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Abnormal Static and Dynamic Local Functional
Connectivity in First-Episode Schizophrenia:

A Resting-State fMRI Study
Jie Zhou, Xiong Jiao , Qiang Hu, Lizhao Du , Jijun Wang, and Junfeng Sun , Senior Member, IEEE

Abstract— Dynamic functional connectivity (FC) anal-
yses have provided ample information on the distur-
bances of global functional brain organization in patients
with schizophrenia. However, our understanding about
the dynamics of local FC in never-treated first episode
schizophrenia (FES) patients is still rudimentary. Dynamic
Regional Phase Synchrony (DRePS), a newly developed
dynamic local FC analysis method that could quantify
the instantaneous phase synchronization in local spa-
tial scale, overcomes the limitations of commonly used
sliding-window methods. The current study performed
a comprehensive examination on both the static and
dynamic local FC alterations in FES patients (N = 74)
from healthy controls (HCs, N = 41) with resting-state
functional magnetic resonance imaging using DRePS, and
compared the static local FC metrics derived from DRePS
with those calculated from two commonly used regional
homogeneity (ReHo) analysis methods that are defined
based on Kendall’s coefficient of concordance (KCC-ReHo)
and frequency coherence (Cohe-ReHo). Symptom severi-
ties of FES patients were assessed with a set of clinical
scales. Cognitive functions of FES patients and HCs were
assessed with the MATRICS consensus cognitive battery.
Group-level analysis revealed that compared with HCs,
FES patients exhibited increased static local FC in right
superior, middle temporal gyri, hippocampus, parahip-
pocampal gyrus, putamen, and bilateral caudate nucleus.
Nonetheless, the dynamic local FC metrics did not show
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any significant differences between the two groups. The
associations between all local FC metrics and clinical
characteristics manifested scores were explored using a
relevance vector machine. Results showed that the Global
Assessment of Functioning score highest in past year
and the Brief Visuospatial Memory Test-Revised task score
were statistically significantly predicted by a combination
of all static and dynamic features. The diagnostic abili-
ties of different local FC metrics and their combinations
were compared by the classification performance of linear
support vector machine classifiers. Results showed that
the inclusion of zero crossing ratio of DRePS, one of
the dynamic local FC metrics, alongside static local FC
metrics improved the classification accuracy compared to
using static metrics alone. These results enrich our under-
standing of the neurocognitive mechanisms underlying
schizophrenia, and demonstrate the potential of developing
diagnostic biomarker for schizophrenia based on DRePS.

Index Terms— Dynamic regional phase synchrony,
regional homogeneity, coherence, local functional
connectivity, resting-state fMRI.

I. INTRODUCTION

SCHIZOPHRENIA is a complicated mental disorder with
multiple symptoms and numerous interacting risk fac-

tors [1]. The heterogeneous genetic, neurobiological, and
phenotypical profiles among schizophrenia patients challenge
the current diagnostic criteria, which are primarily defined
based on clinical phenomenology and illness course [2]. Thus,
it is important to identify objective and schizophrenia-specific
biological biomarkers. Neuroimaging provides a promising
avenue for exploring such biomarkers [3]. Although structural
and functional brain alterations in schizophrenia revealed
by neuroimaging techniques have provided valuable insights
about this disease, the interpretation and translation of these
heterogeneous findings into clinical applications are still chal-
lenging [4], [5]. Machine learning analysis has the advantages
of characterizing brain abnormalities at the individual level and
evaluating multiple variables simultaneously, which makes it
valuable for examining the diagnostic value of neuroimaging
findings and establishing associations between the behavioral
or cognitive features of patients and multiple brain abnormal-
ities [6], [7], [8], [9], [10].

Resting-state functional magnetic resonance imaging (rs-
fMRI) is a noninvasive, task-free neuroimaging technology
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that is believed to reflect the intrinsic neural activity. The
seminal study concluded that the correlation of low-frequency
blood oxygenation level dependent (BOLD) signal in the
resting-state brain manifests functional connectivity (FC) of
the brain [11]. A variety of FC analysis approaches and
measures have been developed and deployed in schizophrenia
research, such as regional homogeneity (ReHo) [12], [13],
[14], [15], amplitude of low-frequency fluctuations (ALFF)
[16], [17], graph theory-based connectivity analysis [18],
and dynamic FC analysis [19], [20], [21], [22], [23], [24].
The dynamic FC analysis aims to characterize time-varying
features of FC. Nowadays, most of dynamic FC analysis
conducted in schizophrenia research aims to revel the fluc-
tuation laws of network-level attributions, such as brain state
repertoires based on correlation patterns between remote brain
regions [22] and topological properties of brain network [25],
[26]. While, the local FC fluctuations in rs-fMRI research
was largely unexplored [27], [28]. Some relevant clinical
studies captured the fluctuations of ReHo or ALFF across
sliding windows to detect the altered dynamic intrinsic brain
activity in Alzheimer [29], major depressive disorder [30],
stroke [31] and schizophrenia [32] patients. Results in these
studies validated the potential of dynamic local FC in revealing
the underlying mechanism of brain diseases. However, such
study is still in its infancy, and also suffered from limitations
and uncertainties existed in the analysis based on sliding
window [33], [34].

