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ABSTRACT In practical engineering scenarios, machines are seldom in a faulty operating state, so it is
difficult to get enough available sample data to train the fault diagnosis model, leading to the problem of the
small and unbalanced number of rotating machinery fault samples and low fault diagnosis accuracy. To solve
this problem, this paper introduces a novel approach to machinery fault diagnosis. This approach involves
the integration of a Convolutional Attention Residual Network (CBAM-ResNet) with a Graph Convolutional
Neural Network (GCN). Firstly, to comprehensively exploit time-domain information from one-dimensional
vibration signals, this study utilize Gram Angular Field (GAF) coding to transform traits of vibration
signals into two-dimensional image characteristics. The resultant two-dimensional image is then expanded
by applying the Wasserstein Distance Gradient Penalty Generation Adversarial Network (WGAN-GP) to
produce a representative sample image. Secondly, the image is input to CBAM-ResNet to perform focused
feature extraction and construct the feature matrix. Lastly, the adjacency matrix is derived through Graph
Generation Layer (GGL); subsequently, the feature matrix and adjacency matrix are utilized as inputs for
the GCN. After deep feature extraction, fault feature classification is executed via Softmax. Performance
tests were conducted using the Case Western Reserve University bearing dataset and the planetary gearbox
dataset. The method demonstrated remarkable results, achieving an accuracy of over 99% on the unbalanced
dataset and surpassing 98% in 0dB noise compared to various other models. This illustrates the effectiveness
and feasibility of the proposed method.

INDEX TERMS Attentional mechanism, fault diagnosis, gram angle difference field, generative adversarial
network, graph neural network (GCN), rotating machinery.

I. INTRODUCTION
In the context of rapid modern industrial development,
mechanical equipment is progressively advancing towards
precision, high grade, and automation, and the information
it contains is also moving towards big data and big storage
lean-in [1]. Bearings and gears, integral and indispensable
mechanical equipment components, are pivotal in ensur-
ing operational health and production safety. Such failures
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could endanger the operational normalcy of rotating mechan-
ical equipment, posing risks to human safety and project
advancement [2], [3]. Consequently, monitoring conditions
and diagnosing faults pertaining to bearings and gears stand
as pivotal subjects of inquiry for national and international
experts [4]. An especially crucial facet of fault diagnosis
resides in feature extraction, with the efficacy and preci-
sion of the model being directly contingent on the caliber
of feature extraction. For early machine failures, several
issues emerge: initially, during the incipient stages of bear-
ing or gear failure, the failure characteristics are weak,
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thereby affecting efficacious feature extraction; secondly, the
operation of machinery invariably entails concurrent noise
presence, thus heightening the intricacy associated with fea-
ture extraction processes. In addressing the challenges above,
Li et al. [5] proposed a multi-layer reconfiguration filter
tailored to detect subtle faults in rolling bearings early. This
innovative method synergistically integrates the strengths of
wavelet transform and variational decomposition to miti-
gate noise interference upon faint signals. Similarly, Liu and
Ren [6] introduced the Maximum Correlation Cliff Deconvo-
lution (MCKD) technique, especially in the case of impulsive
vibration signals containing periodicity, which is effective in
suppressing harmonics and noise components in gearboxes
to accurately identify gear faults. Biao et al. [7] introduced a
rapid sparsity-enabled feature energy ratiomethod. In the first
stage, they automatically segmented the spectrum to identify
fault feature bands. The second stage further refined this
by applying an enhanced sparse coded shrinkage denoising
(SCSD) method, effectively capturing early fault features in
rotating motors. While the aforesaid proposed approaches
effectively address the challenges above, Fault diagnosis
in the context of big data requires enough available data
to train models. However, the current landscape is marred
by a dearth of available fault samples and an imbalanced
dataset, training deep learning models becomes challenging,
and addressing the issue of imbalanced sample data while
concurrently ensuring efficacious feature extraction emerges
as an imperative in augmenting the model’s accuracy.

To address this problem, Goodfellow et al. [8] introduced
the Generative Adversarial Net (GAN) concept, offering a
potent approach to address the scarcity of minority class
samples. Originally conceived as a framework for image
generation, GAN encountered challenges related to subpar
image quality primarily due to training instability. Con-
sequently, many research endeavors emerged, focusing on
diverse variants of adversarial networks in a concerted effort
to enhance the generated image quality. Aiming at the prob-
lem of difficulty in obtaining enough samples resulting in
low accuracy, Yang et al. [9] proposed the use of Con-
ditional Generation Networks (CGANs) to generate new
samples, which are then pre-processed and fed into 2-D-CNN
for feature extraction and classification of bearing faults.
Farajzadeh-Zanjani et al. [10] propose a new generative
adversarial network for the problem that faulty samples are
much less than normal samples and thus lead to inaccurate
classification. This novel Adversarial Classroom Imbalance
Learning (ACIL) employs a novel loss function for training.
In addition, an inclusive data-driven scheme for classify-
ing network attacks and faults is designed to effectively
improve fault sample classification. Li et al. [11] proposed
WGAN combined with long and short-term memory full
convolutional network (LSTM-FCN) to solve the problem
of difficult sample collection, which leads to low accu-
racy. The generated samples from the expanded network
are input into the LSTM-FCN model for parallel feature

