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High Precision Raman Distributed Fiber Sensing
Using Residual Composite Dual-Convolutional
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Abstract—Raman distributed optical fiber sensing has the
unique ability to measure the spatially distributed profile of tem-
perature that are of great interest to numerous field applica-
tions. However, the sensing performance is severely limited by
the signal-to-noise ratio (SNR). The existing SNR enhancement
schemes have drawbacks such as increased system complexity,
degradation of sensor performance metrics such as spatial resolu-
tion, poor denoising performance, etc. Here, we report the Raman
residual composite dual-convolutional neural network (RRCDNet),
a novel convolutional neural network-based denoising model for
one-dimensional signals specifically tailored to Raman distributed
fiber sensing. The RRCDNet-enhanced Raman distributed fiber
sensor system dramatically improves the temperature precision by
more than a factor of 100, from 7.57 °C to 0.06 °C, without hard-
ware modification or degradation of other performance metrics.
At the same time, RRCDNet can also enhance other optical fiber
sensor systems with one-dimensional signals, such as Rayleigh and
Brillouin sensing systems.

Index Terms—Neural networks, optical fiber sensors, raman
scattering, signal denoising.

I. INTRODUCTION

D ISTRIBUTED optical fiber sensors [1], [2] provide a
method for measuring the spatially distributed profile of

environmental quantities, such as temperature [3], vibration [4],
[5], strain [6], [7], electromagnetic fields [8], and gas sensing
[9], by analyzing specific optical effects activated along opti-
cal fibers. And Raman distributed optical fiber sensing system
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[10] analyzes the intensity of temperature-sensitive spontaneous
Raman scattering (SpRS) [11] generated by light pulses that
are injected into the sensing fiber in order to measure the
distribution of the temperature along the sensing fiber [12].
Compared to other distributed optical fiber sensing systems, it
has the rapid measurement rate and the straightforward design
[13]. The use of Raman distributed optical fiber sensing in
pipeline leakage detection [14], power cable monitoring [15],
[16], fire alarm systems [17], and other distributed temperature
monitoring fields [18], [19], [20] is gaining widespread attention.
The performance metrics for the Raman distributed fiber sensing
system mainly include temperature measurement accuracy and
precision [21], sensing distance [22], and spatial resolution [23].
The signal-to-noise ratio (SNR) has a significant impact on the
temperature accuracy and precision of the Raman system. But
the Raman system’s SpRS signal is about 60–70 dB weaker than
the incident pulse power [24] and is also attacked by noise from
other devices. This makes the typical Raman distributed fiber
sensing signal have a low SNR, which can degrade the temper-
ature accuracy and precision. Therefore, effective techniques
need to be investigated to improve the SNR of Raman systems
by increasing the intensity of the effective signal or suppressing
the noise.

Noise in Raman distributed fiber sensing systems comprises
optical noise caused by the failure of the wavelength division
multiplexer (WDM) [25] to cleanly eliminate Rayleigh scat-
tered signals, as well as electrical noise caused by avalanche
photodiodes (APD) [26] and other circuit devices. The Rayleigh
optical noise is structured and increases the total intensity of the
Raman distributed fiber sensing signal, decreasing the tempera-
ture curve’s accuracy. And the electrical noise is assumed to be
unstructured and have a zero mean, decreasing the temperature
precision. The Rayleigh optical noise can be suppressed using
simple Rayleigh optical noise reduction [27], [28]. And there are
two primary ways to suppress electrical noise, the first of which
employs pulse coding [29] or special fiber [30], [31] to boost
the SpRS signal in the Raman distributed optical fiber sensing
systems to lower the relative amplitude of electrical noise [32].
But these methods will increase the system’s complexity and ex-
pense. The second of which uses denoising algorithms to directly
reduce electrical noise in the Raman distributed fiber sensing
system, has attracted a great deal of interest from researchers
because it does not increase the sensor’s hardware cost [1].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0008-5307-2477
https://orcid.org/0009-0004-4126-187X
https://orcid.org/0000-0002-8046-0693
https://orcid.org/0000-0002-8097-8169
mailto:799435433@qq.com
mailto:lijian02@tyut.edu.cn
mailto:xuexiaohui@tyut.edu.cn
mailto:zhangmingjiang@tyut.edu.cn
https://doi.org/10.1109/JLT.2024.3366294


GUO et al.: HIGH PRECISION RAMAN DISTRIBUTED FIBER SENSING USING RESIDUAL COMPOSITE NEURAL NETWORK 3919

Numerous denoising algorithms have been proposed to im-
prove the temperature precision of Raman distributed fiber
sensors. These algorithms decompose the data according to a
particular criterion and separate the noise from the data. They
include the short-time Fourier transform [33], the empirical
modal decomposition [34], and the Wavelet denoising [35],
[36], [37]. But these denoising algorithms have the problems
of requiring manual adjustment of parameters, having poor
denoising performance, and deteriorating the spatial resolution,
a key system metric that is susceptible to degradation during
the denoising process. In order to solve the aforementioned
problems, neural network-based denoising algorithms have been
proposed [38], [39].

