting [21]; direct collocation
methods [22]; direct collocation and attainable sets methods
using manifolds [23], [24]; direct successive convex opti-
mization [25]; particle swarm optimization method [26];
finite Fourier series [27]; some other initial guess solving
methods leveraging the structure of dynamical systems [28],
etc. The aforementioned low-thrust optimization algorithms
are mostly restricted to the cislunar environment where the
initial orbits are normally geostationary transfer orbit, geo-
stationary orbit, or distant retrograde orbit far from the ce-
lestial bodies without a pressing need for time-critical reac-
tions. As such, they are too computationally expensive and
time inefficient for onboard computers. Hence, there is a la-
cuna in computational efficient algorithms for autonomous
constant low-thrust guidance about binary asteroid systems.

This article introduces a fuel-efficient bilinear-tangent
(BLT) constant-thrust guidance (BCG) algorithm, which
is capable of planning transfers about a binary asteroid
system inspired by Kuttel and McMahon’s BLT low-thrust
maneuver in the perturbed two-body environment [29].
The BCG algorithm applies the BLT guidance law to the
binary asteroid systems, leveraging manifolds and Newton–
Raphson predictor–corrector (NRPC) methods to design
constant low-thrust trajectories, with near optimality and
high computational efficiency.

The rest of this article is organized as follows. In
Section II, the binary asteroid system is introduced. In
Section III, the low-thrust trajectory optimization problem
and the structure of the BCG algorithm are examined in
detail, including the initial guess and convergence stages.
In Section IV, BCG’s maneuver planning capability was
demonstrated with several transfers. In Section V, a multi-
tude of numerical simulations were performed to provide an
insight into the algorithm’s robustness; the tradeoff between
computational efficiency and optimality of BCG is deter-
mined by comparing it with a well-established optimizer.
In Section VI, the results are further discussed. Finally,
Section VII concludes this article.

II. BACKGROUND

The binary asteroid 66391 Moshup is chosen as the
study case. This section will first introduce the facts about
the binary asteroid system and spacecraft’s equations of
motion are then constructed based on the CR3BP.

A. Dynamical Environment of 66391 Moshup

The 66391 Moshup is an Aten asteroid, classified as
a potentially hazardous asteroid by researchers [30]. The
binary system consists of a primary and a secondary (seen
in Table I).

TABLE I
Facts About 66391 Moshup [31]

Fig. 1. Synodic frame of a binary asteroid system.

B. Linear Relative Motion Dynamics

A massless spacecraft moving in the gravity field of a
binary asteroid system is considered. As shown in Fig. 1, M1

and M2 are the masses of the primary and secondary of the
binary system, respectively, and D is the relative position
separation of the secondary with respect to the primary.

The mass ratio of the binary system is defined as

μ = M2

M1 + M2
. (1)

The mutual motion of the binary is assumed to be
circular with a constant angular velocityω. The barycenter
of the binary and the mutual orbital plane are assumed to
be stationary in the inertial frame. A synodic frame with
angular velocity ω is defined with its origin located at the
barycenter, with the x-axis pointing to the barycenter of
secondary, and the x − y plane within the mutual orbital
plane. The primary and secondary of 66391 Moshup are
assumed to be in in a doubly synchronous state. This is
what Moshup’s relaxed mode would be if the secondary
were tidally despun to a synchronous rotation rate [31]. r is
the position vector of the spacecraft in the synodic frame.

Then, the spacecraft’s equations of motion in the syn-
odic frame are obtained [32]

r = [
x y z

]T
(2)

ṙ = [
ẋ ẏ ż

]T
(3)

r̈ = f (ṙ, r,U ) =

⎡
⎢⎣

∂U
∂x + 2ωẏ + ω2x
∂U
∂y − 2ωẋ + ω2y

∂U
∂z

⎤
⎥⎦ (4)
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where U is the force potential of the system. In addition, (4)
admits an integral, known as Cj , Jacobian integral or Jacobi
constant, defined as [33]

1

2
Cj = −1

2

(
ẋ2 + ẏ2 + ż2

)+ 1

2
ω2
(
x2 + y2

)+ U (r). (5)

Using this equation and setting the velocity terms of
(5) to be 0, the zero velocity curve (ZVC) for the three-
body problem is obtained and separates the coordinates into
three realms: the realm of the primary (P), the realm of the
secondary (S), and the exterior realm outside the ZVC.

1) Spacecraft’s Motion in the Simplified Model: Since
a point-mass model will significantly distort the dynamic
structures and the topology of the actual orbits, this article
uses the spherical harmonic model in the initial guess stage
(see Section III-C) for its relatively precise and closed-form
gravity, which promises computational efficiency. Ush is the
force potential of spherical harmonic gravity [34]

Ush(r) = U 1
sh(r + μd ) + U 2

sh[r − (1 − μ)d] (6)

U i
sh(ri ) = −GMi

ri

∞∑
l=0

l∑
m=0(

Ri
0

ri

)l
Plm(sin δi )(Clm cos mλi + Slm sin mλi )

i = 1, 2

(7)

where G is the gravitational constant; Mi is the asteroid
mass; Ri

0 is the normalizing radius of the asteroid;Plmis the
associated Legendre function; Clm and Slm are the spherical
harmonic gravity coefficients; and ri,δi, andλi are the radius,
latitude, and longitude coordinates of spacecraft’s position
(i.e.,r + μd and r − (1 − μ)d in the asteroid fixed frames),
respectively. Subscripts 1 and 2 refer to the primary and the
secondary, respectively.

2) Spacecraft’s Motion in Realistic Model: In the con-
vergence stage of the algorithm (see Section III-D), a more
realistic model is employed. The relaxed mode of the binary
asteroid system at aphelion, 1.622 × 108 km(1.1 AU) from
the Sun, is considered [35].

At this distance, the majority of the perturbations on the
binary system are solar radiation pressure and solar third-
body perturbation, while the heliocentric orbital inclination
of the binary asteroids and perturbations from other planets
is ignored.

Constant-thrust equations of motion of the spacecraft in
the synodic frame are defined as

r̈ = f
(
ṙ, r,Upoly

)+ F

m0 − g0Ispt
û + r̈srp + r̈�TB (8)

r̈srp = pSRAscCR
r�,sc∣∣r�,sc

∣∣ (9)

r̈�TB = μ�

[
− r�,sc∣∣r�,sc

∣∣3 + r�,Mo∣∣r�,Mo

∣∣3
]

(10)

F is the magnitude of thrust, û is thrust vector, m0 is
spacecraft mass, Isp is specific impulse, g0 is standard
gravitational constant, r̈srp is acceleration contributed by
cannonball-modeled solar radiation pressure, pSR is solar
radiation pressure at 1.1 AU, Asc is the spacecraft’s solar

projected area, CR is the spacecraft’s equivalent reflectivity
to solar radiation, r̈�TB is solar third-body perturbations,
μ�is the solar gravitational constant, r�,sc is the position
vector from the sun to the spacecraft, and r�,Mo is the posi-
tion vector from the sun to the barycenter of 66391 Moshup
[36]. AndUpoly is the force potential of polyhedron-modeled
gravity [33], [37]

Upoly = U 1
poly(r + μd ) + U 2

poly[r − (1 − μ)d] (11)

U i
poly (ri ) = 1

2 Gσ( ∑
e∈edges

LerT
ieEierie − ∑

f ∈faces
ω f rT

i f Fi f ri f

)
i = 1, 2

(12)

where σi is the density of the asteroid, Leis an integration
factor of the spacecraft’s position and the edge, ωi f is the
solid angle of the face relative to the spacecraft, Eie and Fi f

are geometric parameters of edges and faces, respectively,
and rie and ri f are body-fixed vectors from the spacecraft to
the edge and the face of the polyhedron, respectively. The
remainder symbols correspond with the ones in (7).