extraction and information fusion, contributing to fault iden-
tification. Gao et al. [12] proposed a new approach to fault
diagnosis with integrated convolutional transformer GAN
(ICoT-GAN), which fully takes into account the global inter-
actions and local dependencies of vibration signals, which
is realized by incorporating the novel ICoT in the discrim-
inator and generator, allowing the expansion to generate
high-quality usable samples. Du et al. [13] proposed a com-
bination of generative adversarial network and incremental
learning SVMmodel for fault diagnosis, which selects sensi-
tive features as inputs through a three-step optimal selection
strategy of manual screening, relevant feature selection,
and redundant feature removal, which enables adversarial
learning between the generator and the discriminator to gen-
erate a small number of classes of data. Han et al. [14]
introduced a semi-supervised adversarial learning network
designed to efficiently address the challenge of limited
labeled samples for fault identification. Qian et al. [15]
proposed a novel network to reduce domain differences Rela-
tional Transfer Domain Generalization Network (RTDGN).
They improved domain confusion with an inverse entropy
loss and a multi-discriminator adversarial network, enhanc-
ing fault diagnosis capabilities. Moreover, Xing et al. [16]
introduced a novel fault diagnosis method based on Neural
Cost-sensitive Neural Networks (NCNN). In this approach,
they first optimize the cost-sensitive loss function during
feature extraction. Subsequently, they calculate the distance
between the extracted features and the center vector for fault
identification. Jiang et al. [17] used the idea of integrated
learning and proposed data augmentation aiming to make
data augmentation through cooperation and competition in
generating data, introducing Multi-source Data Augmenta-
tion (MSDA) on the cooperation side for combining training
to alleviate the problem of data skewing and designing a
df-ct-MSDA method on the competition side to filter the
data and thus augment the data for imbalanced data. GBSS,
a novel semi-supervised learning framework proposed by
Farajzadeh-Zanjani et al. [18] combines conditional gener-
ative networks with semi-supervised ladder networks and
autoencoders. The generative adversarial network synthe-
sizes a few samples, while the GBSS trains a semi-supervised
model to learn the few sample distribution and iteratively
adjusts its weights, effectively improving the fault diagno-
sis performance. Hu et al. [19] introduced an oversampling
technique termed FSDA-SMOTE to generate additional fault
samples. Following this augmentation, they constructed a
Residual Attention Convolutional Network (RA-CNN) for
fault recognition. Ruan et al. [20] proposed an improved
fault diagnosis method using local weak supervision and
non-local operations. This addresses low accuracy in sparse
training datasets by enhancing convolutional neural networks
to capture long-term dependencies during feature extraction.

The techniques above, which involve feature extraction
and enhancing model accuracy, Operate within the Euclidean
space data processing framework. However, in increasing
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application scenarios, considering relationships and inter-
dependencies between sample data and presenting them
through graph data structures [21]. Given that graph data
within non-Euclidean space inherently encapsulates substan-
tial information about fault samples, the preceding model’s
approach to feature extraction and fault recognition concen-
trates solely on select node-specific information within the
samples, which results in the model facing more significant
difficulties in extracting features and thus not achieving the
desired results. Graph Neural Network (GNN) [22] directs
its attention toward node attribute features and edge infor-
mation within the graph. Notably, specific edge information
about fault features often exhibits heightened prominence;
therefore, extracting fault features and improving classifica-
tion accuracy is easier. GNN has found extensive applica-
tion across diverse domains, including transportation [23],
medicine [24], emotion recognition [25], and power sys-
tems [26]. Given their derivation from Convolutional Neural
Networks (CNNs), Graph Convolutional Neural Networks
(GCNs) leverage the inherent structural relationships within
graphs to extract the geometric structural dependencies
within the data. Li et al. [27] introduced benchmarks designed
for node-level and graph-level diagnosis of mechanical faults.
They subjected Graph Convolutional Networks (GCNs) to
a rigorous assessment across multiple GCN variants based
on frequency and spatial domains, thus substantiating the
efficacy of the proposed scheme. Mo et al. [28] introduced a
graph convolutional neural network that integrates a weighted
horizontal visibility graph (WHVG) designed to convert
vibration signals into a graph composed of visibility connec-
tions. Afterwards, a new edge weighting method is proposed
to attenuate the noise interference. Despite the successful
application of these models in the field of fault diagnosis,
they still face a critical problem that needs to be solved:
intelligent fault diagnosis requires a large amount of available
monitoring data to train the models for feature extraction.
However, real-world engineering environments are charac-
terized by long uptime of mechanical equipment, resulting
in a scarcity of accessible fault data. This dilemma poses a
great challenge to model training, which further leads to the
problem of low accuracy of intelligent fault recognition, thus
creating a huge obstacle to effective fault diagnosis.

This paper proposes a new method for diagnosing
faults in rotating machinery to address the issue. The
one-dimensional vibration signal is initially transformed into
a two-dimensional image using the Gram angle difference
field technique. Concurrently, the Wasserstein Distance Gra-
dient Penalty Generation Adversarial Network (WGAN-GP)
is employed for dataset augmentation to attain data bal-
ance. Secondly, the extended image data alongside the
initial image data are fed into the Convolutional Block
Attention Module-Residual Network (CBAM-ResNet) archi-
tecture, facilitating the targeted extraction of feature attributes
and the resultant acquisition of the feature matrix. Finally,
the graph’s adjacency matrix is derived by applying the GGL
method, and the obtained featurematrix and adjacencymatrix

are fed into the graph neural network to extract the features of
the graph data in depth to realize the accurate classification of
rotating machinery faults. The primary contributions of this
study can be summarized as follows:

(1) This study employed a novel technique to trans-
form vibration signals into images. The method not only
converts differences in one-dimensional vibration signals
into two-dimensional image disparities but also retains all
information about the faulty sample, ensuring no loss of
information. By inputting these converted images into the
WGAN-GP network proposed in this paper, high-quality
usable fault samples can be generated, guaranteeing an ample
dataset for training intelligent fault diagnosis models.