Neural networks [40] perform denoising by learning prior
knowledge, which can be obtained by training datasets of
noise-to-clean or noise-to-noise [41]. The intensity of the signal
point of Raman distributed fiber sensors is usually related to its
nearby points. Coincidentally, among the many neural network
structures, the structure of the Convolutional Neural Network
(CNN) [42] makes it possible to associate each signal point with
its neighboring signals via convolution, allowing signal features
to be easily extracted and the signal’s primary components to
be identified for noise removal. In the field of deep learning
for denoising Raman distributed fiber sensing signals, the one-
dimension Denoising Convolutional Neural Networks (1DD-
CNN) [43] algorithm has attained successful denoising results.
We reproduced 1DDCNN, which is unquestionably superior
to wavelet denoising in many metrics. However, 1DDCNN’s
ability to remove low-frequency noise still needs to be improved.
And it is well known that when a signal is denoised, a portion
of the effective signal is inevitably lost, and this phenomenon is
significantly more severe than with wavelets in 1DDCNN, re-
sulting in a drift of the temperature curve and loss of temperature
accuracy.

To solve the shortcomings of wavelet denoising and the 1DD-
CNN, Raman’s residual composite dual-convolutional neural
network (RRCDNet), a novel CNN-based denoising network
specifically tailored to Raman distributed fiber sensing signals, is
proposed. And the article has the following contributions: First,
RRCDNet employs a dual-CNN structure to enhance learning
ability and dilated convolution to expand the perceptual field and
reduce computing costs. In addition, RRCDNet uses residual
learning, batch normalization, and Kaiming initialization tech-
niques to accelerate the network’s convergence and improve
its denoising performance. Second, the spaced sampling and
reconstruction greatly improve the network’s ability to suppress
low-frequency noise. Third, the paper investigates the noise
characteristics of the Raman signal, and its qualitative analysis
shows that the noise of the Raman signal approximates addi-
tive Gaussian white noise. And an analysis of the amplitude
distribution and power spectral density is performed in order to
inform the construction of the RRCDNet’s training set. Fourth,
the SNR of the Raman distributed fiber sensing signal cannot be
calculated efficiently because SNR is mostly estimated in prac-
tical applications, and RRCDNet itself is a high-performance
denoising method [43], [44]. To solve the problem, two metrics,
average noise and the structural similarity index measure (SSIM)

[45], were introduced from the perspective of filtered-noise
to address the problem. Final, experiments have shown that
RRCDNet is one of the best performing denoising methods in
Raman distributed fiber sensing scheme to our knowledge. After
processing by RRCDNet, the smoothness of the temperature
curve of the high-noise signal averaged 5000 times is improved
from 1.478 to 0.0051, an improvement of about 300 times. And
the temperature precision is greatly improved by a factor of
100 from 7.57 °C to 0.06 °C peak-to-peak (±0.03 °C). To our
knowledge there is no Raman distributed optical fiber sensing
scheme that achieves such high temperature precision. The
trained RRCDNet processes the Raman signal end-to-end in ap-
proximately 0.3 seconds without requiring manual parameter or
threshold adjustments and without degrading other performance
metrics.

II. DENOISING ALGORITHMS AND METRICS

For a raw Raman distributed fiber sensing signal y, the signal
denoising problem can be represented by y = x+ υ where
x is the ideal Raman distributed fiber sensing signal without
any noise, and υ is the additive Gaussian white noise, which is
unstructured and have a zero mean. The majority of the effec-
tive signal energy is localized at lower frequencies, with some
dispersion at higher frequencies, and has specific structures.
The distribution of noise energy has a similar magnitude at
both low and high frequencies, but with a tendency for higher
energy levels in the higher-frequency range, and has non-smooth
structure. It is impossible to totally eliminate the noise from the
signal or have no influence on the effective signal x at all during
the denoising process.

A. Denoising Process

The denoising processes are as follows: First, the signal
is preprocessed by spaced sampling, as shown in Fig. 1(b),
where the signal sequence is divided into four equal-length
subsequences (4-divided sampling), so that the low-frequency
noise can be transformed into the higher-frequency noise for
the subsequent denoising process. Second, the preceding signal
subsequence is fed into RRCDNet for denoising, respectively.
Third, the subsequence of the denoised signal is reorganized
into the complete denoised signal sequence in the same order as
before sampling.