In the following sections, unless otherwise specified,
the spacecraft’s motion is calculated in a synodic frame
with normalized units. This is done for the sake of compu-
tational convenience and to ensure the stability of numerical
methods. Length and time are normalized by the system’s
characteristic length and period, as shown in Table I, as
follows:

r̄ = r
DMoshup

, t̄ = 2πt

To,Moshup
, ω̄a = 1. (13)

III. BCG ALGORITHM

The BLT guidance law functions as the underlying
algorithm throughout the BCG-guided trajectories. This
section will first give the derivation of the BLT law, and
then, examine the structure of the BCG algorithm explicitly,
including the initial guess stage and the convergence stage.

A. BLT Guidance

The BLT functions as the underlying algorithm of the
initial guess and convergence stages throughout the guid-
ance.

Traditionally, the optimal control for the continuous-
thrust spacecraft is an infinite-dimensional optimization
problem, which requires some computationally onerous
nonlinear optimizers (as in [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], and [28]) to obtain the true optimal control. To
overcome the dilemma of onboard computation efficiency,
this algorithm employs BLT guidance, which was tradition-
ally applied to solid-propellant rocket guidance in a planar
gravitational field. It is a time-optimal guidance law, namely
fuel-optimized for constant-thrust engines. The equations of
motion of a spacecraft are

ẋ =
[

ṙ
v̇

]
=
[

v

g(r, t ) + F
m u

]
(14)
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Fig. 2. Flowchart of the BCG algorithm in CR3BP.

where r is the position vector of the spacecraft in the synodic
frame, v is the velocity of the spacecraft, m is the mass of
the spacecraft, F is the force of the constant-thrust, u is a
unit vector in the direction of the thrust acceleration, and g
is the given gravitational field.

When minimizing the flight time, the variational Hamil-
tonian is written as [38]

H =L(t, x, u)+λT f (t, x, u)=
[
λr

λv

]T [
v

g(r, t )+ F
m u

]
−1.

(15)

And its costate equations

λ̇r = −∂H
∂r

= −λv
T

[
∂g(r, t )

∂r

]
(16)

λ̇v = −∂H
∂v

= −λr . (17)

Differentiating (16) with respect to time and substituting
(17) yields

λ̈v = λv
T

[
∂g(r, t )

∂r

]
. (18)

The time optimal control is achieved by applying Pon-
tryagin’s principle to (15). The optimal u is chosen to be
antiparallel to λvas follows:

u∗ = −λν

λν

. (19)

In the case of a planar gravitational field, g(r, t ) equals
a constant so that

λ̈v = 0. (20)

Integrating twice gives the vector linear equations

λv = A + Bt (21)

where A and B are constant vectors of integration. Substi-
tuting these into (19) gives the time-optimal thrust pointing
direction

�

u = A + Bt

|A + Bt | (22)

where
�

u ∈ R3, A ∈ R3, and B ∈ R3 are the thrust direction
and BLT control profiles, and t is the time duration since
the maneuver starting epoch.

B. Description of the Algorithmic Flow

Fig. 2 shows the main execution flowchart of BCG. In
the initial guess stage, guided by higher mission objectives
(e.g., close-range observation and collision avoidance),
BCG plans nominal impulsive maneuvers of different types
(single burn and multiple burns based on manifold patching)
by leveraging the invariant manifolds of CR3BP. With the
initial guess, the spacecraft performs transfer maneuvers
according to the selected orbits’ types (state-to-state, orbital
element-to-state, state-to-orbital element). During the con-
vergence stage, the BCG algorithm continuously updates
the guidance parameters to correct errors caused by the
discrepancy between the actual gravity field and the loaded
gravity field onboard the spacecraft.

From an overview perspective, BCG first finds the op-
timal impulsive-like maneuver control within constraints,
and then, converts it into BLT control parameters. This algo-
rithm is used to design BLT transfers in versatile scenarios.
The specific definitions of these transfer scenarios are as
follows.

1) Single burn, the basic form of BLT guidance, which
can transfer between any initial and target orbits with
thrusters on all the way.
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2) Multiple burns, which plan multiple BLT thrust burn
segments and free coasting (with thrusters OFF) seg-
ments to accomplish transfers.

3) Bilateral manifold patching (BMP), a category of
multiple burns that is specified for scenarios in
CR3BP when both the target and initial orbits have
invariant manifolds (i.e., Lyapunov orbit families
near the collinear libration points, and the halo orbit
families).

4) Unilateral manifold patching (UMP), another cate-
gory of multiple burns when one of the initial/target
orbits is stable and does not generate any invariant
manifold, and the other is a libration point periodic
orbit which has manifolds.

For the single-burn maneuver, as shown in Fig. 4, its
transfer scenarios include six states to six states (StoS, i.e.,
two 6-D states involving position and velocity vectors), six
states to five orbit elements (StoO, i.e., classical orbital
elements except for true anomaly), five orbit elements to
six states (OtoS), and five or u∗ = − λν

λν
bit elements to five

orbit elements (OtoO). It should be noted that the perturbed
two-body orbits must be the target orbit of StoO, both the
initial and target orbits of OtoO and the initial orbit of OtoS,
whose equations of motion can be expressed in terms of
orbital elements with respect to the barycenter of 66391
Moshup.

For multiple-burn maneuvers, two categories of maneu-
vers can be distinguished based on differences in manifold
propagation: BMP involves only StoS since the transfer
between orbits with invariant manifolds is hard to parame-
terize with orbital elements; in the context of UMP, when the
initial orbit generates manifolds, the scenario is called uni-
lateral forward manifold patching (UfMP) including StoO
and StoS, and when the target orbit generates manifolds,
it is called unilateral backward manifold patching (UbMP)
including StoS and OtoS.

On the whole, BCG is divided into the initial guess stage
and the convergence stage, which are, respectively, carried
out under spherical harmonics (seen in Section II-B1) and
more realistic gravitational fields (seen in Section II-B2).
The single-burn initial guess (SBIG) algorithm is used for a
single burn. Multiple-burn initial guess (MBIG) is divided
into bilateral manifold patching initial guess (BMPIG) and
unilateral manifold patching initial guess (UMPIG).

C. Initial Guess Stage Under Spherical-Harmonic
Gravity

The parameters solved by the initial guess stage include
the BLT control profiles in (22) and initial and target states.
These coarse targeting methods solve the initial guess to
meet a specific optimal goal. This part will describe the
mathematics of the optimization problem.

1) Single-Burn Initial Guess (SBIG): Single burn of
BCG will be focused on transfers between some special
orbits of CR3BP (i.e., Lyapunov and Halo orbits), since
the optimization problems for transfers under the perturbed
two-body problem have been well established in Kuttel’s

work [39]. It should be noted that the orbits associated
with libration points are hard to derive in closed forms,
which means the freedom of variables associated with the
orbital phase cannot be released as orbital elements are, so
the StoS single burn is emphasized in CR3BP. However, a
pseudo-OtoO can be achieved by adjusting departure and
arrival points on the initial and target orbits through or-
bital propagation with designated epochs. Then, a complete
SBIG is separated into two parts: 1) solving BLT parameters
and 2) phase adjusting.

To optimize the time of flight, the closest points (in the
6-D state space) on the initial and target orbits are searched
and chosen to derive the BLT parameters. For the generality
of the objective function, all the phase-related variables on
the orbits are transcribed into state-time forms (an arbitrary
state x and orbital propagation with a designated duration t
from x) in the following optimization problems in (23)–(56).