(2) A novel approach for constructing the feature matrix
is introduced, utilizing a residual network with convolutional
attention to derive the feature matrix for graph convolutional
neural networks. This forms the basis for subsequent fault
diagnosis.

(3) CBAM-ResNet-GCN integrates the spatial feature
blocks CBAM-ResNet with the structural feature blocks
GCN, facilitating a more comprehensive and efficient extrac-
tion of fault features. This effective combination makes fault
diagnosis of rotating machinery much easier.

The remainder of this article is structured as follows.
Section II introduces the basic concepts and contents of
the Gram angle difference field, Generative Adversar-
ial Networks, and Graph Convolutional Neural Networks.
In Section IV, the network model of this paper is described in
detail. Section III is specifically applied to two datasets and
experimentally analyzed and discussed. In Section V, some
conclusions drawn from this paper are summarized.

II. THEORETICAL BACKGROUND
A. GRAM ANGLE DIFFERENCE FIELD
To fully harness the information within one-dimensional
vibration signals and underscore the potent capabilities of
generative adversarial networks in handling image data, this
paper employs a novel approach: the conversion of one-
dimensional (1D) vibration signals into a novel time series
of two-dimensional (2D) images, achieved through the appli-
cation of the Gram angle difference field technique [29]. The
procedure for constructing the Gram angle difference field is
delineated as follows:

1) Initially, the set of n time series vibration signals X =

{x1, x2, · · · , xn} is subjected to rescaling within the range of
and subsequent normalization. The mathematical expression
for this operation is provided as follows:

⌢x
i
=

[xi − max (X)] + [xi − min (X)]
max (X)− min (X)

(1)

2) After normalization, the timestamp is encoded as a
radius by encoding the value as an inverse cosine function,
as follows:αi = arccos θ

(
x̂ i
)
,−1 ≤ x̂ i ≤ 1, x̂ i ∈ X̃

ri =
ti
N
, ti ∈ N

(2)
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FIGURE 1. Schematic diagram of the conversion of a vibration signal into a gram angle difference field (GADF).

where the time series X̃ represents the rescale sequencewithin
the polar coordinates; ti represents the timestamp; N rep-
resents the factor determining the radial span. This novelty
approach utilizes polar coordinate systems to visualize time
series. Over time, the corresponding X̃ time series is projected
onto polar coordinates, producing curvature between differ-
ent angles along the circumference, as shown in Fig. 1.
3) The GADF matrix is obtained from the GAF based on

the difference operation of the sinusoidal function, as follows:

GADF (i,j) =
[
sin
(
αi − αj

)]
=

 sin (α1 − α1) · · · sin (α1 − αn)
...

. . .
...

sin (αn − α1) · · · sin (αn − αn)


=

√
I − X̃

′2
· X̃ − X̃

′
·

√
I − X̃

2
(3)

where GADF (i,j) represents the image generation matrix
associated with Gram’s angular difference field; I represent
the unit row vector. Following the conversion, the initial
time series can undergo a metamorphosis into a diagonally
symmetric Gram matrix, which is then converted to a two-
dimensional image.

B. WGAN-GP
Generative Adversarial Networks (GANs) primarily generate
information about the features of similar samples by learning
from the features of data in the original samples, facilitating
data enrichment.

The limited control of GAN networks over generators can
lead to training instability and model breakdown. To address
this, Arjovsky et al. [30] introduced WGAN (Wasserstein
Generative Adversarial Network, WGAN) as a solution to
these shortcomings. The optimization objective function for
WGAN is as follows:

W (p, q) = infr∼π(p,q) E(x̃,ỹ)∼r
[
∥ x̃ − ỹ ∥

]
(4)

where π (p, q) represents the joint distribution of p, q;
(x̃, ỹ) represents samples from the joint distribution r ;
E(x̃,ỹ)∼r

[
∥ x̃ − ỹ ∥

]
represents the expectation of the dis-

tance
[
∥ x̃ − ỹ ∥

]
; inf (·) represents the lower bound of the

set; W (p, q) represents the Wasserstein distance of the two
distributions.

FIGURE 2. Schematic diagram of WGAN-GP structure.

Incorporating the gradient penalty strategy onto the foun-
dation of WGAN enables optimization of the WGAN inter-
cept [31]. This alteration steers the Loss towards an idealized
trajectory, resolving convergence challenges. The resultant
optimized objective loss function is as follows:

Dloss = Exr∼Pg [D (xr )] − Exf ∼Pg
[
D
(
xf
)]

− µEx̂∼Px̂

[(
∥ ∇x̂D

(
x̂
)

∥2 −1
)2] (5)

where xr ∼ Pg represents distribution for real data, xf ∼ Pg
represents generating data distribution of data; µ represents
the penalty coefficient; x̂ represents the linear difference
between xr and xf ; Dloss represents the discriminator loss.

In this study, the Adam optimizer is employed for param-
eter update in the expanded model, utilizing a learning rate
of 0.0001 and a batch size of 32. The WGAN-GP under-
goes training through 10,000 iterations.Within each iteration,
the generator is executed once, while the discriminator is
executed six times, both undergoing iterative updates. The
objective of the generator is to generate a 256 × 256 image.
It takes a 100-dimensional noise vector as input and features
a network architecture comprising a single fully connected
layer and six inverse convolutional layers. The fully con-
nected layer contains 1024 neurons, while each inverse
convolutional layer employs a 4 × 4 filter with a stride of
2. The layer-by-layer convolutional kernels are configured
as follows: 512, 256, 128, 64, and 32. The chosen activa-
tion function is ReLU. The discriminator network comprises
multiple layers, encompassing three convolutional layers and
a fully connected layer. In the convolutional layers, 5 ×

5 kernels are applied with a stride of 2 for each layer. The con-
volutional kernels progressively increase: 256, 512, and 1024.
The fully connected layer hosts a single neuron, employing
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LeakyReLU as the activation function. The architecture of the
WGAN-GP used in this study is shown in Fig. 2.