Aberrant neural dynamics can be considered as primary
and fundamental pathophysiology in schizophrenia [35]. For
examples, electrophysiological studies based on EEG signals
have reported the dynamics of highly reproducible [36] and
the abnormal amplitude dynamics of EEG oscillations [37] in
schizophrenia patients. Compared with EEG, fMRI has higher
spatial resolution but lower temporal resolution. For study
based on fMRI, dynamic local FC analysis with improved
temporal resolution may reveal new information of aberrant
neural dynamics in schizophrenia. Dynamic Regional Phase
Synchrony (DRePS), a local FC analysis approach developed
in recent years, utilizes instantaneous local mean phase coher-
ence within adjacent fMRI voxels to measure the instantaneous
fluctuation of local FC [38]. This instantaneous measure has
high temporal resolution (i.e., up to the sampling interval
TR = 2 s in this study) and thus overcomes the constraints
of the analysis based on sliding window. DRePS has been
successfully applied in clinical research on generalized anxiety
disorder [39], neocortical focal epilepsy [40], and depression
disorder [41]. However, DRePS has rarely been applied in
schizophrenia research yet.

The characteristics of local FC fluctuations depicted by
DRePS time series can provide both dynamic and static
information of local FC. The dynamic properties of DRePS
time series have been characterized with its average spectral
density [40] and its standard deviation [39] in previous studies.
While more dynamic information contained in DRePS time
series remains to be explored. In this study, we introduce a new
metric named the zero crossing ratio of DRePS, inspired from
the concept of zero crossing in signal processing [42]. This
metric quantifies the frequency at which a DRePS time series

deviates from its mean level. The static information of DRePS
time series is mainly included in its temporal average (mean-
DRePS) [38], which has been shown to have high positive
linear correlation with ReHo [28], [40].

ReHo is a widely accepted measure for assessing the local
FC alteration in schizophrenia. There are two commonly used
definitions, one is the original definition of ReHo (KCC-ReHo)
that is defined by the Kendall’s coefficient of concordance
based on amplitude rank [43], [44], the other is the Cohe-ReHo
that is defined by the frequency coherence [45]. Compared
with these two ReHo definitions, DRePS is based on the
local synchronization of the instantaneous phase of voxels
in neighborhood. These three measures are defined from
three different perspectives, i.e., rank of amplitude, frequency
coherence, and instantaneous phase synchronization, respec-
tively, and thus could be expect to provide complementary
information to each other. This commonality allows for the
comparison and integration of all metrics calculated from them
at a regional spatial level. By simultaneously examining a
brain region using these comprehensive pieces of information,
we could anticipate to enhance our understanding of regional
functional alterations in FES patients. With this consideration,
we would also perform local FC analysis with KCC-ReHo
and Cohe-ReHo, and compare the results by KCC-ReHo
and Cohe-ReHo with those by DRePS, thus providing a
comprehensive understanding of the static and dynamic alter-
ations of local FC in FES patients from the perspectives of
amplitude rank, frequency coherence, and instantaneous phase
synchronization.

In this study, we examined the alterations of local FCs
in FES patients by using the dynamic local FC metrics
including the average of power spectral density of DRePS
(psd-DRePS), the variance of DRePS (var-DRePS) and the
zero crossing ratio of DRePS (zcr-DRePS), and the static
local FC metrics including mean-DRePS, KCC-ReHo, and
Cohe-ReHo. We also investigated the association of all these
metrics with symptom/cognitive scores respectively, using a
multivariate sparse relevance vector machine (RVM) model.
Furthermore, we explored the diagnostic value of different
combination of metrics of local FC with a linear support vector
machine (SVM) model. We expected that the dynamic metrics
of local FC could offer valuable insights into the underlying
mechanisms of schizophrenia beyond the static metrics of
local FC.

II. MATERIALS AND METHODS

A. Demographic and Clinical Characteristics
Totally, this study included 74 FES patients and 41 HCs

(Table I). All subjects were recruited from Psychiatric Depart-
ment of the First Psychiatric Hospital of Harbin. The study
was approved by the Ethics Committee of Shanghai Men-
tal Health Center (No. 2017-36R; date: 13th, Aug., 2018)
and the First Psychiatric Hospital of Harbin, and has been
registered with the Chinese Clinical Trial Register Center
(Registration number: ChiCTR2000041106). FES patients met
the following inclusion criteria: (i) diagnosed by an experi-
enced psychiatrist according to the criteria for schizophrenia
in Diagnostic and Statistical Manual of Mental Disorders,
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TABLE I
THE DEMOGRAPHIC INFORMATION, NEUROCOGNITIVE

PERFORMANCES AND SYMPTOMS OF PARTICIPANTS

INCLUDED IN ANALYSES

Fifth Edition (DSM-V) [46]; (ii) age of 15-45 years and
IQ>69; (iii) overall clinical global impression (CGI) scale≥4;
(iv) the total score of positive and negative syndrome scale
(PANSS) ≥60; (v) first onset without previous systemic
anti-psychotic treatment. Written informed consent of the
FES patient was obtained from his/her legally authorized
representative, and HCs provided written informed consent
himself/herself, after totally understanding the purpose of our
study.