The following equations describe the optimization prob-
lem:

x∗
t = f

(
t∗
t , x0

t

)
, x∗

i = f
(
t∗
i , x0

i

)
(23)

t∗
t , t∗

i = arg min
tt ti

[
	xBLT(tt , ti )

T 	xBLT (tt , ti )
]

(24)

	xBLT = xt

(
tt , x0

t

)− xi

(
ti, x0

i

)
(25)

where f is the equation of motion, subscripts i and t denote
variables on the initial and target orbits, respectively, x0

t
and x0

i are the arbitrarily selected initial states, and tt and ti
are time of orbital propagation from the starting states x0

t
and x0

i to the objective states xt and xi. By applying the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to
the unconstrained optimization, SBIG can be solved. It is an
efficient quasi-Newton method, which avoids gradient solv-
ing and ensures rapid convergence [40, pp. 136–149]. The
solved 	x∗

BLT will be converted into BLT control according
to the following equations:

T =
√

2 |	r∗|
ath

(26)

A = 	r∗

|	r∗| (27)

B = 	v∗

|	v∗| − 	r∗

|	r∗| T
(28)

where 	r∗ and 	v∗ are the position and velocity compo-
nents of the closest state separation 	x∗

BLT,respectively, ath

is the acceleration magnitude and T is an approximate flight
time for performing BLT maneuver, A is defined by 	r∗ to
constrain the departure direction to the target, and use 	r∗

and 	v∗ to define B, associated with T so that the control
vector will tend to the target state’s velocity components at
the terminal of flight. The states obtained in (24) were only
to provide initial guess for guidance parameters instead of
being the real departure/arrival states, for its destined miss
of target orbits as shown in Fig. 3.

The departure/arrival states for each specified thrust
level require further determination. Therefore, SBIG again

XIONG AND WANG: CONSTANT-THRUST ORBITAL TRANSFER ABOUT BINARY ASTEROIDS USING BLT GUIDANCE 3901



Fig. 3. Phase adjustment for SBIG.

takes the departure and arrival states as variables, and the ob-
jective function is the two-norm of the state errors between
the predicted arrival state and the target state on target orbit.
The search for adjusted states on the initial/target orbits is
indefinite and the temporal parameters can be either positive
or negative according to the orbital geometry. The modified
optimization problem parameters are described as follows:

x∗
t,m = f

(
	t∗

t,m, x∗
t

)
, x∗

i,m = f
(
	t∗

i,m, x∗
i

)
x∗

arr,m = fburn
(
x∗

i,m, A, B, T
)

(29)

	t∗
t,m, 	t∗

i,m

= arg min
tt,m ti,m

[
	xm

(
	tt,m, 	ti,m

)T
	xm

(
	tt,m, 	ti,m

)]
(30)

	xm = xt,m − xarr,m (31)

where fburn is the equation of motion with thrusters on,
	ti,m and 	tt,mare time of orbital propagation from the
closest states x∗

t and x∗
i from (23), xi,m and xt,m are the

objective phase-modified initial and target state, and xarr,m
is the predicted arrival state when using current BLT profiles
to transfer from xi,m.

As such, the pseudo-OtoO is achieved by orbital prop-
agation. This problem can be solved by BFGS as well.
As illustrated in Fig. 3, the phase-adjusted initial guess
still does not necessarily reach the target state, however,
it results in a solution that is good enough to be used in the
convergence step, which follows.

2) MBIG Leveraging Manifolds: Due to the strong dy-
namical drift in a binary asteroid system, it is not economical
to use transfers implementing Lambert maneuvers and a
precarious way involves a high probability of impact. In
contrast, MBIG yields the initial impulsive maneuver by
leveraging the stable and unstable manifolds of the orbits
in CR3BP.

Stable and unstable manifolds start from the perturbed
initial vector associated with the stable or unstable eigen-
vectors ws and wu of the monodromy of periodic orbits.
The monodromy matrix M of the periodic orbit is defined
as [41]

M = � (T, 0) = I6×6 +
∫ T

0
� (t ) � (t, 0)dt (32)

� (t ) = ∂ f (X )

∂X
(t )

Fig. 4. Different transfer types: red for target orbits/states, and blue for
initial orbits/states.

Fig. 5. P, S, and exterior realm near 66391 moshup.

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

ω2+Uxx Uxy Uxz 0 2ωa 0
Uyx ω2+Uyy Uyz −2ωa 0 0
Uzx Uzy ω2

a+Uzz 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(33)

where T denotes the orbital period, I6×6 is an identity matrix,
�(T, 0) is the state transition matrix, �(t ) is the Jacobian
matrix, f (X ) is the equation of motion in CR3BP, andUi j are
the partial derivatives of the force potential. The stable and
unstable eigenvalue of M are λs < 1 and λu = 1/λs, while
the corresponding eigenvector is ws and wu. The initial state
of a manifold can be generated by adding marginal deviation
d (generally, 10−6 is adopted) along the eigenvector [42] to
the periodic states x0 as

xs = x0 ± d · ws

xu = x0 ± d · wu. (34)

Then, the stable manifold W s is backward propagated
from xs and the unstable manifoldW u is forward propagated
from xu. The sign determines which realm the manifold will
lead to. For interpretation, taking L1 Lyapunov orbits of
66391 Moshup as an example, positive x+

s generates mani-
fold W s,P

L1
in the P (primary asteroid) realm, while negative

x−
s generatesW s,S

L1
in the S (secondary asteroid) realm shown

in Fig. 5. In BMP and UMP, only the velocity component
of deviation (eigenvector) is considered in (34) to generate
manifolds

xs = x0 ± d · vs

xu = x0 ± d · vu. (35)

MBIG selects different patching cuts/hyperplanes ac-
cording to the type of transfer orbit (UMP or BMP) and
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the nature of the orbit to reduce the degree of freedom
of the nonlinear optimization problem. Nevertheless, this
method still requires orbits to have intersected invariant
manifolds from both ends. The two initial guess algorithms
are described follows.

1) BMPIG involves initial and target orbits associated
with equilibriums, both of which generate invariant mani-
folds and the corresponding deviations are chosen as BMP’s
impulsive guess. Specifically, the unstable/stable manifolds
from the designated state on the initial/target orbit are
forward/backward propagated and are patched on some
selected hyperplanes like Poincaré cuts (such as x = 1 − μ

or x = −μ) in the synodic frame where the third impulsive
burn will be executed.

The BMPIG optimization problem is exemplified by
using the denotation of the transfer from L1 to L2. To make
the two manifolds intersect, it is necessary to compensate
for the Cj gap by altering the Cj energy of each manifold W ,
allowing them to propagate within the S realms of a con-
genial size, reducing state discrepancies when intersecting.
The unstable manifold of L1 in S realm, W u,S

L1
, the stable

manifold of L2 in S realm, W s,S
L2

, and � : x = 1 − μ as the
patching cuts are selected as an example. Since it is almost
impossible to generate two identical states on the cuts from
two arbitrary orbits, the state discrepancy on the y − z plane
is chosen to be the least. Since manifolds are required on
both ends, BMPIG only involves StoS [states are required
to calculate the monodromy in (32)].