C. GRAPH CONVOLUTIONAL NEURAL NETWORKS
Graph convolution networks [32] can be classified into two
categories: spatial domain graph convolution and frequency
domain graph convolution. The former involves performing
convolution operations directly on the graph nodes, yield-
ing rapid computational speed albeit with relatively limited
theoretical grounding. On the other hand, the latter entails fre-
quency domain graph convolution achieved through Laplace
eigen-spectrum decomposition. This approach offers mathe-
matical interpretability and theoretical underpinnings. Thus,
this study employs the spectral domain graph convolution
method for unfolding.

The graph can be represented as G = G (V ,E,A), where
V represents a node, E represents the set of edges, and A
represents the graph’s adjacency matrix. For an undirected
graph, Aij represents the connection between two nodes Vi
and Vj, which is represented as 1 in the adjacency matrix if
an edge exists and 0 otherwise, as follows:

Aij =

{
1, if ∃

(
Vi,Vj

)
∈ E

0, otherwise
(6)

The graph can also be expressed as L = D − A, where
Dii =

∑
j Aij, with L representing the Laplace matrix and

D representing the degree matrix. The symmetric normalized
Laplace matrix is usually used, as follows:

Lsym = IN − D−1/2AD−1/2
= U3UT (7)

where Lsym represents the symmetrically normalized matrix;
IN represents the unit matrix; U = (u1, u2, · · · , un) repre-
sents a matrix composed of unit eigenvectors; 3 represents
the diagonal matrix comprising the n eigenvalues of the
Laplace matrix.

The filter used in the graph convolution is gφ =

diag
(
UT g

)
, the computation between the graph signal f and

the convolution kernel g is as follows:

f ∗ g = U

 ĝ (λ1) . . . 0
...

. . .
...

0 · · · ĝ (λn)

UT f (8)

To alleviate the computational burden of graph convolution,
the convolution kernel ĝ (3) can be approximated using the
kth-order expansion of the Chebyshev polynomial Tk (·). This
approximation is represented by:

ĝ (3) ≈

K−1∑
k=0

θkTk
(
3̃
)

(9)

where θk represents the Chebyshev factor. Notice that
UTk

(
3̃
)
UT

= Tk
(
U3̃UT

)
is easily shown to hold. More-

over, θ = θ0 = −θ1 is assumed, strategically restricting
the number of parameters to mitigate overfitting. Given these

FIGURE 3. Graph convolutional schematic.

FIGURE 4. Two-layer standard graph convolutional model.

considerations, the definition of graph convolution can be
effectively approximated by:

f ∗ g = θ
(
D̃−1/2ÃD̃−1/2

)
f (10)

where Ã = A + IN considers its own properties for the adja-
cency matrix A. The propagation rule for the convolutional
layer in GCN is as follows:

H (l+1)
= σ

(
ÂH (l)W (l)

)
(11)

where W represents the matrix of learnable parameters;
H (l) represents the node features in layer l; σ (·) represents
the activation function; Â represents the updated adjacency
matrix, and Â = D̃−1/2ÃD̃−1/2 signifies its normalization to
both the left and right of Ã.

The graph convolution concept is illustrated in Fig. 3,
wherein the update of a new node includes the sum of the
neighboring feature information multiplied by their corre-
sponding weights and the intrinsic attributes of the node.
This aligns with the formula (12). Fig. 4 depicts a two-layer
standard Graph Convolutional Network (GCN), and node
classification is obtained after the classifier.{

h′

1 = h1 + heW
he = h2 + h3 + h4 + h5 + h6

(12)

III. PROPOSED METHOD
A. DATA PREPROCESSING AND AUGMENTATION
This paper’s data preprocessing and augmentation module
consists of two main components. The first part primarily
addresses the issue of insufficiently extracted information
from one-dimensional vibration signals. It employs a novel
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FIGURE 5. Schematic diagram of CBAM attention module.

time series method called Gram angle difference field to
convert them into two-dimensional images. The second part
expands the dataset using a WGAN-GP network, ensuring a
balance between the number of faulty samples in each cat-
egory and the number of normal samples while maintaining
the quality of the generated images.

B. FEATURE EXTRACTION
The feature extraction process in this study predominantly
composed of two primary components: the spatial feature
block and the structural feature block. GCN excels in han-
dling data within non-Euclidean spaces adeptly. Its GCN
operation necessitates inputs such as the adjacencymatrix and
the featurematrix and exhibits a degree of interpretability. For
the acquisition of the node feature matrix, this paper employs
CBAM-ResNet for feature extraction.