The positive and negative syndrome scale (PANSS) was
used to assess the symptom severity of FES patients. The
Hamilton depression scale (HAMD-24) and Hamilton anx-
iety scale (HAMA-14) were used to assess the depression
and anxiety symptoms of FES patients respectively. Clinical
global impression (CGI), global assessment of functioning
(GAF) scores for the current situation, and GAF for highest
level in past years were used to assess the severity of the
disease and the overall function of FES patients. MATRICS
Consensus Cognitive Battery (MCCB) was implemented to
assess the cognition of all participants on the basis of nine

neurocognitive sub-tests, including the Trail Making Test
(TMT), Brief Assessment of Cognition in Schizophrenia
Symbol Coding Test (BACS-SC), Hopkins Verbal Learning
Test-Revised (HVLT-R), Wechsler Memory Scale-III: Spatial
Span (WMS-III: SS), Neuropsychological Assessment Battery
(Maze), Brief Visuospatial Memory Test-Revised (BVMT-R),
Category Fluency Test (Fluency), Continuous Performance
(CPT-IP) and Mayer-Salovey-Caruso Emotional Intelligence
Test: Managing Emotions (MSCEIT ME).

B. Image Acquisition and Processing

Structural MRI and fMRI data of all subjects were col-
lected in a 3.0T MRI scanner (GE Discovery MR750) with a
32-channel radio frequency coil. All subjects were instructed
to remain relaxed, stationary, motionless and awaked with eye
open. To reduce head motion artifacts, sponges were used
to fix subject’s head during scanning process. T1 weighted
structural images were acquired with a 3D turbo spin echo
sequence in axial orientation with repetition time (TR) =

8.208s, echo time (TE) = 2.32s, flip angle = 12, slice
thickness = 1mm, matrix = 512 × 512, and slice number =

184. The fMRI images were collected using an echo-planar
imaging sequence with the following parameters: TR = 2 s,
TE = 45ms, sagittal slice number = 32, matrix = 64 × 64, flip
angle = 90, field of view = 220mm, slice thickness = 4mm,
and voxel size = 3.125mm × 3.125 mm × 4.5mm. The fMRI
scan lasted for 6 min and 180 volumes was acquired in total.

The fMRI data were preprocessed using the DPABI tool-
box (DPABI V6, http://rfmri.org/dpabi) [47] and statistical
parametric mapping 12 (SPM12) [48]. The first five volumes
were discarded to prevent the effect of initial fMRI sig-
nal instability and participant maladaptation. The remaining
175 volumes were processed through the following steps:
slice time correction based on the acquisition time delay
between slices; head motion correction by realigning all vol-
umes to the mean image; space registration according to the
transform parameters calculated by registering fMRI image
and T1 image; segmentation of different brain tissues via
DARTEL algorithm; regressing out nuisance covariates (i.e.,
linear trend, Friston 24 head motion parameters, white matter
signal, cerebrospinal fluid signal); normalizing to the MNI
space using an echo-planar imaging (EPI) template; resam-
pling processed image to 3mm isotropic voxels, and band-pass
filtering (0.01-0.08HZ). Spatial smoothing was not performed
in the preprocessing stage. For quality control, the subjects
who meets any of the following conditions were excluded:
(i) raw images have obvious scanner artifacts; (ii) raw images
do not cover the whole brain; (iii) spatial normalization
failed; and (iv) excessive head motion (mean frame wise
displacement larger than 0.2 mm, Jenkinson version). In total,
nine FES patients and five HCs were excluded from the
original sample size of 83 FES patients and 46 HCs, resulting
in a final sample size of 74 FES patients and 41 HCs.
An intersection gray mask which included 90 percent of total
participants was made, and only the voxels within this mask
were taken for further standardization process and statistical
analysis.
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Fig. 1. Illustrations of the calculation process of KCC-ReHo, Cohe-
ReHo and DRePS time series.

C. Calculation of Local FC Metrics
For a given voxel, its spatially adjacent neighborhood could

be defined with a 3-dimensional (3D) cubic box (3× 3 ×

3), and its local synchronization was measured with KCC-
ReHo, Cohe-ReHo, and DRePS respectively (Fig. 1). In the
calculation of KCC-ReHo and Cohe-ReHo, we used zi (t) , i =

1, 2, . . . ,M,t = 1, 2, . . . , N , to represent the fMRI time series
of all voxels in the cubic box, where M denotes the number
of voxels and N denotes the length of fMRI time series.
In the calculation of DRePS, we used x (t) to represent the
fMRI time series of the central voxel of the cubic box and
y j (t) , j = 1, 2, . . . ,M−1,t = 1, 2, . . . , N to represent fMRI
time series of the neighboring voxels of x (t). Our homemade
codes for local FC metrics calculation were mainly adapted
from the RESTplus toolkit [49] and the codes provided by the
author who proposed the DRePS method [38].

KCC-ReHo was calculated by the rank-based Kendall’s
coefficient of concordance [43]. For each zi (t), all the values
in fMRI time series were sorted by amplitude and its corre-
sponding rank series ri (t) was obtained, where ri (t) denotes
the rank value of the i-th voxel at the t-th time point. The
KCC value was calculated by Eq. (1),

KCC =

∑N
t=1 [R (t)]2

− N
(
R̄
)2

M2
(
N 3 − N

) , (1)

where R(t) =
∑M

i=1 ri (t), and R =
1
N

∑N
t=1 R(t). Then it

was assigned to the given voxel as the KCC-ReHo metric.
To calculate Cohe-ReHo [45], the power spectrum Fzi ( f )

of each zi (t) and the cross spectrum Fz pzq ( f ) of all voxel
pairs, i.e., z p (t) , zq (t), p, q∈i and p ̸=q in the neighborhood,
were estimated using Welch’s modified periodogram averaging
method. The detailed calculation process was as follows:
each time series were divided into six segments (50 time
points each segment) with 50% overlapping; each segment
was then mean-centered and weighted by Hanning window;
the discrete Fourier transform (DFT) of the k-th segment of
time series zi (t) was calculated and represented as Zik ( f ),

f = 0.01, 0.02, . . . , 0.25 Hz, k = 1,2,. . . ,6; based on the DFT
Zik ( f ) of voxel zi , the power spectrum of each low frequency
components ( f = 0.01, 0.02, . . . , 0.08 Hz) was estimated as
the average of the power spectra of the K = 6 segments, i.e.,