B. Preprocessing

Conventional denoising techniques have proven effective at
suppressing high-frequency noise but have limited ability to
suppress low-frequency noise. Alternatively, they can effectively
suppress low-frequency noise, but at the cost of significant loss
of useful data. In comparison to the conventional technique,
RRCDNet has a notable capacity to suppress low-frequency
noise while exhibiting little degradation of the effective signal.
Drawing upon the benefits of RRCDNet, we used preprocessing
(as shown in Fig. 1(b)) with interval sampling. This technique
facilitates the conversion of low-frequency components into
higher-frequency components, hence augmenting the ability
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Fig. 1. Schematic diagram of Raman signal acquisition and denoising process. (a) Raman distributed optical fiber sensing scheme. (b) Spaced sampling and
recombining the sub-signal sequence into the complete signal. (c) The Raman residual composite dual-convolutional neural network (RRCDNet).

of RRCDNet in suppressing low-frequency noise. In order to
prevent the loss of information in the rising or falling edge
of a signal, it is crucial that the maximum number of interval
points during the interval sampling preprocessing is limited to
less than the number of sampling points within the rising or
falling edge. The signals, which have a sample rate of 1G or
higher, undergo a sequential processing procedure consisting
of three steps: 8-divided sampling and denoising, followed by
4-divided sampling and denoising, and finally direct denoising
(RRCDNet841). Use RRCDNet41 to process signals with a sam-
pling rate of about 300M, and RRCDNet21 to process signals
with a sampling rate of about 100M or less.

C. RRCDNet

The CNN-based network RRCDNet (as shown in Fig. 1(c))
was proposed to denoise the Raman distributed optical fiber
sensing signal and achieve better temperature precision.

Principle: The technologies used in RRCDNet are as follows:
To begin, residual learning was employed in RRCDNet to handle
the issue of network degradation that occurs as the neural net-
work deepens [46]. Residual learning also combined extracted
features and the input of numerous stack layers as the current
layer’s input, which could alleviate the vanishing or exploding
problem, and gives RRCDNet the ability to extend to deeper

levels. Second, batch normalization (BN) [47] was employed to
slow down the internal covariate shift phenomenon that occurs
during neural network training. Third, dilated convolution [48]
was employed to allow RRCDNet to get a broader perceptual
field while utilizing fewer network layers and overcome the
problem of traditional CNNs using pooling procedures and
increasing depth to obtain additional signal features, which leads
to loss of Raman distributed fiber sensing signal information and
degradation of network performance. Final, RRCDNet employs
Kaiming initialization, a suitable initialization approach for
the ReLU activation function [49], to address the decreasing
gradient in backward propagation.

Method: The structure of RRCDNet are as follows: RRCDNet
has two feature extraction networks to extract different features
that are complementary in the denoising work. The first feature
extraction network (right network) has a depth of 17. It is made
up of two sorts of layers: Conv + BN + ReLU (convolution,
batch normalization, and rectified linear units are performed
sequentially) and Conv. Layers 1-16 are Conv + BN + ReLU,
while layer sixteenth is Conv. Except for the first and final levels,
each layer is 64 × 1 × 3 × 64 (The first “64” means the size
of the in-channel, and the final “64” means out-channel, while
the “1 × 3” means kernel size) in size. The first and final layers
are 1 × 1 × 3 × 64 and 64 × 1 × 3 × 1 respectively, and the
padding is 1. Furthermore, the first feature extraction network
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Fig. 2. (a) The clean synthesized signal without any noise. (b) the raw
synthesized signal composed of clean synthesized signal and Gaussian noise.
(c) Another raw synthesized signal composed of clean synthesized signal and
Gaussian noise different from that in (b).