1) Spatial feature blocks: Effective feature extraction can
substantially enhance classification outcomes. This study
employs a residual network enriched with a convolutional
attention mechanism known as CBAM-ResNet. This archi-
tecture is built upon ResNet while incorporating CBAM
modules [33]. Introducing CBAM modules enables focused
attention on crucial features, diminishing operation complex-
ity. The network encompasses four residual modules. Each
residual block comprises four convolutions using a 3× 3 con-
volutional kernel at a stride of 1. Post convolution, batch
normalization (BN) is applied to mitigate internal covariance
bias. The ReLU activation function expedites model conver-
gence and enhances feature segmentation. Additionally, the
model integrates a global maximum pooling layer and an
average pooling layer with a pooling size of 2 × 2 and a
stride of 2. Furthermore, two attentional convolution modules
are embedded after the respective pooling layers. The CBAM
module is introduced into ResNet, as depicted in Fig. 5 below.
This module is comprised of two primary components. The
first component is the channel attention module, which fun-
damentally fuses spatial information within the feature map
via two pooling operations, computed as follows:

MC (F) = σ (MLP (AvgPool (F))+MLP (MaxPool (F)))

(13)

The remaining component is the spatial attention mod-
ule, gathering feature map information along the channel
direction to yield two maps. Subsequently, these maps are
concatenated and subjected to convolution through a standard

convolutional layer, generating the 2D spatial attention map,
computed as follows:

MS (F) = σ
(
f 7×7 ([AvgPool (F ′

)
;MaxPool

(
F ′
)]))

(14)

where σ is the activation function; f 7×7 is convolutional
kernel operation of size 7 × 7.
CBAM-ResNet extracts and acquires features from the

feature graph, with each feature vector representing a node
and its corresponding value representing a node feature.
The fully connected layer fine-tunes the CBAM-ResNet
output to conform to the graph’s convolutional input struc-
ture. Consequently, the output of each small batch of input
CBAM-ResNet is as follows:

χ = CBAM − ResNet
(
Xinput

)
(15)

where Xinput represents the small batch input matrix, and χ
represents the feature matrix of the node.

2) Structural feature blocks: The graph construction
methodology employs the Graph Generation Layer (GGL)
[34] to establish a fault sample graph. Following the col-
lection of spatial features by CBAM-ResNet, the adjacency
matrix is calculated as follows:

A = normalize
(
χ̃ χ̃T

)
(16)

where χ̃ represents the node feature after the multilayer
perceptron, this feature is subjected to matrix multiplication
with its transposed counterpart to yield the adjacency matrix
A, while normalize (·) signifies the normalization function.
To alleviate the computational burden, the acquired adjacency
matrix A is transformed into a sparse matrix as follows:

Ă = Top− κ (A) (17)

where Ă represents the sparse matrix; Top − κ (·) represents
the index of the first κ maxima of A returned.
The generated fault sample map is fed into the proposed

two-layer GCN for depth extraction of features. However,
a challenge arises: the weights between nodes are differ-
ent. Some researchers, aiming to simplify the issue, assume
uniformity across nodes. In addition, specific individuals
advocate directly setting Wij = Aij, treating the adjacency
matrix as the weight matrix. Consequently, weights become
0 or 1, inducing drastic weight alterations that impact clas-
sification accuracy. Moreover, this approach fails to embody
graph neural networks’ robust feature extraction capability.
Hence, this study employs the Gaussian kernel function to
compute assigned edge weights. This function offers sound
interpretability and is calculated as follows:

Wij = exp

(
−
d
(
ψi, ψj

)
2ϑ

2)
(18)

where Wij represents a weight parameter ranging from 0 ≤

Wij ≤ 1; d
(
ψi, ψj

)
represents a distance metric; ϑ represents

the bandwidth variance of the Gaussian kernel function.
To enhance the nonlinear representation capability during

aggregation and counteract overfitting, this study adopts the
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FIGURE 6. General framework diagram of the proposed fault diagnosis method.

Leaky Rectified Linear Unit (LeakyReLU) as the activation
function. The GCN model consists of two Chebyshev graph
convolution layers, two LeakyReLU activation layers, and a
SoftMax layer. In each graph convolution layer, the model
adaptively captures high-dimensional information from the
input data. The predictive label formulation for the GCN
model is as follows:

Z = Soft max
(
ĂLeakyReLU

(
ĂχW (1)

)
W (2)

)
(19)

where W (i) represents the trainable weight matrix; Z repre-
sents the sample’s label.

In the model employed within this study, the cross-entropy
loss function for the samples serves as the optimization crite-
rion, and weight parameters are updated via backpropagation.
Subsequently, a Dropout layer is introduced to mitigate the
impact of overfitting. The loss function is expressed as
follows:

LF = −

∑
i∈Vlabel

F∑
j=1

Y rij ln
(
Y Pij
)

(20)

where Y rij represents the real label of the ith-labeled node; Y
P
ij

represents the predicted label of the ith-labeled node; Vlabel
represents the set of labeled nodes.
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FIGURE 7. Case western reserve university fault data acquisition test rig.

The fault diagnosis model proposed in this paper is illus-
trated in Fig. 6. First, the collected vibration signals undergo
conversion into images via the Gram angle difference field
and utilizingWGAN-GP to Generate High-Quality Sufficient
Training Sets. Following this, the image samples are fed
into CBAM-ResNet to extract feature attributes, yielding the
feature matrix. Lastly, a graph generation layer is employed
to establish the fault sample graph and derive the adjacency
matrix. The obtained feature matrix and adjacency matrix
are then input into the constructed two-layer GCN for deep
feature extraction among samples and their edge information
features. Finally, a softmax classifier accurately categorizes
the faults.

IV. EXPERIMENTS AND DISCUSSION
The hardware configuration for the experiments conducted
in this study is specified as follows: Windows 10 operating
system, NVIDIA GTX3070 graphics card for GPU, Inter-
i5 for CPU, and the program is implemented by Pytorch
and Pytorch_geometric framework. The model was trained
with a learning rate 0.0001, using the Adam optimizer with
a cross-entropy loss function and 50 iterations. To prevent
overfitting of the model, the Dropout layer was set to have
a dropout rate of 0.2. Finally, the Softmax classification
function is used to classify the fault types.