Fzi zi ( f ) =
1
K

∑K

k=1
Zik ( f ) · Z∗(T )

ik (− f ), (2)

where Z∗(T )
ik (− f ) represents the complex conjugate transpose

of Zik ( f ). Based on the DFT Z pk ( f ) and Zqk ( f ) of paired
voxels z p and zq , we can estimate their cross spectrum of each
low-frequency components as

Fz pzq ( f ) =
1
K

∑K

k=1

∣∣∣Z pk ( f ) · Z∗(T )
qk (− f )

∣∣∣ . (3)

Then the coherence of any voxel pair z p and zq across
the low-frequency band (0.01-0.08 Hz) can be estimated as
follows:

Cohz pzq

(
f
)

=

∣∣∣∑ f Fz pzq ( f )
∣∣∣2

∑
f Fz pz p ( f ) ∗

∑
f Fzq zq ( f )

. (4)

With the estimated coherence of all voxels pairs, the mean
of all the estimated coherence was calculated as Cohe-ReHo
metric and assigned to the given voxel.

To calculate DRePS time series [28], [38], the instantaneous
phases of central voxel x and its neighboring voxels (y j , j =

1, 2, . . . ,M−1), denoted by ϕx (t) and ϕy j (t) respectively,
were first extracted from the detrended and filtered fMRI
time series using the Hilbert transform [50]. Then the DRePS
value at time t of the central voxel x was calculated as the
instantaneous mean phase coherence according to Eq. (5), as
shown at the bottom of the next page.

For each voxel, the DRePS time series was calculated
according to Eq. (5). Both static and dynamic characteristics
of each DRePS time series were quantified using various
statistical descriptions. The mean value of the DRePS time
series was used as a static metric, while the fluctuations of
the DRePS time series were quantified using the variance
(var-DRePS), the average power spectral density (psd-DRePS),
and the zero-crossing ratio relative to its mean value (zcr-
DRePS). In detail, for var-DRePS, the variance of the DRePS
time series was normalized by (N - 1), which aligns with
the default setting of the var function in the Matlab toolbox.
The calculation of psd-DRePS followed the steps outlined
in [40]: the mean of the DRePS time series was first detrended;
then the Fast Fourier Transform (FFT) of the time detrented
DRePS series was computed; the power spectrum was further
obtained by squaring the absolute value of the FFT, and
the psd-DRePS value was reached by averaging the power
spectrum across the entire frequency spectrum. The calculation
of zcr-DRePS was based on the method in [42], which
involves the following steps: detrending the mean of the
DRePS time series; identifying the total number of zero-
crossing points, which change their sign from positive to
negative or vice versa in the detrended DRePS time series;
and finally getting the zcr-DRePS value by dividing the total
number of the zero-crossing points by the total length of the
fMRI data.
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D. Statistical Analysis

1) Group Difference Analysis: Before statistical analysis, all
the local FC metrics were transformed into standard Z value
(subtracting the global mean, then being divided by global
standard deviation) to improve their normality of distribu-
tion [45], [51]. The global mean and standard deviation for
a specific local FC metric of any participant were calculated
from the mean and standard deviation of the corresponding
values of all voxels under the 90 percent group gray mask [47].
Then, the standardized whole brain local FC metric maps
were smoothed using a Gaussian kernel with a full width at
half-maximum of 8mm. To detect group differences between
FES patients and HCs for each local FC metric, we applied a
two-sample t-test analysis on corresponding standardized and
smoothed brain maps while controlling age, gender, years of
education (EDU), and head motion (mean Jenkinson frame
displacement) as covariates. This voxel-wise statistical analy-
sis was performed using the DPABI toolbox [47]. Statistical
results were corrected for multiple comparison using false
discovery rate (FDR). Voxel clusters with more than 10 voxels
surviving the multiple comparison correction were identified
and selected as regions of interest (ROIs), which were named
by the Automated Anatomical Labeling (AAL) atlas [52]
where its peak voxel locates. The value of each ROI was
calculated by taking the average of the raw value of related
metric across all voxels within it.

2) Univariate Correlation Analysis: The partial correlations
of the identified abnormal ROIs with respect to the symptom
severities of FES patients were analyzed using age, gender,
EDU and mean frame displacement (FD) as covariates. The
partial correlations between ROIs and cognitive scores of all
participants were further quantified, using age, gender, EDU,
mean FD and group information as covariates. The multiple
comparisons were corrected by the Bonferroni correction. That
is, the statistical level at p < 0.05/L was considered significant,
where L is the number of ROIs.

3) Feature Preparation for Machine Learning Analysis:
Brain was parcellated into 90 regions according to the AAL
atlas [52]. For each local FC metric, the average of its raw
values across voxels within each atlas-defined brain regions
was calculated as a feature. The so calculated features were
further used in prediction and classification analyses.

4) Prediction Analysis With Relevance Vector Machine:
The purpose of the prediction analysis was to investigate
the relationships between cognitive/symptom scores and the
features of all metrics simultaneously. We employed the RVM
model [53] with a 100 repeated 5-fold cross-validation strat-
egy, and evaluated its performance using Pearson’s correlation
between the covariate-adjusted scores and their predicted
values. The significance of the RVM’s performance was
evaluated using a permutation test by shuffling target scores

1000 times. The model fitting and evaluation mainly referred
to [10], which employed a k-fold cross-validation procedure
and implemented confounding regression on both the depen-
dent and independent variables.