Recall that pseudo-OtoO is achieved by SBIG in (29),
BMPIG does so as well. Then, the free variables are the
deviations in (34):dL1

and dL2
, and the phase variables on

L1/L2: tL1 and tL2 . The objective function is the sum of the
two-norm of 	v∗ and Cj gap. Distinguished from SBIG,
BMPIG solves a constrained optimization problem with a
constraint placed on manifolds’ position difference at the
cut �as follows:

x∗
L1

= f
(
t∗
L1

, x0
L1

)
x∗

L2
= f

(
t∗
L2

, x0
L2

)
	v∗

L1
= d∗

L1
· v
(
wu

L1

(
x∗

L1

))
	v∗

L2
= d∗

L2
· v
(
ws

L2

(
x∗

L2

))
	v∗

� = v�,L2

(
�,W s,S

L2

(
d∗

L2
, x∗

L2

))
− v�,L1

(
�,W u,S

L1

(
d∗

L1
, x∗

L1

))
(36)

StoS(pseudo − OtoO) : t∗
L1

, d∗
L1

, t∗
L2

, d∗
L2

= arg min
tL1

,dL1
,tL2

,dL2

[
	vL1

T
(
tL1

, dL1

)
	vL1

(
tL1

, dL1

)
+ 	vL2

T
(
tL2

, dL2

)
	vL2

(
tL2

, dL2

)
+ ∣∣	Cj

(
tL1

, dL1
, tL2

, dL2

)∣∣]
s.t.

∣∣	r�

(
tL1

, dL1
, tL2

, dL2

)∣∣ = 0 (37)

	Cj = Cj
(
W s,S

L2

(
dL2

, xL2

))− Cj
(
W u,S

L1

(
dL1

, xL1

))
(38)

	r� = r�,L2

(
W s,S

L2

(
dL2

, xL2

))−r�,L1

(
W u,S

L1

(
dL1

, xL1

))
(39)

where x0
L1

and x0
L2

are the arbitrarily selected initial states;
tL1

and tL2
are time of orbital propagation to the objective

Fig. 6. Correction of control profiles. (a) Departure state is shifted
backward. (b) All stages in the BLT convergence.

departure and arrival states xL1
and xL2

; wu
L1

and ws
L2

are the
unstable and stable eigenvector of the monodromy derived
from xL1

and xL2
; 	vL1

and 	vL2
are the velocity deviations

in (35); W u,S
L1

and W s,S
L2

are the unstable and stable mani-
folds in S realm generated from xL1

and xL2
with devia-

tion dL1
and dL2

; 	v∗
� is the velocity difference of the two

manifolds, W u,S
L1

,W s,S
L2

at �;	Cj is the Jacobi constant gap
between each manifolds; and 	r� is the position difference
of the two manifolds projected on �. Note that when the po-
sition constraints are satisfied in (37), so 	Cj is equivalent
to 	v∗

� on the patching cut. What is good about 	Cj is that
on the same coasting trajectory, 	Cj value stays consistent
and can be derived directly from the departure state, while
	v∗

� requires additional numerical trajectory integration.
In this process, especially in the S realm of the binary

asteroid system, it is prone to impact with the secondary,
and the area where the manifold leaves the orbit should be
selected in the area far away from the secondary asteroid,
referring to the classic heteroclinic connection [42, pp.
176–178]. Note that for any given two states, it is not
always possible to find an optimal trajectory that satisfies
the position constraints on � in the binary asteroid, that
is, this problem is a constrained optimization problem.
Two well-established nonlinear constrained optimizers: the
sequential quadratic programming (SQP) or the interior-
point method, are chosen to solve this nonlinear constrained
optimal problem [40, pp. 529–546 and 563–577].

The BMPIG’s conversion to BLT parameters is ex-
pressed as

Ak = Bk = 	v∗
k∣∣	v∗
k

∣∣ , Tk =
∣∣	v∗

k

∣∣
ath

, k = L1, L2, � (40)

t coast
1 = TOC

(
W u,S∗

L1
, �
)
, t coast

2 = TOC
(
W s,S∗

L2
, �
)

(41)

where i indicates the segments of the transfer, and t coast
i are

the time of coasting (TOC) when spacecrafts coast along
the optimal manifold W u/s,S∗

i until hitting the patching
cut �.

However, the time parameters derived in (37) require
further correction before being applied to BMP maneu-
vers. Since low-thrust maneuver cannot be executed in-
stantaneously, time offsets are needed to adjust the depar-
ture/arrival epoch and shorten the coasting segment accord-
ing to the burning time (BT), as Fig. 6 shows. After that,
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the corrected BLT parameters are passed to the convergence
stage in Section III-D to finish the guidance.

The modified time parameters are as follows:

	tk = ∓ Ti
/

2, 	t coast
k = −Tk

/
2−T�

(
t coast∗
k

t coast∗
L1

+ t coast∗
L2

)

k = L1, L2 (42)

xL1,m = f
(
	tL1

, x∗
L1

)
, xL2,m = f

(
	tL2

, x∗
L2

)
t coast
1,m = t coast

1 +	t coast
1 , t coast

2,m = t coast
2 +	t coast

2 (43)

where xL1,m and xL2,m are the objective phase-modified ini-
tial and target states; and t coast

1,m and t coast
2,m are modified TOC.

Similar to the case in SBIG, the modified trajectory may not
converge perfectly, but it could lead to better convergence
in subsequent stages.

2) UMPIG includes forward initial guess (UfMPIG),
including StoS and StoO, and backward initial guess
(UbMPIG), including StoS and OtoS, and only one of the
initial or target orbits can generate invariant manifolds,
therefore, the patching cuts should be on the stable orbits
which can be possibly transcribed by the orbital elements
in the case of perturbed two body orbits.

When mentioning orbital elements, the states in the
synodic first need to be converted into ones in Cartesian
coordinates as follows:

X in =
[

Arot2in(t ) 0
Ȧrot2in(t ) Arot2in(t )

]
X rot (44)

Arot2in(t ) =
⎡
⎣cos(Te (t ) − Te0) − sin(Te (t ) − Te0) 0

sin(Te (t ) − Te0) cos(Te (t ) − Te0) 0
0 0 1

⎤
⎦

(45)

where X rot and X in are states in the rotational and inertial
frame, t is time duration from the initial epoch, Te0 is the
epoch to define 66391 Moshup’s initial state, and Te(t ) is the
current epoch. To avoid singularity, the modified equinoctial
orbital elements (MEOEs) are chosen for the initial guess
stages when involving orbital elements, defined as [43]

pMEOE = a(1 − e2)

fMEOE = e cos(ω + 
)

gMEOE = e sin(ω + 
)

hMEOE = tan(i/2) cos(
)

kMEOE = tan(i/2) sin(
)

LMEOE = ω + 
 + ν (46)

where a is the semimajor axis, e is the eccentricity, i is the
inclination,ω is the argument of periapsis, 
 is the RAAN,
and ν is the true anomaly of the orbit.

Recall that in UMP, one of the initial/target orbit is
stable, which is designated as a planar circular orbit, for
which the reasons are twofold:

1) it is hard for UMPIG to determine a patching cut on
inclined or highly eccentric orbits because those or-
bits’ topologies are ill-defined in the synodic frame;

2) the transfer design between perturbed two-body or-
bits has been well developed in continuous-thrust
maneuver targeting (CTMT) [39].

Then, patching cut can be selected where the manifold
crosses the near-circular orbits’ semimajor axis (or other
equivalent variables), so the position constraints are con-
stantly satisfied, which means that 	Cj is equivalent to 	v�

on the patching cut like in BMPIG. Like other initial guess
stages, UMPIG can achieve pseudo-OtoO based on StoS,
and the impulsive UMP maneuver is derived by considering
Cj gap and the realm where the manifolds intersect the
initial/target orbits.

