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Abstract— Deep learning (DL)-based methods have been
successfully employed as asynchronous classification
algorithms in the steady-state visual evoked potential
(SSVEP)-based brain-computer interface (BCI) system.
However, these methods often suffer from the limited
amount of electroencephalography (EEG) data, leading to
overfitting. This study proposes an effective data aug-
mentation approach called EEG mask encoding (EEG-ME)
to mitigate overfitting. EEG-ME forces models to learn
more robust features by masking partial EEG data, lead-
ing to enhanced generalization capabilities of models.
Three different network architectures, including an archi-
tecture integrating convolutional neural networks (CNN)
with Transformer (CNN-Former), time domain-based CNN
(tCNN), and a lightweight architecture (EEGNet) are uti-
lized to validate the effectiveness of EEG-ME on publicly
available benchmark and BETA datasets. The results
demonstrate that EEG-ME significantly enhances the aver-
age classification accuracy of various DL-based methods
with different data lengths of time windows on two pub-
lic datasets. Specifically, CNN-Former, tCNN, and EEGNet
achieve respective improvements of 3.18%, 1.42%, and
3.06% on the benchmark dataset as well as 11.09%, 3.12%,
and 2.81% on the BETA dataset, with the 1-second time win-
dow as an example. The enhanced performance of SSVEP
classification with EEG-ME promotes the implementation of
the asynchronous SSVEP-BCI system, leading to improved
robustness and flexibility in human-machine interaction.

Index Terms— Asynchronous brain-computer interface,
data augmentation, deep learning, electroencephalography
mask encoding, steady-state visual evoked potential.
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I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) allows individuals to
communicate silently with the outside world without the

need for sound or movement [1]. It establishes a direct commu-
nication channel between the brain and external device based
on the individual’s neural activity [2]. Electroencephalography
(EEG) is a commonly used neural recording technique with the
advantages of convenience and safety for BCI applications [3],
[4], [5], and Steady-state visual evoked potential (SSVEP) is
widely adopted as one of the most promising EEG paradigms
for BCI [6]. The SSVEP signal demonstrates superior stability,
and its frequency domain features are distinctly observable.
When employing flickering visual stimuli at various frequen-
cies, it’s possible to generate SSVEP-EEG signals that contain
frequency components corresponding to the targeted stimuli.
By decoding SSVEP-EEG signals, it becomes feasible to
identify the specific target that the user is actively focusing
on and facilitates effective communication for BCI [7].

BCI can be classified into two modes: synchronous and
asynchronous [6], [7], [8], [9], [10]. The synchronous BCI
system is characterized by the use of predefined time windows
with a specific cue or trigger that indicates the onset of mental
activity. As a result, synchronous systems limit user activities
to adhere to the designated time sequence [6]. In contrast, the
asynchronous BCI system offers greater flexibility, enabling
users to issue commands according to their intentions at
any time. This system does not require any predefined time
windows and can continuously decode the user’s intentions [9].

Various methods have been proposed to assist in decoding
SSVEP-EEG. Traditional methods include canonical correla-
tion analysis (CCA)-derived methods [10], [11], [12], [13],
[14], task-related component analysis (TRCA)-derived meth-
ods [15], [16], and task-discriminant component analysis
(TDCA) [17]. Deep learning (DL) [18] methods include deep
neural network (DNN) [19], SSVEPformer [20], and gener-
alized zero-shot learning (GZSL) [21]. During the training
phase of these methods, specific-position time windows in
the stimulus trials are selected as training samples, such as
[0.14, 0.14 + ds] s, which starts at 0.14 s after stimulus
onset, and ds s denotes the data length of time windows.
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Fig. 1. EEG-ME for one electrode channel data of a sample.

The same specific-position time window is required in the
test phase. These methods, which exhibit impressive classifica-
tion (decoding) performance within predefined time windows
synchronized with the flicker of stimulus targets, can be
termed synchronous SSVEP classification algorithms. How-
ever, they exhibit poor performance outside of predefined time
windows [7]. Thus implementing asynchronous SSVEP-BCI
system using synchronous SSVEP classification algorithms is
challenging.

Some methods exhibit stable classification performance at
any time that can be termed asynchronous SSVEP classifica-
tion algorithm. Traditional methods, such as CCA [23] (and
its filter bank version [24]), multivariate synchronization index
(MSI) [25], and Ramanujan periodicity transforms (RPT)
[26], can implement asynchronous SSVEP classification, but
a longer time window is required. In recent years, some
DL-based methods have been proposed for asynchronous
SSVEP classification, such as Fast Fourier Transform (FFT)-
based convolutional neural networks (CNN) [27], [28], time
domain-based CNN (tCNN) [7], and EEGNet [29]. They can
achieve superior classification performance using shorter time
windows in comparison to traditional methods [7]. To build
a fast and flexible asynchronous SSVEP-BCI system in the
future, we focus on the DL-based asynchronous SSVEP clas-
sification algorithm in this study.