S1) For each prediction process, the prepared features of
all metrics were used as independent variables, while
a symptom or cognitive score was used as dependent
variable. In the symptom prediction, the confounding
variables were age, gender, education year, and head
motion (mean Jenkinson FD). In the cognitive pre-
diction, the group information was also included as
confounding variable.

S2) In each repeated process, a 5-fold cross-validation was
implemented. The dataset formed by independent vari-
ables and dependent variable was divided into 5 folds,
and each fold served as the testing set once, while the
remaining folds served as the training set. Thus, a cross-
validation process included five loops.

S3) In each cross-validation loop, before applying the RVM
model, a preprocessing step was included to adjust the
effect of aforementioned confounding variables. The
regression coefficients were learned on the training set
with a confound regression model and then applied
to training set and testing set simultaneously. This
arrangement was made to avoid data leakage problem.
Then, the RVM model was trained on confound-adjusted
training set and tested on confound-adjusted independent
variables in testing set to predict the dependent variable.

S4) The prediction performance of each cross-validation
loop was evaluated by the Pearson’s correlation cal-
culated between the predicted dependent variables and
cofound-adjusted dependent variables in testing set. The
prediction performance of one repeated process of 5-fold
cross-validation was evaluated by the average of the
Pearson’s correlation coefficients calculated across the
5 loops in the cross-validation process. The predic-
tion performance of the whole prediction process was
evaluated by the average of the performance of the
100 repeated cross-validations.

S5) Permutation test (1000 times) was used to determine if
the prediction of the corresponding score was higher
than by chance. We randomly shuffled the dependent
variable in step S1, and repeated steps S2-S4 for
1000 times. Among these 1000 repetitions, if there are
no more than 50 times that the prediction performance
of the permuted data exceeded the result of true data,
then the significant level was achieved (i.e., p < 0.05).

The RVM model is derived from a specialized version of a
general Bayesian framework. One of its most important char-
acteristics is its ability to produce sparse learned predictors,
that is, only a few input features are assigned non-zero weights

ψx (t) =
1

M − 1

√√√√√


M−1∑
j=1

cos
(
ϕx (t)− ϕy j (t)

)
2

+


M−1∑
j=1

sin
(
ϕx (t)− ϕy j (t)

)
2

. (5)
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in the RVM model. This sparsity property helps identify
the most contributive features in prediction. To quantify the
contribution of each feature to the prediction, we calculated
the ratio of features assigned non-zero weights across the
100 × 5 training processes.

5) Classification Analysis With Support Vector Machine: The
purpose of classification analysis is to examine whether the
dynamic metrics helps in classification between FES patients
and HCs. For this purpose, we applied SVM on features of
single type metric, features of paired metrics, and features of
different combinations of metrics. The design of classification
process mainly referred to reference [22]. Classifiers were
applied to various dataset formed with different feature sets
(Table III). For each dataset, the number of input features was
represented by J , the number of sample was represented by
S. The whole analysis process mainly included three parts:
determining the best feature selection number Q, computing
the classification performance of the given dataset with the
Q parameter, and performing the permutation test with the Q
parameter. All the three parts relayed on the same leave-one-
out cross-validation (LOOCV) procedure.
S1) The LOOCV procedure embedded a ‘SelectKBest’ func-

tion [54], which was used to select out features in the
training set and then applied on the testing set. This
function took a numerical value K as an input parameter,
applied ANOVA F-test on each feature, and selected
out K features with the highest F-score. A linear SVM
classifier was trained on the training set with the selected
features, and further applied the learned feature weights
on the testing set to predict the group label of the testing
set. Each LOOCV procedure included S iteration loops.
The performance of the LOOCV were evaluated with
the classification accuracy calculated on all the testing
set.

S2) In the Q determine process, the input parameter K
varied from 1 to J outside the LOOCV procedure,
and the LOOCV procedure was performed on each K .
The resulted classification accuracies of all LOOCV
procedures were compared, and the K value of the best
LOOCV performance was assigned to Q.

S3) After determining the value of Q, another LOOCV
procedure was performed using Q as the input parameter
for the feature selecting function. The classification
performance of LOOCV were summarized in Table III.

S4) Permutation test was performed by randomly permuting
the group labels of the real dataset for 1000 times.
With each shuffling, step S3 was performed. The num-
ber of times when accuracy and AUC obtained by
1000 permuted dataset were higher than those obtained
by real dataset were counted. And the counted number
divided by 1000 derived the p-value for the permutation
test.

In S3), there was S iteration loops in the whole LOOCV
procedure. In each loop, Q features will be selected out from
J features in the training set, and the weights of the selected
features will be learned by the SVM classifier trained on the
training set. It should be noted that the selected Q features
may vary slightly across the S iteration loops. We identified

TABLE II
ROIs WITH DIFFERENT LOCAL FCs BETWEEN

FES PATIENTS AND HCs

Fig. 2. Group differences of mean-DRePS (first row), KCC-ReHo
(second row) and Cohe-ReHo (third row) between FES patients and
HCs detected with a two sample t-test statistical analysis. The color
bar indicates that FES patients had higher values than HCs. The
significance level was FDR-corrected p < 0.05, and the size of cluster
(i.e., the number of voxels) was greater than 10.

the features that were consistently selected across the S
iteration loops as the contributive features, and quantified
the contribution of these features with the average the abso-
lute values of the features’ weights across the S iteration
loops.