A. CASE WESTERN RESERVE UNIVERSITY DATASET
The CWRU bearing dataset has four different operating con-
ditions: 0 load at 1797 rpm, 1 load at 1772 rpm, 2 load at
1750 rpm, and 3 load at 1730 rpm. In all scenarios, bear-
ing failures manifest as inner ring failures, ball faults, and
outer ring faults. Each of these can be further classified with
diameters of 0.007, 0.014, and 0.021 inches, contingent upon
the extent of damage. These three fault categories collectively
form a 10-class classification task in conjunction with normal
states. Throughout the experiments, uniform testing condi-
tions were maintained. In this study, experimental data from
SKF’s 6205 deep groove ball bearing located at the driving
end were utilized, and the data encompassed vibration signals
recorded under conditions of a 12 kHz sampling frequency.
In this paper, the length of a single sample is chosen to be
1024 points. As shown in Fig. 7, the experimental setup com-
prises a torque transducer, a 2-hp motor, and a dynamometer.

FIGURE 8. Vibration signal—gram angle difference field image—WGAN-GP
generated image.

1) Construction of the Dataset: Collecting information on
faulty bearings becomes more challenging due to prolonged
operation under normal conditions. Therefore, this paper uses
artificially set up-unbalanced datasets A, B, and C, with
imbalance ratios of 1:2, 1:4, and 1:8, respectively. Table 1
shows the detailed parameters.

2) Data Preprocessing and Augmentation: Since the
acquired vibration signals are one-dimensional, in this paper,
the Gram angle difference field is used to convert the acquired
one-dimensional vibration signals, and the one-dimensional
vibration signals of the samples are converted into two-
dimensional images. Data augmentation is to expand the
faulty sample so that it is balanced with the number of
normal samples, and the converted two-dimensional image
is expanded by using WGAN-GP so that the data can be
guaranteed to be sufficiently available. To facilitate visual
representation, fault states corresponding to 007 inches in
the inner ring, outer ring, and rolling body categories are
selected for display. The resulting is shown in Fig. 8, show-
casing the process of vibration signal-Gram angle difference
field conversion and the expanded images achieved through
WGAN-GP.

3) Model Feasibility Verification: To assess the effective-
ness of the Gram’s angle difference field, another variant
known as the Gram’s angle sum field (GASF) [35] is
employed for comparison alongside the commonly utilized
two-dimensional grayscale maps [36]. They are both chosen
because the conversion of a one-dimensional vibration sig-
nal into an image does not require tedious calculations and
selection of correlation functions, but only the consideration
of the respective corresponding matrices. Specifically, three
after augmentation are taken as inputs for the CBAM-ResNet-
GCN model. This process is executed using dataset A under
0 operating conditions, and the accuracy and loss of fault
diagnosis are depicted in Fig 9.

In this figure, the left scale indicates the fault identification
accuracy and the right scale indicates the loss value. The
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TABLE 1. Description of case western reserve university rolling bearing failure dataset.

FIGURE 9. Accuracy and loss plots with different images as inputs.

figure reveals that the proposed model achieves an accuracy
exceeding 97% when three different images ways are used as
inputs. The loss value decreases smoothly, indicating a strong
fitting ability of the model. Notably, when GADF is used as
input, the model converges rapidly, achieving slightly higher
accuracy compared to the other two approaches by about
0.5-1.5%, and the loss is minimized. This rapid convergence
and high accuracy demonstrate the stability of the model
during training, validating the feasibility and effectiveness of
using GADF in this paper.

The synthesized samples are evaluated through various
measures to assess the quality of the WGAN-GP generated
samples adopted in this study. Firstly, it is evident from
the figure above that the expanded image is not a mere
copy of the pre-expanded version; instead, it exhibits slight
differences. This observation underscores the diversity inher-
ent in the generated samples. The cosine similarity metric
is employed further to affirm the validity and authenticity
of these generated samples [37]. The vertical coordinate in
Fig. 10 represents the cosine similarity measure; The smaller
the value of this metric, the greater the similarity between
the compared samples, which means that the gap between the
samples is small.

Fig. 10 presents a box plot depicting the statistical met-
rics comparison between the generated and original samples
across the three datasets. In this plot, the dotted line represents
the mean. Samples further away from the mean line exhibit
more significant fluctuation and poorer quality. As can be
seen, the three data set metrics are minimal, indicating a

FIGURE 10. Box-plot on three datasets.

FIGURE 11. Visualization of real samples vs. generated samples.

preferable generation effect that meets the requirements of
the trainingmodel. It is worth noting that the smallest value of
thismetric in the three datasets is in dataset A, which indicates
that the image samples generated in dataset A are better than
those in B and C. The value of this metric in dataset A is
the lowest. This is due to the fact that as the imbalance ratio
increases, themore scarce the raw data becomes. Thus dataset
A becomes the best choice among the three.

Furthermore, for a more comprehensive image quality
assessment, t-SNE [38] is employed to visualize the similarity
between the generated and original data. This visualization
focuses on the 9 types of samples generated in dataset A.
The more similar the generated data are to the original data,
the more they will be clustered together, otherwise they
will be discrete, as shown in Fig. 11. The results illustrate
that the 9 classes of generated samples cluster with their

VOLUME 12, 2024 34793



H. Wang et al.: Data-Augmentation Based CBAM-ResNet-GCN Method

FIGURE 12. Test accuracy and loss curves for three datasets under four different operating conditions.