However, the classification performance of DL-based meth-
ods is constrained by the limited amount of EEG data [30],
[35], [37]. For public datasets such as benchmark [31] and
BETA [32], each stimulus target contains only six or four
trials, respectively. DL-based methods tend to overfit on
these datasets, leading to a decrease in classification per-
formance. Data augmentation is a promising strategy that
can effectively prevent overfitting [33]. Generative adversarial
networks (GAN) and variational auto-encoders (VAE) have
been used to generate additional EEG samples to enhance the
SSVEP classification performance [35]. However, GAN and
VAE would introduce additional training costs. SpecAugment,
which is created for data augmentation in speech recognition
[36], has been attempted in the SSVEP classification [37].
It first transfers the EEG signals into the spectrogram images
by Short-Time Fourier Transform (STFT) and then applies
frequency masking and time masking to it. However, some
useful information in the time domain may be missed by
the STFT, and the complex operation of SpecAugment would
introduce additional time costs [37].

Fig. 2. The application of EEG-ME during the training phase.

In this study, we propose a novel data augmentation
approach called EEG Mask Encoding (EEG-ME) to enhance
the performance of DL-based SSVEP classification algorithms.
A randomly positioned continuous segment is chosen as the
mask window, and the value of the EEG data in the mask
window is set to 0 (Fig. 1). EEG-ME makes it challenging
for the model (network architecture) to extract features, forc-
ing the model to learn more robust features from the data.
This enables the model to better comprehend the underlying
patterns in the EEG data rather than relying on memorization.
Consequently, EEG-ME effectively mitigates overfitting and
enhances the model’s generalization capabilities. The proposed
EEG-ME resembles Dropout [34] but differs in that it operates
on a continuous segment region of the input data. EEG-ME
can be applied directly to the EEG samples during the training
phase (Fig. 2) and does not require any additional parameter
learning. The higher the mask ratio (the proportion of mask
window in the whole sample), the better the suppression of
overfitting. However, as the mask ratio increases, so does the
loss of information. Therefore, it is critical to determine the
best mask ratio of the EEG-ME that maintains the trade-off
between the reduction of overfitting and the loss of informa-
tion.

To evaluate the effectiveness of the proposed EEG-ME
approach, we combine EEG-ME with different DL-based
methods and conduct experiments on the benchmark and
BETA datasets respectively. Two state-of-the-art (SOTA) net-
work architectures for asynchronous SSVEP classification,
namely tCNN [7] and EEGNet [29] are employed in this study.
tCNN is a standard CNN architecture without pooling layers
and EEGNet is a lightweight architecture. Given the success
of Transformer [38] in learning task-related features in natural
language process (NLP) [39], computer vision (CV) [40], and
EEG fields [20], [41], [42], we propose a novel network
architecture that integrates CNN with Transformer (CNN-
Former) for asynchronous SSVEP classification to further
validate the benefits of EEG-ME.

The main contributions of this paper are summarized as
follows.

1) We propose EEG-ME, a simple yet effective data aug-
mentation approach for DL-based asynchronous SSVEP
classification tasks. EEG-ME does not require additional
parameter learning and can be easily implemented.
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2) We validate the effectiveness of EEG-ME on different
public datasets using various DL-based methods with
different mask ratios and data lengths of time windows.

3) We conduct a comprehensive analysis of the factors that
impact the effectiveness of EEG-ME and delve into the
underlying theories that contribute to its effectiveness.

4) We employ frame-by-frame analysis to illustrate the
distinction between asynchronous and synchronous
algorithms as well as highlight the significance of asyn-
chronous algorithms in the asynchronous BCI system.

The structure of this paper is outlined as follows. Section I
presents a brief introduction to SSVEP algorithms and data
augmentation approach. Section II introduces the proposed
EEG-ME approach and CNN-Former architecture. The exper-
iments and results are elaborated in Section III. Section IV
presents the discussion on the effectiveness of the proposed
EEG-ME approach and analyzes the significance of asyn-
chronous algorithms in the asynchronous BCI system. Finally,
Section V concludes this paper.

II. METHODS

A. Datasets
Two widely-used and reliable public datasets, i.e., bench-

mark [31] and BETA [32] are used to evaluate the effectiveness
of the proposed EEG-ME approach.

1) Benchmark Dataset: Thirty-five subjects participated in
this experiment. Forty targets are coded using a joint frequency
and phase modulation (JFPM) approach. Specifically, the
stimulation frequency range is 8 to 15.8 Hz with an interval of
0.2 Hz, and the phase range is 0 to 1.5 π with an interval of
0.5 π . The EEG data of a subject consists of six blocks. Each
block contains 40 trials in random order. Each trial begins
with a 0.5 s target-cue stage. Next comes the stimulus stage,
all stimulus targets start flashing simultaneously on the screen
for 5 s. Followed by the rest stage, the screen goes blank for
0.5 s before the next trial begins. EEG data is recorded by the
64-channel device and downsampled to 250 Hz. The average
visual delay across all subjects is 0.14 s. For more information,
please refer to [31].

2) BETA Dataset: Seventy subjects participated in this
experiment. The stimulus paradigm design of the BETA
dataset shares similarities with the benchmark dataset, but it
also has certain important differences. The BETA dataset is
developed for real-world applications, which consists of data
collected outside the laboratory setting of the electromagnetic
shielding room. The BETA dataset consists of four blocks. The
stimulus stage of each trial lasted 2 s for the first 15 subjects
and 3 s for the last 55 subjects. Therefore, the useful EEG
data in the BETA dataset is smaller than that in the benchmark
dataset. The average visual delay across all subjects is 0.13 s.
For more information, please refer to [32].