III. RESULTS

A. Group Difference Between FES Patients and HCs
FES patients showed significant increase in mean-DRePS,

KCC-ReHo and Cohe-ReHo, mainly in right hemisphere. And
no significant reduction of any metric was found. The signif-
icant voxel clusters (abnormal ROIs) were shown in Fig. 2
and Table II. Specifically, mean-DRePS exhibited abnormal
increase in the right STG, right MTG, right HIP, right PHG,
right PUT, and right CAU. KCC-ReHo showed abnormal
increase in brain regions similar to mean-DRePS. Cohe-
ReHo showed a bilateral increase in CAU in FES patients.
No significant difference between FES patients and HCs were
found in psd-DRePS, var-DRePS, and zcr-DRePS.
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TABLE III
SVM PERFORMANCE FOR CLASSIFYING FES PATIENTS AND HCs

B. Univariate Correlation of Abnormal ROI Values With
Respect to Neurocognitive Test Performance
and Symptoms

For the seven abnormal ROIs whose static metrics
showed significant differences between FES patients and HCs
(Table II), we further analyzed univariate correlations of the
static metrics of the seven ROIs with respect to the symp-
toms and cognitive scores respectively. Bonferroni correction
was used for multiple comparison correction. According to
significant threshold corrected by number of abnormal ROIs
(p<0.05/7), a significant correlation was found between the
GAF-score of current situation and Cohe-ReHo of ROI in
bilateral CAU (r = −0.336, p = 0.004). As to neurocognitive
test performance scores, no correlation passed the Bonferroni
correction.

C. Prediction Performance of the RVM Model
According to the results of permutation test, only the

GAF-score highest in past year (prediction performance
r = 0.166, permutation test p = 0.034) and the BVMT-R
score (prediction performance r = 0.196, permutation test

Fig. 3. Surface maps of the contributive ratios of contributive features
in the significantly predicted (a) GAF-score highest in past year and
(b) BVMT-R score.

p = 0.014) were significantly predicted. The contribution of
each feature in the two significant predictions was evaluated
using the ratio of input features assigned with non-zero weight
across the 100 repeated 5-fold training processes. The regional
distribution of the contributive ratio of all non-zero weight
features in the two significantly predicted scores were arranged
by features’ metric attribution and shown in Fig. 3. In each
successfully predicted models, regional contributive ratio of
different metrics showed different spatial patterns. However,
the contributive ratio of dynamic metrics were obviously
higher than static metrics in many brain regions. The top
three contributive features with the higest contributive ratios
in the prediction of GAF-score highest in past year were
var-DRePS in right superior parietal gyrus (ratio = 0.756), zcr-
DRePS in right CAU (ratio = 0.542), and var-DRePS in right
Olfactory cortex (ratio = 0.538). The top three contributive
features with the higest contributive ratios in the prediction
of BVMT-R score were psd-DRePS in left superior occipital
gyrus (ratio = 0.722), zcr-DRePS in right temporal pole
(Temporal_Pole_Sup_R, ratio = 0.706), and the zcr-DRePS
in right MTG (ratio = 0.642). The contributive ratios of all
contributive features and full region names of AAl atlas were
organized in the Supplementary Tables S1 and S2.

D. Classification Performance of the SVM Model
We evaluated the diagnostic ability of the input features

formed by single type local FC metric, any paired local FC
metrics, combinations of all static local FC metrics, combi-
nations of all dynamic local FC metrics, and combinations
of all local FC metrics (Table III). Linear SVM classifiers
were applied on these input features. The performances of
classifiers were evaluated by classification accuracy and AUC
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Fig. 4. (a) The contribution of identified contributive features in classi-
fiers applied on single type metrics, including Cohe-ReHo, KCC-ReHo
and mean-DRePS. (b) The contribution of identified contributive features
in the classifier showed the highest classification accuracy, which was
applied on input feature space formed with paired Cohe-ReHo and
zcr-DRePS metrics. The contribution was calculated by averaging the
absolute weights learned by linear SVM classifier across S iteration
loops in LOOCV.

calculated with the LOOCV. In each iteration loop of LOOCV,
125 samples were randomly split into 124 training sample
and 1 testing sample, a feature selection option was used to
select out Q highest F-value scored features from the input
features in training set, linear SVM classifier was trained on
training set by the selected Q features, and the learned feature
weights were further applied on the testing sample to estimate
its group label. We gradually increased Q from 1 to J , and
recorded the accuracy obtained with LOOCV under each Q.
The final value of Q for each feature space was recorded based
on the highest classification accuracy achieved by the classifier.
As the selected Q features may vary across the LOOCV loops,
we recorded the features that were consistently selected across
the loops as contributive features, and presented their number
in Table III. The contribution of identified contributive features
was quantified with the average of absolute feature weights
across S LOOCV loops. The best classification performance
was achieved by the linear SVM classifier trained with features
formed by pairing the Cohe-ReHo metric with the zcr-DRePS
metric. This configuration yielded an accuracy of 80.9% (per-
mutation test p = 0.002), an AUC of 77.0% (permutation test
p = 0.001), a sensitivity of 90.5% (permutation test p<0.001),
and a specificity of 81.7% (permutation test p<0.001) when
116 features were selected.

We examined the contribution of contributive features in
classifiers applied on single type local FC metrics and the
classifier obtained best classification performance (Fig. 4a-b).