has a receptive field of 35. The second feature extraction network
(left network) has a depth of 17, and uses Conv + BN + ReLU
in its first, ninth, and sixteenth layers. Dilated convolutions +
ReLU are used in layers 2–8 and 10–15. The dilation factor for
the dilated convolutions is 2. The final layer is only Conv. Adding
BN layers ensures that the distributions of the two sub-networks’
outputs remain consistent. The left network achieves a larger
receptive field of 61 by using dilated convolution, resulting
in the ability to reconstruct the denoised signal using a wider
range of input sequences. However, this approach sacrifices the
continuity and completeness of the data, resulting in a loss of
detail in the reconstructed signal. In contrast, the right network
uses a conventional convolutional neural network architecture,
with a receptive field of 35 for the equivalent number of layers.
This configuration allows the network to effectively capture
intricate details within the data during the processing stage,
outperforming the left network. The collaboration between the
two networks enhances the field of “vision” of RRCDNet, result-
ing in both extensive and comprehensive coverage. The symbol
©— represents the use of residual learning (RL) in RRCDNet.
Concat is used to cascade two RRCDNet subnetworks through
their channels. For example, if the output channels of each of
the above two sub-networks are 1 (64 × 1 × 3 × 1), then by
cascading operation, their combined output channel is 2 (64 ×
1 × 3 × 1 + 64 × 1 × 3 × 1). The number of parameters in
RRCDNet is about 370k, compared to 220k in 1DDCNN, and
all of them are smaller neural network models.

Training sets: The training set has a substantial effect on
the neural network’s ultimate performance, and here synthetic
datasets were used to make it easier to get a dataset. Previously, it
was thought that a noise-to-clean (Noise2Clean) (from Fig. 2(b)
to (a)) dataset had to be used to train the network’s denoising
ability, but recent research has shown that the same effect can be
achieved with a noise-to-noise (Noise2Noise) (from Fig. 2(b)
to 2(c)) dataset [50], which points the way to creating bet-
ter datasets using real Raman signals. But here, we still use
Noise2Clean to build the datasets. As shown in Fig. 2(a), a
random signal was generated with an amplitude between 0 and 1
and a random length (time) of 1 to 50 points for each amplitude
to simulate the decay of the Raman distributed fiber sensing
signal with distance and the intensity change in the variable
temperature region. The total length of each signal is 10000
points as a clean synthesized signal. The main noise component

of the Raman distributed fiber sensing signal is additive Gaussian
white noise. Noise with SNR ranging from 20 dB to 37 dB
was generated referencing clean synthesized signal by adding
Gaussian noise to produce raw synthesized signal (as shown in
Fig. 2(b)). Adding Gaussian noise with multiple SNRs within
a certain range to the training set improves the robustness of
RRCDNet. The clean synthesized signal was set as label data
xtrain, the raw synthesized signal was set as input data ytrain.
And normalize ytrain by [0, 1] and then scale xtrain by the same
proportion. 5000 sets of the aforementioned data were generated,
with 4500 sets serving as the training set and 500 sets serving
as the test set.

Training: Training RRCDNet uses ytrain as input data and
xtrain as label data. The training data sets for RRCDNet is
{xtrain , ytrain}Nj = 1. The RL structure of RRCDNet becomes a
model that can predict the residual of y, can be represented as f .
Through an examination of the neural network’s architecture and
the mathematical connections inherent within it, it is possible
to ascertain that the output of the residual block is filtered noise
f(y), which could be represented as υ′. Then the denoised signal
can be expressed as x ′

RRCDNET = y − f(y). RRCDNet uses
the Adam [51] optimizer to minimize the mean-square error
loss function (1) to train the network with a learning rate of
0.0003. The batch is 32, and the epochs are 128. Where θ
indicates the parameters of the RRCDNet model, N is the batch
size, Raw signal yi and the clean signal corresponding to it
xi are one set of training sets. And ‖‖F stands for Frobenius
norm.

loss(θ) =
1

2N

N∑
i=1

‖yi − f(yi, θ)− xi‖2F . (1)

The structural and technical advantages of RRCDNet are
fourfold: First, it harvests more information by employing two
sub-networks rather than increasing the depth to increase denois-
ing performance. Second, it employs BN to address the internal
covariate shift issue. Third, it employs RL to avoid gradient
disappearance or explosion. Finally, it uses dilated convolution
to reduce computational cost. The experimental results show that
RRCDNet outperforms the normal wavelet denoising algorithm
and the current neural network denoising algorithm 1DDCNN.

D. Metrics for Denoising Performance

Denoising performance of algorithms are evaluated by the
following metrics: The average noise and structural similarity
index measure (SSIM) evaluate denoising performance from
the perspective of Raman distributed fiber sensing signals. The
RMSE, smoothness, and peak-to-peak evaluate denoising per-
formance from the perspective of temperature curves. And SSIM
and denoising are calculated based on [0, 1] normalization (as
(2) and (3)). In practical applications, it is not possible to obtain
an absolutely clean and noise-free signal, the SNR is usually
derived from estimates, whereas RRCDNet and 1DDCNN are
themselves powerful denoising methods, and estimating the
SNR is meaningless. Therefore, SNR and its associated metrics
are not used to evaluate the efficacy of denoising in this paper
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TABLE I
PARAMETERS FOR THE DENOISING ALGORITHMS