Considering the visual delay, the temporal range of useful
data for each trial is [0.5 + td , 0.5 + td + L] s, which starts
0.5+td s after the onset time of a trial, 0.5 s denotes the lasted
time of cue stage, td denotes the average visual delay, and L
s denotes the lasted time of the stimulus stage, as shown in
Fig. 3. For the benchmark dataset, td = 0.14 s and L = 5 s.

Fig. 3. The random selection process of a single sample in a trial.

Fig. 4. Filter bank applied to the raw EEG data.

For the BETA dataset, td = 0.13 s, and L = 2 s for the first
15 subjects as well as L = 3 s for the last 55 subjects.

B. Pre-Processing
This study utilizes EEG data from nine electrode channels

located in the occipital region, including Pz, PO5, PO3,
POz, PO4, PO6, O1, Oz, and O2 [31], [32]. To enhance
the efficiency of the network architecture for learning task-
related features, a filter bank is employed to filter the data. The
filter bank comprises several sub-filters with different bandpass
ranges that can utilize the fundamental and harmonic infor-
mation of SSVEP-EEG data more effectively [7], [19], [24].
In both the benchmark and BETA datasets, the fundamental
range is 8-15.8 Hz, the second harmonic range is 16-31.6 Hz,
and the third harmonic range is 24-47.4 Hz. Harmonic infor-
mation above 50 Hz is not used [7] since the signal-to-noise
ratio (SNR) is relatively low above 50 Hz for the benchmark
and BETA datasets used in this study. Following method
M3 in [24], the three sub-filters with different bandpass ranges
are designed as 6-50 Hz, 14-50 Hz, and 22-50 Hz respectively.
Sixth-order Butterworth filters are employed as the sub-filters
in this study. The filtered data from the three sub-filters are
concatenated to obtain the final filtered data as in [19]. Fig. 4
shows the filter bank applied to the raw EEG data.

C. Sample Selection Process
To create an asynchronous SSVEP classification algorithm,

random-position time windows in the useful data range are
selected as training samples [7], with a shape of 3@9×ds
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(three sub-filters@nine electrode channels × data length of
time windows). The temporal range of time windows is [td +

rs, td+rs+ds] s, which starts td+rs s after the onset time of the
stimulus and rs denotes a random number between [0, L −ds].
The random selection process of a single sample is shown in
Fig. 3.

D. The Proposed EEG-ME Approach
During the training phase, a mask window is applied to the

selected sample. The value of the data in the mask window is
set to 0. Fixing the position of the mask window hinders the
model’s ability to learn how to handle data in that specific
position. Consequently, the partial data within the specific
position of test samples does not contribute significantly to
the decoding process of the model. To address this issue,
randomizing the position of the mask window is necessary.

Fig. 1 illustrates the EEG-ME process for a single sample,
focusing on one electrode channel. The mask window has a
temporal range of [rm, rm + dm] s, where rm represents the
start point of mask windows, dm = ds × ratiom s denotes
the data length of mask windows, and ratiom denotes the
mask ratio of samples. rm is a random value within the range
[0, ds × (1 − ratiom)] s. In terms of program implementation,
the operation unit is the frame. Thus the range should be
multiplied by the data sampling rate, resulting in a specific
value range of [0, 250 × ds × (1 − ratiom)]. It is important
to note that all nine electrode channels of a sample share the
same mask window.

Network weights are updated every other mini-batch, with
each mini-batch containing Nbs (Nbs = mini-batch size) sam-
ples. rm can employ two variation strategies: (1) Random
variation of rm with individual samples, and (2) Setting rm
to a consistent value for the Nbs samples in a mini-batch,
while randomly varying it across different mini-batches. Both
strategies result in equivalent generalization capabilities of
models (Fig. 8) but the latter simplifies computations. Hence,
this study adopts strategy (2). The process of the proposed
EEG-ME approach applied to the EEG samples during the
training phase is shown in Fig. 2. It is worth noting that during
the training phase, EEG-ME serves as an online augmentation
technique applied to EEG samples.

E. State-of-the-Art DL-Based Asynchronous Algorithms
tCNN [7] and EEGNet [29] are employed to validate the

effectiveness of EEG-ME. Table I illustrates the architecture
of tCNN. To adapt to the classification task of a great number
of categories, the output dimension in the convolutional layer
is larger than that in our previous work [7]. l1 and l2 represent
the temporal length of the front layer. Table II illustrates the
architecture of EEGNet. Step sizes in EEGNet are set to 1.

F. The Proposed CNN-Former Architecture
Transformer has been successfully applied in EEG

research [20], [41], [42], with specific focus and detailed
discussion in [42]. To enhance the reliability of the val-
idation results of EEG-ME, we propose the CNN-Former
integrating CNN with Transformer, whose architecture is

TABLE I
THE ARCHITECTURE OF TCNN

TABLE II
THE ARCHITECTURE OF EEGNET

very different from tCNN and EEGNet. The code of
CNN-Former with EEG-ME is available for reproducibil-
ity at https://github.com/DingWenl/CNN-FormerWithEEG-
ME. Fig. 5(a) shows the architecture of the CNN-Former. The
CNN module captures temporal and spatial features, while the
Transformer module learns global temporal dependencies [42].
A multi-scale block is added to the CNN module to learn
multi-scale information [44]. A fully connected layer with
softmax is used to obtain the scores for the forty categories,
and the category with the highest score is identified as the
predicted category.