In classifiers applied on single type local FC metrics,
we concentrated on contributive features overlapped with
the ROIs that showed group difference (Table II) in brain
regions defined by AAL atlas (Fig. 4a). For the Cohe-ReHo
metric, such overlapping appeared in feature in right CAU
(average weight = 1.264, rank = 1) and feature in right STG
(average weight = 0.231, rank = 40). And there was no such
overlapping in classifiers applied on mean-DRePS and KCC-
ReHo metrics. In classifier applied on paired Cohe-ReHo and

zcr-DRePS metrics, the top three contributive features were the
feature in right CAU derived from Cohe-ReHo metric (average
weight = 0.569, rank = 1), the feature in right PUT derived
from zcr-DRePS metric (average weight = 0.512, rank = 2),
and the feature in left Superior frontal gyrus derived from
Cohe-ReHo metric (average weight = 0.408, rank = 3).

We examined the influence of dynamic metrics on the
classification performance. The performances of the classifiers
applied on single type dynamic metrics were inferior to the
classifiers applied on single type static metrics (Table III). The
accuracy and AUC of classifiers applied on all metrics were
higher than classifiers applied on static metrics. However, not
all dynamic metrics were useful for improving classification
performance when combined with static metrics. In particular,
only the zcr-DRePS metric could improve the performance of
classifiers when it was paired with single static metrics.

IV. DISCUSSION

In this study, one newly developed dynamic local FC
analysis method (i.e., DRePS) and two commonly used static
local FC analysis methods (i.e., KCC-ReHo and Cohe-ReHo)
were used to investigate the alterations of local brain sponta-
neous activities in FES patients. Prediction and classification
analysis were conducted to examine and compare the clinical
application potential of the dynamic and static local FC metrics
derived from DRePS, KCC-ReHo and Cohe-ReHo methods.
Results showed that FES patients exhibited increased static
local FC in some brain regions, which had correlations with
GAF score of current situation in patients, and the dynamic
local FC metric zcr-DRePS combined with static local FC
metrics may have better performance than the cases when only
static local FC metrics were used as features in classification.

A. Static Local FC Metrics Indicate Group-Level
Alterations in FES Patients

Regional alterations in FES patients were found in right
STG, right MTG, right HIP, right PHG, right PUT, and
bilateral CAU in terms of the static local FC metrics, i.e.,
mean-DRePS, KCC-ReHo and Cohe-ReHo. The detected
ROIs with abnormal local static FC are partly consistent
with previous studies. In detail, altered ReHo or ALFF in
PUT, STG and MTG regions in FES patients or chronic
schizophrenia patients has been reported. For example, a meta-
analysis study found altered ReHo in PUT in drug-naïve
FES patients [13]. Increased ReHo in the bilateral PUTs
was also observed in FES patients compared to HCs [55].
Altered ReHo values in temporal cortex in FES patients
[56], [57], and increased ReHo in bilateral striatum, and
medial temporal cortex in chronic schizophrenia patients [58]
have been reported. Correlation between mean-DRePS and
KCC-ReHo has been observed in previous studies [28], [40],
and correlation between Cohe-ReHo and KCC-ReHo was
reported as well [45]. These results may explain why the
three local FC analysis methods indicated a similar spatial
distribution of altered static local FC in FES patients (Fig. 2
and TABLE II). However, alterations in CAU and HIP were
seldom reported in previous schizophrenia research. CAU and
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HIP have important role in schizophrenia. The CAU is a
part of dorsal striatum, and the HIP affects the dopamine
pathway. Both of them are related to the dysfunction of the
dopaminergic system in schizophrenia [59], [60].

However, no significant regional alteration was detected in
terms of the dynamic local FC metrics (i.e., zcr-DRePS, var-
DRePS and psd-DRePS). This suggests that dynamic metrics
capture different aspects of local FC compared to static met-
rics. It is worth noting that dynamic metrics have successfully
detected group differences in studies of generalized anxiety
disorder [39] and neocortical focal epilepsy [40]. Therefore,
there is potential for developing new dynamic metrics based on
DRePS, which warrants further exploration in schizophrenia
research.

B. Dynamic Local FC Metrics Correlate With Clinical
Characteristics

By using the RVM model, we found that the GAF-score
highest in the past year and the BVMT-R score could be
significantly predicted by input features formed with both
static and dynamic local FC metrics. Additionally, in the
two successfully prediction models, most of the contributive
features with high contribution ratio belonged to dynamic local
FC metrics (Supplementary Tables S1 and S2, and Fig. 3).
However, neither the two scores showed significant correlation
with the abnormal ROIs that had significant difference between
FES patients and HCs (Table II). These findings suggest that
the association between the two clinical scores and local FC
metrics reveled by RVM prediction model can supplement the
association observed through the lens of univariate correlation
statistical analysis. Achieving reproducible or robust relation-
ships between brain neuroimaging and clinical phenotypes
remains a bottleneck problem for building better biomarkers
[3], [5], [7], [8]. Using machine learning analysis and dynamic
FC analysis may contribute to relevant research [8], [23], [24],
[42], [61], [62], [63]. A previous study revealed an association
between node average controllability and the general and pos-
itive dimension from PANSS scores [64]. Since controllability
metrics incorporate network-level FC information, we specu-
late that neuroimaging biomarkers associated with symptoms
should perhaps be developed by combining the information of
both static FC and dynamic FC at both the network-level scale
and the local spatial scale.