[39], [43]. The meaning of the parameters is shown in Table I.

ynormal(i) =
y(i)−min [y(i)]

max [y(i)]−min [y(i)]
. (2)

υnormal(i) =
υ(i)

max [y(i)]−min [y(i)]
. (3)

Average noise is used to evaluate effective signal removal
of the denoising algorithms. The primary component of υ is
regarded as additive Gaussian white noise, and its average value
is regarded as zero; if not, it is considered that this denoising
algorithm removes the effect signal. The average value of the
local noise can be calculated as (4). Where l is the length of the
local noise data, and L is the total length of the noise data. The
closer the metric is to zero, the better the denoising performance.

average noise =
L−l∑
i=0

∣∣∣∣∣
∑l

j=1 υ
′
i+j

l

∣∣∣∣∣
/

L− l. (4)

SSIM [45] was introduced from the field of image processing
for the first time in the Raman distributed optical fiber sensors
denoising task. The effective signal x is generally considered to
be clean and smooth without burr, and the structural character-
istics of y are mainly determined by amplitude and fluctuation
of υ. The SSIM compares the structural differences between
filtered-noise υ’ and raw signal y, and the closer the value of
SSIM (5) is to 1, the better the denoising performance. And
α, β, γ denote the relative importance of each metric. Where
l(y, y − υ′) (6) measures the intensity similarity of raw signal
y and denoised signal x′, and evaluate effective signal removal
during denoising process. We can simply interpretμy as the local
mean of y, with C1 = (0.01)2 ensuring that the denominator is
greater than zero. c(y, υ′) (7) measures the amplitude similarity
of y and υ′. The symbol σy is a metric for quantifying the extent
and variability of the y values relative to the mean value μy .
In a physical context, this metric can be interpreted as the size

of the noise. The term C2 = (0.03)2 is included to ensure that
the denominator is always greater than zero. And s(y, υ′) (8)
measures the fluctuation similarity of y and υ′. (8) quantifies the
similarity of fluctuations between the variables y and υ′. The
symbol σyυ′ represents the correlation between y and υ′, which
can be interpreted as the level of synchronisation between the
upward and down-ward fluctuations of the original signal and
the filtered noise. The term C3 = C2 /2 is included to ensure
that the denominator of the equation is always greater than zero.
The values of α = 1, β = 1, and γ = 1 are employed to
signify that the factors l, c, and s carry equal significance in the
computation of the SSIM. The ω is the Gaussian sliding window
of length 25, in which the standard deviation is 3.6 and the sum
is 1.

SSIM (y, υ′) = [l(y, y − υ′)]α · [c(y, υ′)]β · [s(y, υ′)]γ . (5)

l (y, y − υ′) =
2μyμy−υ′ + C1

μ2
y + μ2

y−υ′ + C1
. (6)

c(y, υ′) =
2σyσυ′ + C2

σ2
y + σ2

υ′ + C2
. (7)

s (y, υ′) =
σyυ′ + C3

σyσυ′ + C3
. (8)

μy =

L∑
i=1

ωiyi. (9)

σy =

⎛
⎝ L∑

i=1

ωi (yi − μy)

2
⎞
⎠

1
2

. (10)

σyυ′ =

L∑
i=1

ωi (yi − μy) (υ
′ − μυ′) . (11)

Smoothness can reflect the precision of the temperature curve
as (12). Where Ti is the i-th point on a temperature curve of
lengthL. The closer the metric is to zero, the better the denoising
performance.

smoothness =
L−1∑
i=1

|Ti − Ti+1|
/

(L− 1). (12)

III. EXPERIMENT

A. Raman Distributed Optical Fiber Sensing System

The denoising ability of RRCDNet was tested using the
genuine signal obtained by the Raman distributed optical fiber
sensors system. The Raman system employed in this work is
shown in Fig. 1(a). The system comprised a distributed feedback
laser, circulator, WDM, high-speed data acquisition card, and
APD. The pulsed laser source had a wavelength of 1550 nm
and a repetition rate of 6 kHz. The sensing fiber (graded-index
multimode, 62.5/125, MMF) was launched with pulses having
a peak optical power of 15 W. The Raman anti-Stokes signal is
filtered out using WDM and then supplied to the APD, which
generates the electrical signal. The electrical signals of Raman
distributed optical fiber sensors were then gathered by a data
acquisition card and sent to a computer to perform the processes
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of denoising the Raman distributed fiber sensing signal, demod-
ulating the temperature, and denoising the temperature curve
sequentially.