For interpretation, the optimization problem of UfMPIG
is written with the denotation of transfer from L1 Lyapunov
orbits to small-scale circular orbits encircling the primary
asteroid where free variables are departure/arrival time and
deviation in (34):tL1

and dL1
, and true longitude of the arrival

state: Larr of the circular orbits. The objective function is the
sum of the two two-norm of 	v∗ and Cj magnitudes

x∗
L1

= f
(
t∗
L1

, x0
L1

)
	v∗

L1
= d∗

L1
· v
(
wu

L1

(
x∗

L1

))
	v∗

� = v�,Csmall

(
L∗

arr

)− v�,L1

(
�,W u,P

L1

(
d∗

L1
, x∗

L1

))
(47)

StoS :L∗
arr = Larr, t∗

L1
, d∗

L1

= arg min
tL1

,dL1

[
	vL1

T
(
tL1

, dL1

)
	vL1

(
tL1

, dL1

)
+ ∣∣	Cj

(
Larr, tL1

, dL1

)∣∣] (48)
StoO :L∗

arr, t∗
L1

, d∗
L1

= arg min
Larr,tL1

,dL1

[
	vL1

T
(
tL1

, dL1

)
	vL1

(
tL1

, dL1

)
+ ∣∣	Cj

(
Larr, tL1

, dL1

)∣∣] (49)

	Cj = Cj
(
xCsmall

)− Cj
(
W u,P

L1

(
dL1

, xL1

))
(50)

where xCsmall is the arrival state with a true longitude Larr on
the small-scale circular orbits,W u,P

L1
is the unstable manifold

in P realm generated from xL1
with deviation dL1

. The
remaining variables’ physical interpretations are identical to
the ones in (36)–(39). This unconstrained optimal problem
can be solved by BFGS as well.

The conversion of UfMPIG’s impulse dV to BLT low
thrust is expressed according to the following equation:

Ak = Bk = 	v∗
k∣∣	v∗
k

∣∣ , Tk =
∣∣	v∗

k

∣∣
ath

(
k = L1, �Csmall

)
(51)

t coast
L1toC = TOC

(
W u,P∗

L1
, �Csmall

(
L∗

arr

))
. (52)

UbMPIG are interpreted with the denotation of transfer
from large-scale circular orbits to L2 Lyapunov orbits,
where free variables are Ldep and tL2

, dL2
, the objective

function is the sum of the two two-norm of 	v∗ and the
Cj gap as well

x∗
L2

= f
(
t∗
L2

, x0
L2

)
	v∗

L2
= d∗

L2
· v
(
ws

L2

(
x∗

L2

))
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	v∗
� = v�,L2

(
�,W s,E

L2

(
d∗

L2
, x∗

L2

))− v�,Clarge

(
L∗

dep

)
(53)

StoS :L∗
dep = Ldep, t∗

L2
, d∗

L2

= arg min
tL2

,dL2

[
	vL2

T
(
tL2

, dL2

)
	vL2

(
tL2

, dL2

)
+ ∣∣	Cj

(
Ldep, tL2

, dL2

)∣∣] (54)

OtoS :L∗
dep, t∗

L2
, d∗

L2

= arg min
Ldep,tL2

,dL2

[
	vL2

T
(
tL2

, dL2

)
	vL2

(
tL2

, dL2

)
+ ∣∣	Cj

(
Ldep, tL2

, dL2

)∣∣] (55)

	Cj = Cj
(
W s,E

L2

(
dL2

, xL2

))− Cj
(
xClarge

)
(56)

where xClarge is the departure state with a true longitude Ldep

on the large-scale circular orbits,W s,E
L2

is the stable manifold
in the E realm, backward generated from xL2

with deviation
dL2

. The conversion of UbMPIG’s is expressed according
to the following equation:

Ak = Bk = 	v∗
k|	v∗
k | , Tk = |	v∗

k |
ath

,
(
k = �Clarge, L2

)
(57)

t coast
CtoL2

= TOC
(
W s,E∗

L2
, �Clarge

(
L∗

dep

))
. (58)

Like (42), time-related parameters in UMPIG require
correction. The modifications are as follows (using sub-
scripts in (57) and (58) namely, the UbMPIG, for interpre-
tation purpose):

	tk = ∓Ti
/

2
(
k = �Clarge, L2

)
,

t coast
CtoL2

= −
(

T�Clarge
+ TL2

)/
2 (59)

Ldep,m = f
(
	t�Clarge

, L∗
dep

)
, xL2,m = f

(
	tL2

, x∗
L2

)
t coast
CtoL2,m = t coast

CtoL2
+	t coast

CtoL2
(60)

where Ldep,m and xL2,m are the objective phase-modified ini-
tial true longitude and target states, and t coast

CtoL2,m
is modified

TOC.
Time-related parameters of the UfMPIG in (51) and (52)

require the same modifications before convergence stages.

D. Convergence Stage in the Realistic Dynamical Model

In the convergence stage, a realistic dynamical model
(described in Section II-B2) is applied, and BCG uses NRPC
[44, pp. 899–985], which is chosen for its straightforward
iteration and the efficiency of updating the BLT guid-
ance parameters u0 (i.e., A0, B0, T0, etc., all initialized in
Section III-C).

NRPC has two steps: first, in the “Prediction” phase,
the spacecraft’s states are predicted according to the initial
BLT control profiles u0 and set the constraints, i.e., the error
vector e0, to measure the discrepancy between the current
states and the desired ones; then in the “Correction” phase,
it solves the Jacobian matrix that determines the descending
direction of the error ei magnitude associated with current
control profiles ui, which will be updated to be ui+1.

NRPC objectively approaches the error vector to null
within tolerance, i.e., 1 × 10−6 by updating the guidance

parameters. Then, the error e associated with control profiles
u is Taylor-expanded in its neighborhood, retaining the first
order

e(u∗ + δu) = e(u∗) + ∂e/∂u � δu + O(δu2) (61)

where ∂e/∂u is the Jacobian of the error vector, this partial
derivative is approximated through central finite differenc-
ing

∂ei

∂u j
≈ ei(u0, . . . , uj +	uj, . . .)−ei(u0, . . . , uj −	uj, . . .)

2	uj
.

(62)

After putting this all together by neglecting terms of
order δu2 or higher orders and setting (61) equal to zero, a
set of linear equations of δu is given by

�δu= − e. (63)

Due to the difference in the number of constraints and
BLT parameters, � cannot be written as a square matrix,
so the pseudoinverse of � is applied to update u via the
min-norm equation as follows:

u j+1 = u j − �
(
u j
)T
[
�
(
u j
)
� �
(
u j
)T
]−1

e
(
u j
)
. (64)

Due to the highly nonlinear dynamical environment, the
results of each iteration are not always in the descending
directions, so a line search is necessary, where the step
length factor is set to 1/10. One fact that needs to be
noticed is that when current u guides a trajectory impacting
the asteroids (this is very common in the binary asteroid
systems), the algorithm will perform another internal line
search; the step length factor is set to 0.5 until it breaks away
from the impact. An upper limit of iterations is needed to
prevent wasting too much time on an invalid u.

This process is repeatedly executed until the two-norm
of the constraint vector e converges within a tolerance of
1 × 10−6 corresponding to a position error of 2.55 mm, and
a speed error of 0.25μm/s.

The construction of NRPC’s u. and e in different sce-
narios will be detailed in the following part of this section.
Notably, the StoS types used in the convergence have noth-
ing to do with the initial guess types though they share the
same names. They can be combined arbitrarily, that is, initial
guess can use OtoS, while converging with StoS, etc. Any
transfer involving a two-body-like orbit can use the type
containing “O”; and StoS is studied in this section for it
is the transfer with the highest convergence difficulty and
the most compatible control for special orbits in CR3BP
owing to the aforementioned reasons in Section III-C1. So
can BCG’s StoS be applied to transfers in total perturbed
two-body problems (i.e., none of Lyapunov or Halo orbits
involved), and its iteration form can be degenerated to any
kind of O/StoO/S transfer.