1) CNN Module: The input data is first filtered by a con-
volution layer with 9 × 1 convolution kernels, which enables
each output unit to contain the spatial information of the nine
electrodes. Then, the feature maps pass through a multi-scale
block, which is inspired by the res2net [44], as shown in
Fig. 5(b). Different convolution kernels are designed to learn
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Fig. 5. The illustration of the proposed CNN-Former using the example input data of a 1-second time window. (a) CNN-Former architecture,
Conv2D denotes two-dimensional convolution, BN denotes batch normalization, Dense denotes the fully connected layer, Activation = ELU [43],
Dropout1 = 0.5, Dropout2 = 0.95, padding = same/valid denotes padding is used or not used; (b) Multi-scale block; (c) Transformer module;
(d) Multi-head attention mechanism, h denotes the number of heads; (e) Feed-forward network.

the information of different temporal scales. Next, a convo-
lution layer with 1×l convolution kernels is utilized, where l
denotes the data length of the input. The large kernel size
ensures that each output unit contains sufficient temporal
information.

2) Transformer Module: As shown in Fig. 5(c), the Trans-
former module contains a positional encoding and an encoder
with a stack of N identical layers [38]. Each layer has two
sub-layers: a multi-head attention mechanism (Fig. 5(d)) and
a fully connected feed-forward network (Fig. 5(e)). A resid-
ual connection [45] is employed around each of the two
sub-layers, followed by layer normalization [46]. Dropout is
applied to the output of each sub-layer before being added
to the sub-layer input and normalized. Additionally, dropout
is applied to the sums of inputs and positional encodings.
For more detailed information, please refer to [38]. In this
study, the Transformer module is configured with the following
parameters: N = 2 and dropout ratio = 0.1.

G. Performance Evaluation
Accuracy, which is defined as the ratio of the number of

correct samples to the number of total samples, is used to
evaluate the classification performance of DL-based methods.
The accuracy P is expressed as:

P = n1/n, (1)

where n1 denotes the number of correct samples, and n denotes
the number of total samples.

Information transfer rate (ITR) is an important index in the
BCI system [17]. ITR considers the trade-off between accuracy
and data length. ITR (bits/min) is defined as:

I T R = 60 × [log2 M + Plog2 P + (1 − P)log2
1 − P
M − 1

]/ds,

(2)

where M denotes the number of stimulus targets, P denotes
the accuracy, and ds s denotes the data length of test samples.

The paired t-test is conducted to examine any significant
differences in average classification accuracy or ITR between
each pair of methods under each condition. In the event
of a significant main effect (p < 0.05), post hoc t-test
comparisons are subsequently conducted with the application
of the Bonferroni correction.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup
1) Comparative Experiments: The experiments encompass

five parts: (1) Comparative experiments that involve vari-
ous EEG-ME-based DL methods with different mask ratios
and data lengths of time windows, (2) Comparative experi-
ments assessing the classification performance of the enhanced
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TABLE III
AVERAGE CLASSIFICATION ACCURACY AND ITR (MEAN ± SEM) OF DL-BASED METHODS WITH DIFFERENT MASK RATIOS

AND DATA LENGTHS OF TIME WINDOWS ON BENCHMARK DATASET

CNN-Former in contrast to the most commonly utilized tra-
ditional asynchronous classification methods, (3) Experiments
comparing EEG-ME with two commonly employed data aug-
mentation techniques for EEG decoding, (4) Experiments
involving CNN-Former trained with and without EEG-ME,
employing different numbers of training blocks, and (5) Com-
parative experiments appraising two variation strategies of
EEG-ME.

2) Model Training Strategy: In this study, Categorical
Cross-entropy and Adam are selected as the loss function
and optimization algorithm. Mini-batch size is set to 256,
and the model is trained for 4000 mini-batches (iterations) on
the benchmark dataset. For the BETA dataset, the number of
mini-batches is set to 2000 due to its smaller original sample
size. Finally, the trained model is recorded with the minimum
loss of the training set.

3) Leave-One-Out Cross-Validation: Leave-one-out cross-
validation is employed for the evaluation of SSVEP
classification algorithms. The EEG data of a subject comprises
Nb blocks, where one block is designated as the test set
while Ntb randomly chosen blocks serve as the training set.
This procedure is repeated Nb times, and the average of
the resulting Nb classification results determines the subject’s
classification accuracy. For the benchmark dataset, Nb is set
as 6, whereas for the BETA dataset, Nb is set as 4. In the
experiment (4), Ntb varies as 1, 2, 3, 4, and 5 for the
benchmark dataset, as well as 1, 2, and 3 for the BETA dataset.
In other experiments, Ntb is fixed as 5 for the benchmark
dataset and 3 for the BETA dataset. During the classification
process, 5000 test samples are randomly selected from the
relevant data range of the test set to evaluate the trained model.