B. Temperature Demodulation

Raman distributed optical fiber sensors that demodulates the
temperature using the principle that the anti-Stokes light in the
spontaneous Raman backscattering effect is sensitive to temper-
ature. Among the various methods, the single-way demodulation
of the anti-Stokes light (as (13)) was selected [52].

T(L)=hΔν

/
k ln

[
exp (hΔν/kT0)−1

ΦAS (T, L)
· ΦAS (T0, L)+1

]
.

(13)
Where ΦAS represents the Anti-Stokes flux, which can be

replaced by the voltage amplitude of the APD output UAS . And
L is the length of the scattering location from the fiber port.
And ΦAS(T0, L) represents the Anti-Stokes flux at a known
temperature T0 (in Kelvin), h is Planck’s constant, Δν is the
difference between the upper and lower energy levels of the
Raman scattering spectrum, k is the Boltzmann constant, and
hΔν/k = 634. From the above equation, it can be seen that the
SNR of the SpRS signal ΦAS of Raman distributed optical fiber
sensors is directly determines the temperature precision.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section compares the advantages and disadvantages of
three denoising algorithms, WD4, 1DDCNN, and RRCDNet. To
validate the validity of the evaluation metrics, WD3 is compared
to WD4 under these metrics. The method of spectral analysis
is used to analyze the noise filtering ability of the denoising
algorithms for different frequencies and characteristics.

A. Denoising Performance Analysis in Time Domain

To verify the robustness of the denoising algorithms, two sets
of Raman distributed fiber sensing signals were collected with
a temperature zone of 60 °C at the end of the fiber, averaged
five thousand and ten thousand times respectively. And WD4,
1DDCNN, RRCDNet the three denoising algorithms are com-
pared (as shown in Fig. 3). As shown in Table II and Fig. 3:
First, Average noise and SSIM are employed to quantify the
performance of the denoising algorithms. And the RRCDNet has
an excellent performance among the average noise and SSIM
evaluation metrics. For the average noise metric, RRCDNet
shows inferior performance compared to wavelet denoising.
This is due to the fact that RRCDNet tends to filter out a larger
amount of noise, resulting in a bigger loss of the effective signal
compared to wavelet denoising. However, as the same kind
of denoising method, which use the same denoising principle,
RRCDNet is better than 1DDCNN in the metric of average
noise and has a lower remove on the effective signal. 1DDCNN
removes effective signal more severely, causing the Raman
distributed fiber sensing signal to shift significantly compared
to the raw data, WD4 and RRCDNet (as shown in Fig. 3(c2) and
(d2)), resulting the temperature accuracy to decline, whereas
this phenomenon is not obvious for RRCDNet. Second, both

Fig. 3. Raman distributed fiber sensing signal processed by multiple denoising
methods The (a) and (c) displays raw Raman distributed fiber sensing signal y
averaged 10 000 times and 5 000 times, and its denoised signal processed by
RRCDNet and WD4 respectively; The (b) and (d) displays raw Raman signal
y averaged 10 000 times and 5 000 times, and its denoised signal processed by
1DDCNN and WD4 respectively; The (c2) and (d2) are local zooms, and it can
be clearly seen that 1DDCNN’s processing causes the Raman distributed fiber
sensing signal to shift. The (a1), (b1), (c1), and (d1) are local zooms, and it can be
clearly seen that neither RRCDNet nor 1DDCNN change the spatial resolution
of the system during the processing of the signal.

1DDCNN and RRCDNet did not degrade spatial resolution in
the of denoising process (as shown in Fig. 3(a1) and (b1)).
Thus, the threshold in the WD4 denoising technique should be
lowered so that the reconstructed signal also does not degrade
the spatial resolution. Finally, compared with the processing of
the low-noise Raman distributed optical fiber sensor signals after
a cumulative average of 10000 times, RRCDNet still performs
well in the task of processing the high-noise Raman signals with
a cumulative average of 5000 times, proving its robustness.

Demodulating the Raman distributed fiber sensing signals into
temperature curves (as shown in Fig. 4). The performance of the
denoising algorithms in the temperature curve is measured using
three metrics: smoothness, RMSE, and peak-to-peak (as shown
in Table III ). And Table III shows that RRCDNet’s metrics are
the best for all denoising algorithms with both high and low
noise signals. In particular, the smoothness of the temperature
curve of the high-noise signal averaged 5000 times is improved
from 1.478 to 0.0051, an improvement of about 300 times and
more than two orders of magnitude. The temperature precision
greatly improved by a factor of 100 from 7.57 °C to 0.06 °C
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TABLE II
EVALUATION METRICS FOR RAMAN DISTRIBUTED FIBER SENSING SIGNAL