1) Single Burn: Consider a formation that is composed
of two spacecraft in elliptical Keplerian orbits

S2S : u =
⎡
⎣A

B
T

⎤
⎦

7×1

, e = [
x(t f ) − x f

]
6×1
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Fig. 7. Comparison between (a) unilateral and (b) bilateral
propagations.

t f = t0 + T (65)

� = ∂e
∂u

(66)

where t f and t0 are the initial and terminal time, x(t f ) is
the terminal state, and x f is the target state. The error
is calculated unilaterally (i.e., only one time of trajectory
integration from the initial to the terminal in each iteration).

2) Multiple-Burn Leveraging Manifolds: Due to the
severe dynamical drift in CR3BP and nonlinearity in longer
trajectories, the unilateral error propagation introduced in
single-burn convergence is prone to collide with central
bodies when is applied to multiple burns, as shown in
Fig. 7(a), in which cases these outliers interfere with the
descending directions of errors or even loop the algorithm
infinitely.

A bilateral propagation is purposed in multiple burn’s
convergence, which segregates the trajectory into the for-
ward and backward segments, as shown in Fig. 7(b); the
major error eM is the 6-D state error on the virtual point
where the initial backward and forward trajectories meet.
Actually, each side’s trajectory is propagated according to
the initial parameters, and the ends of both sides do not meet
at all, causing this relatively large gap.

This refined method reduces the probability of collision
and the difficulty in convergence during the propagation.
Then, a smaller two-norm of the error vector e at the first
iteration epoch is obtained thanks to the shorter numerical
integration from the two ends. All of this leads to a faster
convergence.

In the multiple-burn convergence, the iterative matrix is
changed to the form of patched matrices

�δU= − E (67)

where

U=[u1 · · · un
]T

, E=[e1 · · · en
]T

. (68)

1) In the convergence stage of BMP, taking a five-
segment maneuver of burn–coast–burn–coast–burn in Fig. 7
as an example, Fig. 8 shows its prediction stage. The
trajectory is demonstrated horizontally for interpretation
purposes where the legends share the same meaning with
Fig. 7. The superscript b and the dark red paths represent
the flow of the backward prediction, and the dark blue paths
and variables without superscripts represent the forward
prediction.

Fig. 8. Prediction phase of BMP.

The error is calculated at each interface, and the third
one is chosen to be the major error eM for the real flight
trajectory intersects in this specific case. However, it can
be shifted to any of the interface among 12,3, and 4, if
necessary. Then, the control profiles are defined as follows:

StoS : u1 =
⎡
⎣A1

B1

T1

⎤
⎦

7×1

, u2 =
[
xb

2(t20)

t coast
2,m

]
7×1

u3 =

⎡
⎢⎢⎣

xb
3(t30)
A3

B3

T3

⎤
⎥⎥⎦

13×1

u4 =
[

x4(t4 f )
t coast
4,m

]
7×1

, u5 =
⎡
⎣A5

B5

T5

⎤
⎦

7×1

(69)

ei = [
xi(ti, f ) − xb

i+1(ti+1,0)
]

6×1
i = 1, 2, 3, 4, 5

(70)

where

t1 f = t10 + T1

t2 f = t1 f + t coast
2,m

t3 f = t2 f + T3

t4 f = t3 f + t coast
4,m

t5 f = t f

t10 = ti
t20 = t30 − t coast

2m
t30 = t40 − T3

t40 = t50 − t coast
4m

t50 = t5 f − T4

(71)

where subscript 0 and f indicate the initial and final state
of each segment, the subscript 1 indicates variables in the
first burning segment, the subscript 2 is for the first coasting
segment, the subscript 3 is for the second burning segment,
the subscript 4 is for the second coasting segment, and the
subscript 5 is for the final burning segment. Note that ui(i =
2, 3, 4) include state variables that are initialized by a single
run of the prediction stage with initial u0 directly derived in
(40)–(43)

x0
u2

= (
xb0

2 (t20)+x0
1(t1 f )

)/
2

x0
u3

= (
xb0

3 (t30)+x0
2(t2 f )

)/
2

x0
u4

= (
xb0

5 (t50)+x0
4(t4 f )

)/
2. (72)

The Jacobian matrix � becomes

� = ∂E
∂U

=

⎡
⎢⎢⎢⎢⎣

∂e1
∂u1 (6×7)

−I(6×7)

∂e2
∂u2 (6×7)

−I(6×13)

∂e3
∂u3 (6×13)

− ∂e3
∂u4 (6×7)

I(6×7) − ∂e4
∂u5 (6×7)

⎤
⎥⎥⎥⎥⎦

(73)
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Fig. 9. Prediction phase of unilateral forward and backward manifold
patching.

where ∂ei
∂ui

s are derived by central finite differencing, and
I(6×7) and I(6×13) are identity matrices with zeros to fill up
the rest of the columns.

2) The prediction flow of UMP is shown in Fig. 9. The
control profiles and error vectors in the form of StoS are
defined as

UfMP_StoS :

u1 =
⎡
⎣A1

B1

T1

⎤
⎦

7×1

, u2 =
[

xb
2(t20)
t coast
2,m

]
7×1

u3 =
⎡
⎣A3

B3

T3

⎤
⎦

13×1

(74)

UbMP_StoS :

u1 =
⎡
⎣A1

B1

T1

⎤
⎦

7×1

, u2 =
[

x2(t2 f )
t coast
2,m

]
7×1

u3 =
⎡
⎣A3

B3

T3

⎤
⎦

13×1

(75)

ei = [
xi(ti, f ) − xb

i+1(ti+1,0)
]

6×1
i = 1, 2. (76)

The Jacobian matrix � becomes

UfMP_StoS : � = ∂E
∂U

=
[

∂e1
∂u1 (6×7)

−I(6×7)
∂e2
∂u2 (6×7)

∂e3
∂u3 (6×7)

]

(77)

UbMP_StoS : �= ∂E
∂U

=
[

∂e1
∂u1 (6×7)

− ∂e2
∂u2 (6×7)

I(6×7)
∂e2
∂u3 (6×7)

]

(78)

where ∂ei
∂ui

s are derived by central finite differencing, and
I(6×7) are identity matrices with zeros to fill up for the rest
of the columns.

IV. CONSTANT-THRUST TRANSFERS ABOUT A
BINARY ASTEROID SYSTEM

In this section, the versatile StoS single-burn and
multiple-burn BLT maneuvers devised by BCG were per-
formed about 66391 Moshup, using a 600-kg spacecraft
with a solar projected area Asc of 12.5 m × 4 m and equiv-
alent reflectivity to solar radiation CR of 1.5 (all similar to
the DART spacecraft [2]) using a low-thrust engine with
varying constant-thrust levels. The influence on power sup-
ply caused by the shadow area of the asteroid is neglected.
The same spacecraft and assumption will be applied to
Section V.

TABLE II
Performance of Finite Thruster

The trajectories demonstrated in this section are chosen
for possible task demands for remote sensing, sampling,
or other applications. It mainly includes approaching and
circumscribing orbits (from the large-scale orbits, entering
the S realm at the L2 point, from L1 to the P realm, and
approaching the small-scale orbits near the primary). Due
to the reversibility of StoS, the backward process has exactly
the same difficulty and process as the forward process.

A. Single Burn

Four StoS single-burn constant low-thrust orbital trans-
fers using various thrust levels mapped out by BCG were
simulated in this section.

The orbital transfers consist of the following:

1) a long coplanar transfer between L2 and L1 Lya-
punov orbits with Cj gap;

2) a noncoplanar transfer between L2 and L1 southern
Halo orbits;

3) a close noncoplanar transfer maneuver from L1 Halo
to L1 Lyapunov orbit;

4) a long noncoplanar maneuver from L1 Lyapunov
orbit to L5 vertical Lyapunov orbit.