B. Results
In this subsection, we use the following notations: Pbase

represents the average classification accuracy of DL-based
methods without EEG-ME, while Pbest represents the max-
imum average classification accuracy of DL-based methods
with EEG-ME, and the corresponding mask ratio is defined as

ratiob. Furthermore, we define 1P as the accuracy improve-
ment from Pbase to Pbest , which is given by 1P = Pbest −

Pbase. The accuracy improvement can reveal the effectiveness
of EEG-ME. In addition, “w/ EEG-ME” and “w/o EEG-ME”
respectively indicate CNN-Former with and without EEG-ME.

Table III and Table IV illustrate the average classification
accuracy and ITR of CNN-Former, tCNN, and EEGNet across
all subjects on the benchmark and BETA datasets, respec-
tively, with different mask ratios and data lengths of the
time windows. The mask ratio ranges from 0 to 0.5 with
an interval of 0.1, where mask ratio = 0 indicates that
EEG-ME is not applied to the DL-based methods. Considering
the trade-off between accuracy and ITR, the data length of
1 s is commonly used in DL-based asynchronous SSVEP-
BCI [28], [29]. Thus the primary analysis range of data
lengths in this study from 0.8 to 1.2 s with an interval of
0.2 s. The paired t-test with Bonferroni correction reveals
that EEG-ME can significantly improve the classification
performance of DL-based methods with appropriate mask
ratios (p < 0.001). As the mask ratio increases, the aver-
age classification accuracy and ITR first increase and then
decrease. The maximum ITR for CNN-Former, tCNN, and
EEGNet are 259.26 ± 11.88 bits/min, 241.18 ± 11.87 bits/min,
and 207.11 ± 12.07 bits/min in the benchmark dataset, as well
as 176.74 ± 11.98 bits/min, 165.86 ± 10.90 bits/min, and
146.83 ± 9.46 bits/min in the BETA dataset.

Additional experiments are conducted using CNN-Former to
validate the effectiveness of EEG-ME. The data length range
is extended from 0.2 to 1.2 s at 0.2 s intervals. The ratiob
values for EEG-ME with CNN-Former are 0, 0, and 0.2 for
0.2 s, 0.4 s, and 0.6 s, respectively, on the benchmark dataset.
Similarly, on the BETA dataset, the ratiob values are 0, 0.1,
and 0.2 for the same data lengths. To better showcase the
classification performance of CNN-Former improved by EEG-
ME, its Pbest and Pbase are compared with the most commonly
used SOTA traditional asynchronous algorithms, i.e., CCA
[23] and FBCCA [24]. Fig. 6 illustrates the average classi-
fication accuracy of CNN-Former with and without EEG-ME,
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TABLE IV
AVERAGE CLASSIFICATION ACCURACY AND ITR (MEAN ± SEM) OF DL-BASED METHODS WITH DIFFERENT MASK

RATIOS AND DATA LENGTHS OF TIME WINDOWS ON BETA DATASET

TABLE V
AVERAGE CLASSIFICATION ACCURACY (MEAN ± SEM) OF

CNN-FORMER WITH EEG-ME AND OTHER TWO DATA AUGMENTATION

METHODS ON BENCHMARK AND BETA DATASETS

CCA, and FBCCA across all subjects on benchmark and
BETA datasets with different time window lengths. Results
suggest the effectiveness of EEG-ME applied to CNN-Former
is more prominent after 0.4 s. In Table III, Table IV, and
Fig. 6, the paired t-test with Bonferroni correction reveals
that CNN-Former with EEG-ME significantly outperforms
the other methods (p < 0.001), demonstrating its SOTA
performance.

To establish the superiority of EEG-ME, we compare it
with two commonly used EEG data augmentation techniques:
Gaussian noise addition and flipping [33], [47]. Gaussian
noise with an SNR of 5, similar to [47], is added to the
EEG data. Flipping, which reverses the time dimension order,
is also employed. Training samples have a 50% probability of
flipping. SpecAugment is not used as it alters the input data
shape, which is not suitable for the architectures used in this
study. Table V illustrates the average classification accuracy of
CNN-Former with EEG-ME and other two data augmentation
methods on the benchmark and BETA datasets, using a data
length of 1 s. The paired t-test with Bonferroni correction
reveals that EEG-ME exhibits significantly superior perfor-
mance compared to the other data augmentation techniques
(p < 0.001). A noteworthy observation is that the other
two methods demonstrate poor performance when applied to
the benchmark dataset. The BETA dataset, which is collected

Fig. 6. Average classification accuracy of CNN-Former with and without
EEG-ME, CCA, and FBCCA on (a) benchmark and (b) BETA datasets
with different data lengths of time windows. The error bars denote
SEM (standard error of the mean). Red, brown, and black asterisks
respectively denote significant differences between “w/ EEG-ME” and
“w/o EEG-ME”, “w/ EEG-ME” and FBCCA, as well as “w/ EEG-ME” and
CCA by paired t-test (*p < 0.05, **p < 0.01, ***p < 0.001).

in an open-world setting with elevated noise levels, exhibits
significant disparities between the training and test sets that
originate from the same subject. Introducing new samples with
the other two methods may enhance the model’s generalization
capabilities on the test set. In contrast, the benchmark dataset
boasts higher data quality and less noise, resulting in fewer
disparities between the training and test sets derived from the
same subject. Consequently, the introduced new samples may
be redundant or lead to overfitting, ultimately undermining the
model’s performance.