FIGURE 13. Plot of fault recognition accuracy of different models on
three datasets.

corresponding real samples. Only extremely rare generated
samples were not correctly clustered, underscoring the high
quality and effectiveness of the generated samples.

To validate the performance of the proposed model, exper-
iments were conducted using three datasets under four
different operating conditions. The results of these tests are
shown in Fig. 12.
The results demonstrate that the model attains approxi-

mately 99% accuracy across four distinct operating condi-
tions in all three unbalanced datasets. The losses consistently
decrease without any signs of overfitting. The accuracy rate
exhibits a smooth increase after the tenth iteration, reaching
close to 97%, highlighting the rapid convergence capability of
the proposed model. Fig. 12 illustrates that dataset A exhibits
a higher accuracy rate than B and C with a smoother curve.
This difference may be attributed to the increased imbalance
ratio in the latter two datasets.While the expanded imagemay
not be a perfect replica of the original, this factor is negligible
compared to the impact of unbalanced data on diagnostic
accuracy.

4) Comparison Experiments With Other Deep Learning
Methods: This paper will conduct comparative experiments
with several other models to assess the efficacy of the
designed CBAM-ResNet-GCN model in addressing the
task of rotating machinery fault diagnosis. These models
include Deep Convolutional Neural Network (LeNet-5) [39],

TABLE 2. Average accuracy of each model under three unbalanced
dataset.

Residual Neural Network (ResNet) [40], DGCN [41], and
AGCNet [42] for fault diagnosis. The former two models
are non-graph structures, while the latter two models are
GCN-based. The models are trained using uniform hyper-
parameter settings and initialization methods. To ensure the
reliability of the experiments, each set of experiments is
repeated ten times, and the results are averaged to provide
outcomes. A summary of the outcomes for various methods is
presented in Table 2, and the test results are shown in Fig. 13.

From the results, it can be seen that two traditional
CNN-basedmethods; LeNet-5 and ResNet, performed poorly
in each experiment. Attributed to the fact that these two
models lack graph structure and are data-driven based, with
limited training data, these models are unable to reach their
full potential and may suffer from overfitting phenomenon,
resulting in poor recognition of fault information, hence their
poor performance. On the contrary, DGCN, AGCNet and
the method proposed in this paper are built on graph struc-
ture models.GCN captures the dependencies between time
series from the perspective of graph topology, which makes
them capable of learning and extracting the feature informa-
tion of the nodes and capturing the important information
of the edges between the nodes. The latter three models
are significantly more accurate compared to the above two
models. The reason why the model proposed in this paper
outperforms the other two GCN models is, on the one hand,
that the CBAM attention mechanism in the spatial feature
block allows targeted information extraction and reduces the
interference of irrelevant information. On the other hand,
the construction method of the graph data directly deter-
mines the quality of the graph data, and thus it is crucial
to ensure high-quality fault sample graphs. In this paper,
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FIGURE 14. Confusion matrix plot of different models on dataset A.

FIGURE 15. Visualization of the results of different models on dataset A.

the residual network containing a convolutional attention
mechanism is used to obtain the feature matrix of GCN
to construct high-quality fault sample graphs, which makes

Enables structural feature blocks to better identify faults.
As can be seen from Table 2, the standard deviation of this
paper is smaller than the other four models, which further
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FIGURE 16. Comparison of fault recognition accuracy for different signal-to-noise ratios on three datasets.

indicates the better stability of the method proposed in this
paper.

To intuitively compare the performance of the model pro-
posed in this paper with four other models in terms of
diagnosing faults in rotating machinery, this study analyzes
the model’s output characteristics under dataset A using a
confusionmatrix and visualization techniques. The confusion
matrix is shown in Fig. 14, and the visualization results are
shown in Fig. 15.
From Fig. 14, one can get the following observations:

LeNet-5, 38 samples labeled as 0 were erroneously catego-
rized as 1. Additionally, there are more misclassifications of
samples labeled 1 and 9. In the case of ResNet, 27 samples
labeled as 2 were inaccurately categorized as 1, and some
of the defective samples labeled as 8 were also misclassi-
fied. On the other hand, the latter three GCN-based models
demonstrate a superior ability to classify each fault type
from a holistic perspective accurately. DGCN and AGCNet
exhibit few misclassifications, whereas the model proposed
in this paper showcases an even smaller number of misclas-
sifications. This model proves its proficiency in accurately
identifying all fault types compared to the other four models.

5) Noise Robustness of the Proposed Methods: Rotating
machinery often operates in complex environments and is
subjected to strong noise and unbalanced data, which can lead
to a decline in model performance. To verify the relevant per-
formance of the model presented in this paper, strong noises
with varying signal-to-noise ratios are exclusively added to
the test sets of the three datasets. Specifically, noise of 0,
−2, −4, −6, and −8 dB are introduced to the test sam-
ples of vibration signals using MATLAB’s signal-to-noise
function to emulate diverse noise environments encountered
in engineering. Each sample comprises 1024 points and
faulty samples’ preprocessing and augmentation steps remain
consistent with the abovementioned process. Comparative
experiments are conducted across three unbalanced datasets
and different noises. These experiments are repeated five
times to compute an average and mitigate the influence of
random factors and conditions. The outcomes are shown in
Fig. 16

FIGURE 17. Laboratory planetary gearbox fault data test rig.