The results are shown in Fig. 10.
For reference, a 15-mN (corresponding acceleration is

2.5 × 10−5m/s2) thruster with a specific impulse of 2000 s
can perform transfer from L1 to L5 [see Fig. 10(d)] in 5.88
h and with fuel usage of only 16.28 g.

Table II shows the test data of low-thrust ion thrusters
that have been or will be used in deep space missions.
The NEXT, already equipped for DART mission, provides
a maximum thrust of 236 mN corresponding to 3.9 ×
10−4m/s2 and it is 1.3 × 10−4m/s2 for NSTAR equipped for
DeepSpace-1 and DAWN mission, both far exceeding the
minimum executable acceleration for transfers in Fig. 10.
The Cj and control histories of maneuver in Fig. 10(b) with
different thrust levels are shown in Fig. 11(a) and (b). As
Fig. 11(a) shows, the transfer orbits associated with all levels
of thrust levels go far beyond the Cj gap between ones
of the two ends along the trajectory. This very “prodigal”
and fuel-inefficient maneuver, however, speaks to the high
control authority of low-thrust BLT maneuvers about 66391
Moshup as it allows spacecraft to complete transfer despite
the poor initial condition.
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Fig. 10. Single-burn StoS transfers. (a) Coplanar transfer between Lyapunov orbits. (b) Noncoplanar transfer between Halo orbits. (c) Noncoplanar
transfer between Halo and Lyapunov orbits. (d) Noncoplanar transfer between colinear and triangular libration orbits.

B. Multiple-Burn Leveraging Manifolds

Four StoS multiple-burn orbital transfers using various
thrust levels mapped out by BCG were simulated in this
section.

The reverse initial and target orbits in Fig. 10(a) and (b)
were chosen for BMP maneuver as follows:

1) a transfer from L1 Lyapunov to L2 Lyapunov;
2) a transfer from L1 Halo to L2 Halo.

And for UMP maneuver, it is chosen as follows:

1) a transfer to enter the P realm to a small-scale orbit
encircling the primary via the L1 point initialized by
OtoS unilateral backward initial guess;

2) a transfer from a large-scale orbit to enter the S
realm via the L2 point initialized by StoO unilateral
forward initial guess.

The results are shown in Fig. 12, where dark red dots
denote the impulsive maneuvers initialized by initial guess
stages.

The Cj and control histories of maneuver in Fig. 12(b)
with different thrust levels are shown in Fig. 11(c) and
(d). The colored lines represent the thrusting section and
the gray lines are for the coasting section in Figs. 11, 13,
and 14.

For comparison purposes, a reversed multiple-burn
transfer (L1 to L2 Halo orbits) with the same Cj gap as the

single burn in Fig. 10(b) (L2 to L1 Halo orbits) is shown
in Fig. 12(b). Compared with single burn, multiple burns
are much more dependent on the dynamic characteristics
of CR3BP. The flight time is less relevant with thrust levels
in multiple-burn transfer, usually tens of times more than
that of single burn transfer, while fuel usage is almost
exponentially reduced. For reference, when using a 24-mN
thruster (i.e., 4 × 10−5m/s2) with a specific impulse of 2000
s in both scenarios, the time of flight and fuel usage are 190
min/814 min and 13.64 g/3.38 g for single/multiple burns.
The minimum executable acceleration is examined to be
smaller than that of single burn as well.

An insight into the Cj and control history is shown
in Fig. 11(c) and (d). The excessive part beyond Cj gap
(outlined by red dash) is rather marginal than in Fig. 11(a),
speaking to multiple burn’s fuel efficiency from an energy
aspect.

V. PERFORMANCE ANALYSIS

In this section, different aspects of the BCG’s perfor-
mance will be examined using some numerical methods.
First, the robustness is validated in the same scenario by
an assortment of initial perturbation levels, each with an
N = 600 Monte Carlo convergence simulation across a wide
array of thrust levels. Then, BCG is compared with true op-
timal methods derived by interior point (IP) optimization to
demonstrate the balance between optimality and efficiency
of this guidance method.
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Fig. 11. (a) and (b) Cjhistories of maneuvers in Figs. 10(b) and 12(b). (c) and (d) Control histories of maneuvers in Figs. 10(b) and 12(b) with
different thrust levels.

Fig. 12. Multiple-burn StoS transfers. (a) Coplanar transfer between Lyapunov orbits. (b) Noncoplanar transfer between Halo orbits. (c) Transfer
from L1 to small-scale orbit in P realm. (d) Transfer from large-scale orbit in the exterior realm to L2.
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Fig. 13. Perturbed states of several N = 600 backward-propagated initial perturbation simulations with 2.4 mN.

Fig. 14. Histogram of the position and velocity errors of several N =
600 with 2.4 mN.

A. Robustness Validation of BLT in CR3BP

In the robustness validation, the nominal maneuver is
chosen as an UMP StoS maneuver from a random position
on a circular, 3-km planar orbit to fixed positions on target
L2 Lyapunov orbits shown in Fig. 12(d), chosen for pro-
viding a fuel-efficient and safe way to approach an asteroid
when the spacecraft transfers from the heliocentric orbits to
proximity orbits.

StoS, the most basic convergence type in BLT, is the
most difficult to converge due to its least free variable to
constraint ratio. So, it can be used to give a strict conver-
gence tolerance under perturbations, yielding a quantitative
analysis of BCG’s capability of converging on low-thrust
transfers.

Furthermore, UMP, essentially a burn-coast-burn ma-
neuver, is chosen because it is the most versatile maneu-
ver type the BCG can design. When the interval coasting
segment decreases to null, UMP multiple burns degenerate
into single-burn maneuvers. The architecture of coast–burn
can be extended to construct longer trajectories with more
segments.

In this section, the performance of the transfer maneuver
convergence is tested with N=600 initial state perturbations
(e.g., ignition delay, positioning error, or discrepant gravi-
tational field, which causes the deviation of the maneuver

starting position from the expected position). A maximum
iteration of 40 and a convergence tolerance of 5 × 10−5 are
imposed on robustness validation.

This process was performed with the constant-thrust
maneuver shown in Fig. 12(d), where the BLT guidance
parameters and departure state were perturbed by values up
to 5, 10, 20, 30, 40, and 50% from the nominal trajectory
and aimed at the same target orbit. The orbit determination
for the initial and target orbits is assumed to be accurate.

Figs. 13 and 14 illustrate the results of 2.4-mN thrust
(i.e., 4 × 10−6m/s2).

For visualization, Fig. 13(a) shows the N = 600 position
and velocity components along the trajectory in the synodic
frame, where the black curve represents the nominal tra-
jectory. In Fig. 13(a), the time offset of each trajectory is
adjusted to end for the same epoch, so the unconverged
maneuvers that ended up with less time of flight (e.g.,
colliding with the asteroid, or failing to converge within set
iteration limit) will be salient and outlying. Fig. 14 shows the
histogram of the two-norm of the position and velocity er-
rors. Since the initial state perturbation is applied according
to the normal distribution, the error remains approximately
Gaussian when the initial perturbation level is small. As
the initial perturbation increases, the errors become less
Gaussian, and are concentrated in the region of larger errors.

Fig. 15 shows the convergence histogram with higher
thrust levels (30 mN, 5 × 10−5m/s2). It is obvious that
the convergence rate and accuracy increase significantly
with larger thrust, and the results in the histogram maintain
Gaussian even with greater initial perturbation.