To assess the impact of the number of original samples
on the effectiveness of EEG-ME, we train the CNN-Former
with and without EEG-ME using different numbers of blocks.
Fig. 7 illustrates the average classification accuracy of “w/
EEG-ME” (mask ratios = 0.3) and “w/o EEG-ME” across all
subjects on the benchmark and BETA datasets with various
training blocks, using a data length of 1 s. The paired t-test
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Fig. 7. Average classification accuracy of CNN-Former with and without
EEG-ME on the (a) benchmark and (b) BETA datasets with different
numbers of training blocks. Error bars denote SEM and asterisks denote
significant differences between “w/ EEG-ME” and “w/o EEG-ME” by
paired t-test (*p < 0.05, **p < 0.01, ***p < 0.001).

Fig. 8. Average classification accuracy of CNN-Former with two EEG-
ME variation strategies across all subjects on the benchmark dataset
with different mask ratios. Error bars denote SEM. P values between
the two variation strategies by paired t-test are higher than 0.05 at all
mask ratios.

with Bonferroni correction reveals that EEG-ME can signifi-
cantly improve the classification performance of CNN-Former
at different training blocks (p < 0.001). Generally, 1P
increases as the number of training blocks decreases.

Furthermore, comparative experiments are conducted with
two variation strategies of EEG-ME, using a data length of 1 s.
The benchmark dataset is utilized here due to its relatively high
SNR. Fig. 8 illustrates the average classification accuracy of
CNN-Former with the two strategies across all subjects on the
benchmark dataset, with different mask ratios. The paired t-test
reveals no significant difference between the two variation
strategies at all mask ratios (all p > 0.05).

IV. DISCUSSION

This study proposes EEG-ME as a novel data augmentation
approach for DL-based asynchronous SSVEP classification
algorithms. In this section, we analyze the factors influencing
the performance of EEG-ME and the underlying theories
behind the effectiveness of EEG-ME. In addition, we analyze
the asynchronous SSVEP classification algorithms via frame-
by-frame detection.

TABLE VI
ratiob OF EEG-ME-BASED DL METHODS WITH DIFFERENT DATA

LENGTHS OF TIME WINDOWS ON THE BENCHMARK

AND BETA DATASETS

TABLE VII
PARAMETERS OF DL-BASED METHODS WITH DIFFERENT

DATA LENGTHS OF TIME WINDOWS

A. Analysis of Factors Influencing the Effectiveness of
EEG-ME

In this subsection, we assess the influence of mask ratios,
the number of original samples, and data lengths of time
windows on the effectiveness of EEG-ME, as well as evaluate
the effectiveness of EEG-ME on different DL-based methods.

Firstly, the effectiveness of EEG-ME is evaluated with
respect to the influence of the mask ratio. Table III and
Table IV indicate that the average classification accuracy
reaches its optimal performance at a specific mask ratio
(ratiob), which represents a balance between the reduction
of overfitting and the loss of information. A higher mask ratio
beyond a certain point may result in significant information
loss and prevent the model from learning effective features.
Table VI illustrates the ratiob values for different DL-based
methods with varying data lengths of time windows on the
benchmark and BETA datasets. The ratiob values differ across
DL-based methods, possibly due to the difference in the
learning effectiveness of network architectures. An enhanced
network architecture allows more information loss of training
samples, thereby resulting in a higher ratiob. Table VII shows
the total parameters for DL-based methods, with CNN-Former
having more parameters compared with the other two methods.
The larger number of parameters and novel network architec-
ture integrating CNN with Transformer result in CNN-Former
having a better learning capacity, which may explain why
its ratiob is larger than that of the other two methods. The
proposed EEG-ME approach can improve the classification
performance of DL-based methods with appropriate mask
ratios. Based on Table III, Table IV, and Table VI, a mask
ratio of 0.2 is recommended for general network architectures.

Furthermore, the effectiveness of EEG-ME is evaluated in
terms of the influence of the number of original samples. The
benchmark dataset and the BETA dataset differ in both the
lasted stimulation time and the number of blocks, resulting
in a different number of original samples. As shown in
Table III, Table IV, and Table VIII, Pbase of the BETA dataset
is smaller than that of the benchmark dataset, while 1P of
the BETA dataset is higher in general. The results suggest
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TABLE VIII
∆P (%) OF DL-BASED METHODS WITH DIFFERENT DATA LENGTHS OF

TIME WINDOWS ON THE BENCHMARK AND BETA DATASETS

that the effectiveness of EEG-ME is more significant when
dealing with a smaller number of original samples. However,
differences in experimental conditions between datasets [31],
[32] may affect conclusions. To further validate this, CNN-
Former is trained with and without EEG-ME on both datasets
using varied numbers of blocks. In Fig. 7, 1P increases with
the training blocks decrease in general. The conclusion aligns
with the previous observations, emphasizing that EEG-ME
demonstrates significant benefits, particularly for a small num-
ber of original samples. This could be attributed to the higher
risk of overfitting with a reduced sample size while EEG-ME
effectively mitigates overfitting.