As observed in Fig. 16, the proposed model can main-
tain high diagnostic accuracy and training stability even in
the presence of significant noise. This suggests its ability
to effectively capture valid information within the samples
and resist noise interference. However, as the imbalance
ratio increases, there is a marginal decrease in accuracy. The
proposed model achieves average accuracies of 98.324%,
98.227%, and 98.003% on the three unbalanced datasets
under -8 dB strong noise. In addition, it can be seen from the
Fig. 16 that all four fault diagnosis models are not as effec-
tive as the method proposed in this paper. The main reason
may be that the data expansion makes the generator more
resistant to the input noise. This may result in the generator
producing samples that are more robust and less susceptible
to noise as well as the CBAM attention mechanism focusing
on feature extraction under noisy conditions. The validation
results affirm the applicability of the fault diagnosis method
proposed in this paper across diverse noise environments.

B. LABORATORY PLANETARY GEARBOX DATASET
Gearbox diagnosis of faults in unbalanced datasets and noise
environments remains a challenge. To solve this problem,
To solve this problem, in this paper use the planetary gearbox
dataset tested by our research team to validate the pro-
posed network model and verify its applicability further. The
experimental setup is shown in Fig. 17 and includes an AC
asynchronous motor, a fixed shaft gearbox, a planetary gear-
box, and amagnetic particle brake. The first stage of the stator
gearbox has 77 teeth and 55 teeth, while the second stage of
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TABLE 3. Description of planetary gearbox failure dataset.

TABLE 4. Average accuracy of planetary gearbox experiments on three
datasets.

FIGURE 18. Accuracy and loss curves for gearbox experiments on three
datasets.

the planetary gearbox consists of a sun wheel, a planetary
gear, and a ring, with 18, 27, and 72 teeth, respectively. The
data sets were collected at seven measuring points with gear
velocities of 840, 900, 1260, 1470, and 1500 r/min. Vibration
signals are acquired at these points. Each speed condition
has three gear states: normal, broken, and crack. We selected
the gearbox vibration signal at measurement point 3 with a
sampling frequency of 51.2 KHz and a speed of 900 rpm.
In this section, the length of a single sample is kept the same
as in the previous section and 1024 points are chosen as the
sample length. This data is used as validation data to evaluate
the performance of our proposed methodology. The dataset
is partitioned into three unbalanced subsets: A, B, and C,
maintaining the identical unbalanced ratio as detailed in the
preceding section, as described in Table 3.

The above three unbalanced datasets are tested under 0dB
noise conditions to demonstrate the model’s effectiveness
proposed in this paper. Each experiment is conducted ten
times to ensure reliable results, and the average outcome
is taken as the final result. The outcomes are presented in
Table 4, while the corresponding test result is shown in
Fig. 18.

Training was performed under three unbalanced datasets
on the laboratory gearbox as shown in Figure 18. An accuracy
of about 98% is achieved after the 13th iteration of training
with a smooth reduction of losses and no overfitting. This

FIGURE 19. Confusion matrix plots on the three datasets in the gearbox
experiments.

result emphasizes the robustness and strong convergence abil-
ity of the proposed model in this study.

To further observe the performance of the model pro-
posed in this paper on the gearbox dataset, the experimental
results are visualized through confusion matrices for the three
datasets with varying unbalanced ratios, as shown in Fig. 19.

As shown in Fig. 19, even in the presence of a 0db
noise environment, excellent fault identification capabil-
ity is demonstrated on the three unbalanced datasets, with
99.119%, 98.578%, and 98.128%, respectively, thus further
confirming the robustness and generalization capability of the
model in this paper.

V. CONCLUSION
The method proposed in this paper is able to solve the prob-
lem of low fault classification accuracy due to unbalanced
datasets during network model training. Validation is per-
formed on Case Western Reserve University bearing dataset
and laboratory planetary gearbox dataset, and the proposed
method is compared and analyzed with several other methods
to draw the following conclusions:

1) Using a WGAN network with a penalty factor, Such a
generative framework can generate realistic data for image
augmentation to solve the problem of data imbalance.
To obtain the sample input of expanded data, this paper adopts
a new conversion method of GADF corresponding to the
time series. The obtained image can ensure good temporal
correlation and is better than similar methods in the richness
of feature information. The effectiveness of themethod is ver-
ified after theoretical research and experimental comparison.

2) The CBAM-ResNet-GCN network constructed in this
paper incorporates the convolutional attention into the resid-
ual network, which can effectively extract key information
and can obtain a feature matrix. This feature matrix is then
used as an input to the graph convolutional neural net-
work, taking advantage of the powerful feature extraction
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capabilities of graph convolutional neural networks as well as
the ability to utilize edge information. Compared with other
models, an accuracy of about 99% was achieved on three
unbalanced bearing datasets fromCaseWestern Reserve Uni-
versity, and an accuracy of about 99% was also achieved
under four different operating conditions, indicating that the
method can efficiently extract fault-related information and
improve the fault identification accuracy.

3) This study validates the correlation performance on
three unbalanced datasets in an accompanied noise environ-
ment. Notably, the fault identification accuracy is close to
98% on the Case Western Reserve University bearing dataset
even in the case of -8db strong noise, and to further validate
the performance, the fault identification accuracy reaches
over 98% on the gearbox dataset containing 0db noise. The
robustness and practicality of the model are demonstrated.
Consequently, this paper offers a reliable and effective solu-
tion for diagnosing rotating machinery faults.

The method proposed in this paper shows excellent per-
formance under the same load, but in the real working
environment, it will face the situation of variable load, the
method of this paper is not dominant, and migration learn-
ing [43] provides a solution to such problems. The next step is
to combine the method of this paper with migration learning
to solve problems such as data imbalance across working con-
ditions Additionally, there could be interconnections among
signals gathered by various sensors. Investigating how to
effectively leverage the relationships between multiple sen-
sors to fully exploit valuable information, thereby facilitating
easier fault diagnosis, is also a focus of our future research.
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