PROCESSED BY WD3, WD4, 1DDCNN, AND RRCDNET UNDER DIFFERENT

NOISE AMPLITUDE

Fig. 4. Temperature curves were demodulated by Raman distributed fiber
sensing signal with different noise amplitude and processed by various denoising
methods.

peak-to-peak (±0.03 °C), in three kilometers of high noise signal
averaged 5000 times. And the removal of the effective signal
caused by RRCDNet was not severe enough to cause the visible
temperature curve to drift as in 1DDCNN (as shown in Fig. 4(c2)
and (d2)). The trained RRCDNet processes Raman signals
end-to-end in about 0.3s without requiring manual parameter
adjustments, hardware modifications, or other degradation of
performance metrics, and is one of the best denoising algorithms
among our known methods [44].

TABLE III
EVALUATION METRICS FOR TEMPERATURE CURVE PROCESSED BY WD3, WD4,

1DDCNN, AND RRCDNET UNDER DIFFERENT NOISE AMPLITUDE

TABLE IV
PROCESSING TIME OF DIFFERENT DENOISING ALGORITHMS

Fig. 5. (a) Amplitude distribution histogram of noise filtered by WD4. (b)
Amplitude distribution histogram of noise filtered by RRCDNet.

The amplitude distribution of the noise characteristics of the
Raman signal is qualitatively analyzed to inform the construction
of the RRCDNet’s training set. The amplitude distribution of
the noise filtered by wavelet denoising was examined (as shown
in Fig. 5(a)), and it was found that the noise of the signal is
Gaussian distributed. And combined with Fig. 6(a1), the analysis
shows that the noise of the Raman signal approximates additive
Gaussian white noise.

B. Denoising Performance Analysis in Frequency Domain

The power spectral density was used to qualitatively analyze
the denoising ability of RRCDNet. It is often assumed that high
frequency and low energy components mostly belong to noise,
while low frequency and high energy components mostly belong
to effective signals. The raw signal has some energy belonging
to the noise (as shown in Fig. 6(a0)) in the low frequency
region, and methods have been suggested in previous studies



GUO et al.: HIGH PRECISION RAMAN DISTRIBUTED FIBER SENSING USING RESIDUAL COMPOSITE NEURAL NETWORK 3925

Fig. 6. Spectral analysis of denoised signal and filtered noise processed by various denoising algorithms. (a0) The power distribution of the signal in the low
frequency range, and it is generally considered that most of the energy in the low frequency range belongs to the signal and only a small portion of the energy belongs
to the noise. (b0) The power distribution of the signal denoised by RRCDNet in the low-frequency domain shows that RRCDNet denoises low-frequency noise
very well. (c0) The power distribution of the signal denoised by WD4 in the low-frequency domain shows that the WD4 has a poor ability to remove low-frequency
noise. (d0) The power distribution of 1DDCNN denoised signals in the low-frequency domain, which shows the denoising ability of 1DDCNN on low-frequency
noise is between the two methods mentioned above. (a1) The power distribution of the raw signal in the entire frequency domain, which can be used to compare
the rate removal ability of different denoising methods for different frequency noise. (b1), (c1), and (d1) Power distribution of the signal denoised by RRCDNet,
WD4, or 1DDCNN, respectively, in the whole frequency domain. (a2), (b2), (c2), and (d2) The localized enlarged images of (a1), (b1), (c1), or (d1), respectively,
show the excellent filtering ability of RRCDNet for low frequency noise.

WD4 and 1DDCNN have limited ability for the noise in the
low frequency region (as shown in Fig. 6(c0) and (d0)), while
the RRCDNet can suppress the low-frequency noise (as shown
in Fig. 6(b0)) very well. From the whole frequency domain (as
shown in Fig. 6(a1)), although the previous denoising methods
can suppress the high-frequency noise (as shown in Fig. 6(c1)
and (d1)) in the Raman signal, they have poor suppression ability
for the low-frequency noise, which is the main reason why
the temperature profile still fluctuates significantly in the time
domain. And RRCDNet can suppress the low-frequency noise
(as shown in Fig. 6(b1)) very well from making the tempera-
ture profile in the time domain smoother than ever before and
achieving unprecedented temperature precision. Similar to the
quantitative analysis in the time domain, the qualitative analysis

in the frequency domain also confirms the excellent denoising
performance of RRCDNet.