In addition, we evaluate the influence of the data length
of time windows on the effectiveness of EEG-ME. In Fig. 6
and Table VIII, 1P generally increases as the data length of
time windows increases. This can be attributed to the amplified
task-related information present in the EEG data, which mit-
igates the adverse impact of information loss. Consequently,
EEG-ME exhibits increased performance with an increase in
the data length of time windows. However, with data length
from 0.8 s to 1.2 s, 1P of CNN-Former on the benchmark
dataset decreases with an increase in the data length of
time windows. This may be because CNN-Former has better
learning capacity at longer time windows, resulting in higher
accuracy. Therefore, further improvements in classification
performance become more difficult at longer time windows.
Additionally, we observe that ratiob decreases as the data
length decreases, particularly for CNN-Former in the 0.2 s to
0.6 s range. This decrease can be attributed to a decline in
task-related information as the data length decreases, leading
to a smaller allowed mask ratio.

Finally, we evaluate the effectiveness of EEG-ME on
different DL-based methods, each with a unique network
architecture. CNN-Former integrates CNN with Transformer,
tCNN is a standard CNN network architecture without pooling
layers, and EEGNet is a lightweight network architecture.
In Table IV, Pbase of CNN-Former is smaller than that of
tCNN and EEGNet. When dealing with a smaller number of
original samples, CNN-Former without EEG-ME appears to
be more severely overfitted than tCNN and EEGNet, possibly
due to its larger number of parameters. However, EEG-ME can
address the overfitting problem by generating various training
samples to increase model robustness. 1P of CNN-Former
is higher than that of tCNN and EEGNet, resulting in a
higher Pbest for CNN-Former over tCNN and EEGNet. This
highlights the innovative network architecture of CNN-Former,
which combines CNN and Transformer with a larger number

Fig. 9. Classification accuracy in the training and test sets during the
training process of CNN-Former on a representative subject (a) with and
(b) without EEG-ME. One epoch includes ten iterations.

of parameters, exhibiting a higher upper bound of classification
performance. Overall, EEG-ME is more effective for DL-based
methods with superior learning capacity, especially when
dealing with a limited number of original samples.

B. Analysis of Underlying Theories Behind the
Effectiveness of EEG-ME

This subsection examines the underlying theories of EEG-
ME’s contribution to the improved classification accuracy of
SSVEP. Firstly, the effectiveness of EEG-ME in mitigating
overfitting is demonstrated. Subsequently, potential theories
explaining the effectiveness of EEG-ME are analyzed. The
benchmark dataset is utilized due to its relatively high SNR,
and the data length of time windows is set to 1 s. Two
conditions, “w/ EEG-ME” and “w/o EEG-ME”, are employed.

Overfitting is characterized by a model’s strong performance
on the training set but poor performance on the test set. The
objective of mitigating overfitting is to prevent the model
from learning the training data so well that it “remembers”
the training data. To investigate whether EEG-ME mitigates
overfitting, the classification accuracy between the training set
and the test set is compared during the training process. The
experiment is conducted on the first subject in the benchmark
dataset. Fig. 9 illustrates the classification accuracy during the
training process of CNN-Former with and without EEG-ME
for the representative subject. The results demonstrate that
EEG-ME effectively mitigates overfitting and improves the
model’s classification performance on the test set.

Furthermore, a comparative experiment is conducted to
analyze the potential theories of EEG-ME effectiveness, using
different training iterations. Fig. 10 illustrates the average
classification accuracy of the CNN-Former with and without
EEG-ME across all subjects on the benchmark dataset for
varying training iterations. Before 1500 iterations, employing
the paired t-test with Bonferroni correction reveals a significant
superiority of the model without EEG-ME over the model
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Fig. 10. Average classification accuracy of CNN-Former with and
without EEG-ME using different numbers of training iterations. The
error bars denote SEM and asterisks respectively denote significant
differences between “w/ EEG-ME” and “w/o EEG-ME” by paired t-test
(*p < 0.05, **p < 0.01, ***p < 0.001).

with EEG-ME (p < 0.001). However, as the number of
iterations increases, the paired t-test with Bonferroni correction
consistently reveals a significant advantage of the model with
EEG-ME over its counterpart without EEG-ME (p < 0.001).
This may be attributed to EEG-ME challenging the feature
learning process of the model, leading it to learn more robust
features from the data.

In conclusion, EEG-ME masks partial data of the original
EEG sample, hindering the model’s ability to extract represen-
tations. This forces the model to learn more robust features
from EEG data, potentially emphasizing the frequency feature
of the SSVEP-EEG. This enables the model to better com-
prehend the underlying patterns in the EEG data rather than
relying on memorization. Consequently, EEG-ME effectively
mitigates overfitting and enhances the model’s performance
during testing. Essentially, EEG-ME enhances the model’s
generalization capabilities.