Table III shows the results of the convergence validation.
Since the convergence of the Newton method is limited
within sufficiently good initial guesses, an interesting result
is that the Monte Carlo simulation quantifies the range of
the initial error, beyond which BCG begins to crash down.
With a 30-mN thruster, BCG achieves over 98% conver-
gence at 10% perturbation, and over 80% convergence at
20% perturbation. When it is perturbed beyond 20%, the
convergence rate exhibits a steep descent.
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Fig. 15. Histogram of the position and velocity errors of several N =
600 with 30 mN.

TABLE III
Perturbated Trajectory Statistics With 2.4 and 30 mN

B. Computational Efficiency and Comparison to
Optimal Results

The previous Monte Carlo simulations show that the
BCG is capable of overcoming initial state perturbations.
The computational and fuel efficiency of the maneuver are
equivalently important. This section compares the BCG
low-thrust BLT maneuver calculated in Fig. 12 with the
optimized constant low-thrust maneuver calculated by the
IP optimization via SCIPY.

To measure BCG’s optimality, the objective function of
IP is set to be BT optimal. The IP method uses the same
initial control profiles derived by MBIG in Section III-C1.
Fig. 17 compares the maneuver calculated by BCG and the
optimal maneuver calculated by the IP. Fig. 17(a) shows the
iteration time of IP divided by that of BCG. Fig. 17(b) shows
the BT of the IP optimal maneuver divided by the BT of the
BCG. Fig. 16 examines the control vectors and Cj for BCG
and IP optimal transfer between L1 and L2 Halo orbits in
Fig. 12(b).

As shown in Fig. 17(a), the efficiency of the BCG
algorithm is much higher than that of the IP optimization,
especially when the thrust acceleration is low. As the thrust
increases, the efficiency gap of a given transfer decreases
gradually, especially for the higher thrust level, which
almost resembles the impulsive initial guess. For longer
transfers in Fig. 12(a) and (b), implementing BMP, due
to the multitude of segments and the complexity of the
Jacobian matrix, the computational efficiency promotion
of BCG is not eminent, only several times faster than IP.
For the maneuver of Fig. 12(a), at the maximum tested
thrust of 240 mN (4 × 10−4m/s2), the computational costs
are almost identical. For transfers in Fig. 12(c) and (d),
using UMP with fewer segments, the relative efficiency of
the BCG is very considerable. Especially for the shortest

transfer in Fig. 12(d), even when the thrust is 1.5 mN
(2.5 × 10−6m/s2), BCG took only 11 iterations or 14 s to
converge within the tolerance of 1 × 10−6.

In Fig. 17(b), the BT of the IP’s true optimal maneuver
is marginally better than that of BCG, especially when the
spacecraft performs some aggressive noncoplanar maneu-
vers about asteroids. Taking control profiles in Fig. 12(b)
(shown in Fig. 16), the optimal IP result has a milder am-
plitude in the control direction and less surplus Cj along the
trajectory. For Fig. 12(b), the fuel reduction can be achieved
by 9% when using 1.5 mN (2.5 × 10−6m/s2), saving up to
46 min of BT, corresponding to 1.3124 g of fuel, however,
it takes almost 200 times longer to calculate. Furthermore,
these simulations were performed on a 2.6-GHz Intel Core
i7-10750H processor. As the BCG algorithm was written in
PYTHON 3.9, the speed of BCG can be further improved
by coding in a mixed compiled language (with C++ or
MEX).

VI. DISCUSSION

The results of Section V show that the BCG algorithm
is an efficient and robust constant low-thrust guidance algo-
rithm with an appropriate thrust level in the case of 66391
Moshup.

However, according to the N = 600 Monte Carlo, con-
vergence limits do exist. For instance, when the thrust
is 30 mN, the convergence rate drops sharply when the
initial perturbation exceeds 20%. This may be due to the
BCG’s simple derivation, which transforms some nonlinear
problems into linear problems (e.g., direct conversion from
impulsive to BLT initial guesses about binary asteroids by
neglecting the uniform gravitational assumption for BLT
[38], using finite segments of a low-thrust trajectory, etc.).

Although the simplicity of BCG allows for efficiency, it
also restricts BCG’s capability to design more complex and
longer transfers. The manifold patching used in the initial
guess stage is based on the heteroclinic connection mani-
folds less than one revolution. For instance, there is a prob-
ability of finding better (e.g., with less 	v) patching cuts
by applying multirevolutionary heteroclinic connections
between L1 and L2 as an initial guess [42]. Considering that
the BLT is based on the uniform gravitational assumption,
a longer orbit will add nonlinearity to the algorithm. This
can be achieved by increasing the number of segments in
the convergence stage. Still, more segments also account
for computational inefficiency since the Jacobian matrix of
Newton’s method becomes far more complex.

The results in Section V-B show BCG’s tradeoff on com-
putational efficiency and optimality. BCG tends to be more
efficient when handling trajectories with lower thrust levels
and fewer segments. Conversely, near optimality worsens
as the thrust gets smaller, compared to the true optimum.

Finally, it took more iterations to solve the impulsive
initial guess in the initial guess stage than in the conver-
gence phase (for BFGS, SQP, and interior-point methods in
Section III-C, the maximum iteration is 80, for NRPC in
Section III-D, it is 40), which seems counterintuitive since
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Fig. 16. Comparison between BCG and IP optimization for maneuvers shown in Fig. 12(b). (a) Cj and (b) Control history.

Fig. 17. Comparison between BCG and IP optimization for maneuvers shown in Fig. 12. (a) Iteration time. (b) Burning time (BT).

the convergence is more stringent due to the trajectory con-
tinuity. It is caused by the fact that orbital motion associated
with equilibriums in CR3BP in the synodic frame cannot
be expressed in closed forms, thus making it difficult to be
exported into the six-variable orbital elements. BCG uses an
alternative pseudo-OtoO by orbital propagation on the target
and initial orbits to release the phase constraints in the initial
guess stage. This methodology introduces more variables
instead, while a true OtoO based on orbital elements reduces
variables. It is imperative to notice that pseudo-OtoO does
reduce the absolute difficulty of convergence on an initial
guess, however.

If the orbital motion near the binary asteroids can be
derived in closed forms, and then, parameterized as in a
point-mass CR3BP [49], the initial guess stage of BCG will
be more efficient, and there will be a plethora of options in
the convergence stage.

VII. CONCLUSION

This article introduces a fuel-efficient BCG algorithm
capable of planning low-thrust transfers about a binary
asteroid system. The BCG algorithm uses a BLT guidance
law, manifold patching techniques, and Newton–Raphson
predictor–corrector to design a variety of executable single-
burn and multiple-burn transfer trajectories. This work has
applied BCG to a plethora of transfer scenarios in the study
case of 66391 Moshup and shown BCG-guided low-thrust
maneuvers’ high fuel efficiency when performing aggres-
sive noncoplanar transfers between orbits in the binary
asteroid system for only grams of fuel. And through a
multitude of Monte Carlo simulations, this work has demon-
strated BCG’s robustness against strong initial state per-
turbation. Finally, BCG’s tradeoff between computational
efficiency and near-optimality has been proven excellent by
comparison with well-established optimization methods. At
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a high level, the BCG algorithm converts trajectory design
into linear optimization problems, which allows for high
computational efficiency, maintaining near optimality in
the meantime. For example, with a 1.5-mN thruster (i.e.,
2.5 × 10−6m/s2), BCG can converge over 200 times faster
than IP optimization while costs only 9% more than the
true optimal trajectory in fuel. Furthermore, if the close
form parameters, like orbital elements of the orbital motion
near the binary asteroids, can be obtained, the versatility and
computational efficiency of BCG will be further enhanced.
In conclusion, BCG, in terms of fuel and computation
efficiency, will be a promising option for low-thrust space-
craft’s autonomous guidance about binary asteroids.
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