C. Dynamic Local FC Metrics Improves the Performance
of Classification

In this study, we performed the classification analysis
from [22], which used dynamic state characteristics and
regional dynamic topology properties as input features for
linear SVM classifier. The highest accuracy in our study
(accuracy = 80.9% permutation test p = 0.002) was slightly
higher than the results reported in reference (accuracy =

72.3%, permutation test p<0.001) [22]. Previous studies that
applied SVM on input features formed with local FC metrics
reported classification accuracy ranging from 78.5% to 98.1%
[65], [66], [67], [68], [69]. The difference of classification
accuracies among these studies and our study may due to

the factors including sample size, feature selection processes,
kernel function, and validation processes. It is difficult to
conclude which classification analysis performed better simply
by comparing accuracies across different studies.

By comparing the accuracies of all classifiers in this study,
we found that although the diagnostic value of dynamic
metrics is not higher than static metrics when used separately,
better classification performance could be achieved when
combining them. The contribution of zcr-DRePS in improving
classification accuracy was prominent (Table III). This view
can be concluded by comparing the performance of classifiers
applied on single type local FC metrics and classifiers applied
on local FC metrics paired with zcr-DRePS. Previous study
applied linear SVM on static and dynamic network level FC
(FNC) features, and found that the classification using both
dynamic and static FNC features significantly outperformed
the classification using only static FNC features [70]. Our
study provides additional evidence for the value of incorpo-
rating dynamic local FC metrics with static local FC metrics
in the development of a diagnostic biomarker for psychosis.

D. The Importance of CAU and Zcr-DRePS in
Machine Learning Analysis

The brain regions involved in contributive features identified
in prediction analysis and classification analysis were not all
consistent with abnormal ROIs that had significant difference
between groups. In prediction model of GAF-score highest
in past year, the top 15% contributive features involved the
zcr-DRePS, KCC-ReHo and Cohe-ReHo of CAU_R (Supple-
mentary Table S1). In prediction model of BVMT-R score,
the zcr-DRePS of MTG_R, STG_R and CAU_R were among
the top 10 contributive features (Supplementary Table S2).
In all classifiers applied on input features involved Cohe-
ReHo and/or zcr-DRePS metrics, especially classifier applied
on paired Cohe-ReHo and zcr-DRePS metrics, the contribu-
tion of the identified contributive features in these classifier
emphasized the importance of the features of Cohe-ReHo in
CAU_R and the features of zcr-DRePS in PUT_R, CAU_R
and STG_R in classification FES patients and HCs (Supple-
mentary Tables S3 and S4 and Fig. 4). These results together
suggested that among all the abnormal ROIs, the CAU was
the most contributive region in prediction analysis and classi-
fication analysis. And among all the metrics, Cohe-ReHo and
zcr-DRePS are most valuable for developing prognosis and
diagnosis biomarker in schizophrenia.

E. Limitations
Several limitations should be considered in this study. First,

our findings were not validated in an independent dataset.
Though we carefully designed the repetition of cross validation
and permutation test (1000 times), the results need further
independent study to ensure the reliability. Second, the scan
length of the rs-fMRI data used in this study is relatively
short (5.83 min). Generally, a longer duration of fMRI data
is required in the dynamic FC analysis, especially for the
dynamic FC analysis based on sliding windows. The typical
acquisition scan length of rs-fMRI in humans is 5-10 min [19].
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Previous studies have shown that the reliability of static FC
metrics changes in a saturating exponential manner with the
increase of scan length [71], [72], and scan length required to
achieve stable static FC varied across different metrics [73].
In this study, we examined the dynamic local FC based
on DRePS, which could quantify the instantaneous phase
synchronization in local region with high temporal resolution.
We note that though DRePS is with high temporal resolution,
it also has limitation, that is, it does not take the instantaneous
amplitude of fMRI time series into consideration and thus
cannot reflect the relationship of the amplitude information
of fMRI time series in local region. Anyway, further studies
with longer fMRI scan length are needed to examine the
effect of scan length on DRePS analysis. Third, the FES
patients in our study were drug-naïve and free from any
psychiatric comorbidities. While studying the first-episode
phase is important for directly investigating the mechanisms of
schizophrenia, it may limit the generalizability of our findings
to patients with comorbidities. Further studies are needed to
verify these results.

V. CONCLUSION

To conclude, this study comprehensively investigated the
alterations of local FC in FES patients using three local FC
analysis methods, i.e., DRePS, KCC-ReHo, and Cohe-ReHo.
Results showed that static local FC metrics were more sensi-
tive than dynamic local FC metrics in detecting alterations of
brain activity in FES patients, while dynamic local FC metrics,
combined with static local FC metrics, could also contribute
to improve prediction of FES symptoms and classification
of FES patients from HCs. RVM prediction model revealed
associations between all dynamic metrics and GAF-score
highest in past year and BVMT-R score, which may have
been overlooked in univariate correlation analysis. The highly
contribution of dynamic local FC metrics in prediction analysis
indicated the importance of dynamic FC in constructing robust
association between brain neuroimaging and clinical pheno-
types. Linear SVM based classification with a combination of
static and dynamic local FC features, particularly incorporating
zcr-DRePS as a dynamic metric, achieved better classification
performance than using static local FC metrics alone. The
contributive features in classification analysis involved more
with CAU region and zcr-DRePS and Cohe-ReHo metrics.
These findings highlight the potential of developing dynamic
metrics from DRePS and applying them in the development
of diagnostic biomarkers.
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