C. Feature Visualization
To provide further insight into how the proposed data

augmentation approach improves network classification per-
formance, feature visualization is conducted on the 1 s-based
CNN-Former models. For enhanced clarity, the feature visual-
ization is performed on the BETA dataset, as the proposed
EEG-ME exhibited superior performance on this dataset.
The output features of the first convolution layer, the multi-
scale block, the last convolution layer, the first layer of the
Transformer module, and the second layer of the Transformer
module are visualized. The visualization process involved
averaging the output features across dimensions and applying
the Fast Fourier Transform (FFT) to obtain the amplitude
spectrum. Subsequently, the amplitude spectrums are averaged
across all subjects in the BETA dataset. It is important to note
that, due to downsampling (step size of 5), the output units of
each dimension of the last convolution layer only consisted of
50 points. It means that the FFT can only depict information
within the 25 Hz range. The representative stimulus target
with an integer Hz frequency is chosen for analysis. Fig. 11
presents the averaged amplitude spectrum of the output fea-
tures from the representative layers of the CNN-Former model
with and without the EEG-ME method across all subjects

in the BETA dataset for each representative stimulus target.
In general, the peak of the target frequency point for the “w/
EEG-ME” is more pronounced compared to the “w/o EEG-
ME”. This demonstrates that EEG-ME encourages the model
to assign greater attention to the frequency characteristics of
SSVEP-EEG.

D. Analysis of Asynchronous SSVEP Classification
Algorithms

The asynchronous system requires continuous decoding of
EEG signals using a fixed interval [9]. For example, a 1-second
time window slides over the EEG data every 0.1 s. However,
synchronizing the start point of the sliding time window with
the generation of the SSVEP component is challenging in
the asynchronous system. As a result, continuous decoding of
EEG signals often occurs near the appearance of the SSVEP
component, and each frame around this time may serve as a
potential start point for the decoding time window.

This subsection explores the performance differences
between asynchronous and synchronous SSVEP-EEG decod-
ing algorithms in frame-by-frame detection. We use EEG data
from the sixth block of the first subject in the benchmark
dataset for detection analysis, while other blocks of this subject
are reserved for training. The data length of time windows
is fixed at 1 s and the start point of time windows slips
375 frames, including 0.5 s cue time and 1 s stimulation
time. The detection results are obtained by averaging the test
accuracy of 40 trials for each frame. We assume the SSVEP
component appears at 0.14 s [31] after the stimulation onset.

DL-based methods for SSVEP classification are influenced
by the selection way of training samples during the train-
ing phase. Synchronous algorithms typically use pre-defined
time windows [19], [20], [21], such as [0.14, 0.14 + ds]

s during stimulation time, for training, while asynchronous
algorithms can employ a random sample selection strategy [7]
as described in Section II-C. To emphasize the impact of
training strategies on model performance, we use CNN-Former
as the base model in both DL-based synchronous and asyn-
chronous algorithms. Besides, TDCCA [14] and CCA [23]
are respectively utilized as synchronous and asynchronous
algorithms to evaluate the results of traditional methods.

Fig. 12(a) shows the frame-by-frame detection results of
the DL-based methods, while Fig. 12(b) illustrates the results
of the CCA-based methods. Both DL-based and CCA-based
methods in the asynchronous algorithms exhibit consistent sta-
bility across all frames during the stimulation time. In contrast,
the synchronous algorithms perform well at the appearance of
the SSVEP component (0.14 s after the stimulation onset) but
poorly in other frames. Furthermore, in real-life asynchronous
SSVEP-BCI applications, the stimulus target is always in flick-
ering mode. The stimulus target’s phase information (initial
brightness), which is crucial for synchronization algorithms
[10], [11], cannot be effectively utilized. Hence, the practical
performance of synchronization algorithms may be inferior to
that observed in our simulations.

In summary, synchronous algorithms outperform asyn-
chronous algorithms in predefined time windows due to their
utilization of the phase information of the stimulus target
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Fig. 11. Averaged amplitude spectrum of the output features of the first convolution layer (first row), the multi-scale block (second row), the last
convolution layer (third row), the first layer of the Transformer module (fourth row), and the second layer of the Transformer module (fifth row) across
all subjects of the BETA dataset for each representative stimulus target. The dashed line represents the corresponding SSVEP frequency of the
stimulus target.

Fig. 12. Frame-by-frame analysis of (a) DL-based and (b) CCA-based
methods.

[10], [11]. However, asynchronous algorithms demonstrate
greater stability in decoding EEG data. Therefore, while
synchronous algorithms may be suitable for simple tasks
without system delay to build a high-speed synchronous BCI
system, more robust asynchronous algorithms are necessary
for asynchronous BCI systems.

V. CONCLUSION

This study proposes EEG-ME, a novel data augmentation
method designed to address the challenge of the limited
amount of EEG data in asynchronous SSVEP-BCI. EEG-ME
is a parameter-free and easy-to-implement approach that can
help models learn more robust features by masking partial
EEG data, leading to enhanced generalization capabilities of
models. As a result, it effectively enhances the classification

performance of DL-based methods. Experiments conducted
on benchmark and BETA datasets with various DL-based
methods validate the effectiveness of EEG-ME. In future
work, the proposed EEG-ME is promising to be combined
with other data augmentation techniques and may inspire the
development of novel data augmentation approaches in EEG
and other physiological signal research fields.
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