C. Robustness Testing

To show the denoising ability of RRCDNet in different cases,
we used different Raman sensing systems with approximately
3.8km of optical fiber to acquire Raman signals using 100M,
250M, and 1G sampling rates (as shown in Fig.7). The 100M
signal was processed by RRCDNet21(2-divided sampling and
denoising, followed by direct denoising), the 250M signal by
RRCDNet41, and the 1G signal by RRCDNet841(8-divided
sampling and denoising, followed by 4-divided sampling and
denoising, and finally direct denoising). RRCDNet still has
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Fig. 7. Results of RRCDNet processing the signal at different sampling rates
and demodulating them into temperature curves. The (a) displays raw Raman
distributed fiber sensing signal y with a sampling rate of 100M, averaged 5000
times, and its denoised signal processed by RRCDNet21. (b) displays the results
of demodulating them separately into temperature curves; The (c) displays raw
Raman distributed fiber sensing signal y with a sampling rate of 250M, averaged
5000 times, and its denoised signal processed by RRCDNet41. (d) displays
the results of demodulating them separately into temperature curves; The (e)
displays raw Raman distributed fiber sensing signal y with a sampling rate of
1G, averaged 5000 times, and its denoised signal processed by RRCDNet841.
(f) displays the results of demodulating them separately into temperature curves;
(a1), (b1), (c1), (d1), (e1), and (f1) are localized zoomed-in figures.

excellent noise suppression under different system states. The
aforementioned experiment also demonstrated the soundness of
the suggested sampling intervals in the preprocessing approach
for Raman signals with varying sampling rates.

D. Ablation Study

A series of ablation experiments were performed on the
relevant structures within RRCDNet (as shown in Fig. 8). The
structure of right network (as shown in Fig. 8(a1)) and left
network (as shown in Fig. 8(b1)) does not converge well (as
shown in Fig. 8(a2) and (b2)) in process of learning the denois-
ing task due to the oversimplification and irrationality of the
structure. The last residual connection structure is eliminated
(as shown in Fig. 8(e1)), and the entire network is not designed
as a residual block for predicting signal’s noise. Instead, the
clean signal is directly reconstructed and outputted (as shown
in Fig. 8(e1)). As shown in Fig. 8(e2), the network convergence

Fig. 8. Partial structure of RRCDNet and corresponding losses. The (a1)
displays the structure of right network in RRCDNet; And (a2) displays the losses
of the right network and RRCDNet respectively; The (b1) displays the structure
of left network in RRCDNet; The (c1) displays the structure of RRCDNet
without the left network; The (d1) displays the structure of RRCDNet without
the Right network; The (e1) displays the structure of RRCDNet without the last
residual connection; The (f1) displays the structure of RRCDNet without the all
residual connection; The (g1) displays the structure of RRCDNet which change
the Left network into the Right network; The (h1) RRCDNet which change the
Right network into the Left network.

deteriorates, which leads to a decrease in denoising ability. This
experiment demonstrates the importance of using the residual
connection structure in RRCDNet, which first filters out the
noise and then reconstructs the signal, rather than reconstructing
the signal directly. The structure (as shown in Fig. 8(f1)) removes
all the residual connectivity in RRCDNet, and its performance
degrades further (as shown in Fig. 8(f2)). It is proved that the
structure of residual connections is equally indispensable in the
network. The experiment (as shown in Fig. 8) provides that all
components within RRCDNet are indispensable and mutually
reliant in the task of denoising.
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V. CONCLUSION

The RRCDNet, a novel CNN-based denoising network that
uses advanced deep learning techniques to achieve superior
denoising performance, is reported in this paper. RRCDNet uses
the residual learning and the dual network-concat structure to
greatly improve the learning ability of neural networks. And the
synthetic datasets are proposed for the denoising task of Raman
signals, which makes the acquisition of training sets easy. The
preprocessing method of interval sampling and reconstruction
enhance the low-frequency noise suppression ability of RRCD-
Net. The RRCDNet-enhanced Raman distributed fiber sensing
system dramatically improves the smoothness of the temperature
distribution curve by approximately 300 times. And RRCDNet
improves temperature precision from 7.57 °C peak-to-peak to
0.06 °C (±0.03 °C), a more than 100-fold improvement, with
a processing time of about 0.3 seconds. As far as we know,
this is the best temperature precision reported in the Raman
distributed optical fiber sensing scheme. Unlike other schemes
of improving signal-to-noise ratio, RRCDNet does not require
manual adjustment of parameters, increase system complexity,
or degrade other performance metrics of Raman distributed fiber
sensors. RRCDNet’s comprehensive capabilities are extremely
impressive.

Furthermore, the potential of RRCDNet extends beyond de-
noising Raman distributed fiber sensor signals. We believe that
after training set modification and migration learning, RRCDNet
could be applied to other distributed fiber sensors.
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