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Mars exploration has recently witnessed major interest within the
scientific community, particularly because unmanned aerial robotic
platforms offer reliable alternatives for acquiring and collecting data
and information from the Red Planet. However, the specific conditions
of the Martian environment result in a restricted flight envelope
when flying close to Mars and then landing on the surface of Mars.
Therefore, in addition to the requirement to develop an aerial platform
suitable for operations on Mars, autonomous navigation strategies
and robust controllers are also needed for exploration tasks. It is
argued that hexacopters with their relatively compact design represent
a promising solution for autonomous exploration tasks on Mars, over-
coming at the same time the limitations of wheel-based rovers. This
research focuses on the design of a Mars hexacopter for a scouting mis-
sion in the Jezero region of Mars. The configuration and architecture
of the hexacopter follow NASA conceptual study of the Mars science
helicopter. Then, the mission profile for mapping the Belva crater is
examined, followed by a detailed approach to implement and test
observer-based navigation and control strategies. A comprehensive
simulated experiments environment based on the integration of robot
operating system and Ardupilot is also presented, used to validate the
overall system architecture and mission parameters considering both
the morphological shape of the explored crater and the atmospheric
conditions of Mars.

I. INTRODUCTION

Unmanned missions for space exploration have emerged
during the last two decades. Missions in Mars dominate
the scientific interest as evidenced by the NASA Mars
2020 [1] project. In the most recent mission, the overall
system included a robotic rover, Perseverance, and a small
Mars helicopter (MH), Ingenuity [2], [3] that were used
to explore the Red Planet and look for signs of past life.
The successful Ingenuity flights underlie the importance
of UAVs when it comes to extraterrestrial exploration, and
support the use of rotorcrafts in complex scenarios, such
as the Mars sample return (MSR) mission [4], [5], [6],
where two helicopters may contribute to the transportation
of terrain samples in collaboration with the rover’s activity.
Moreover, completion of such significant missions paves the
way to future manned–unmanned exploration missions [7].

However, the current MH configuration has neither a
specific scientific payload (P/L) nor enhanced onboard sen-
sors, thus, limiting its capabilities to short flights over rela-
tively flat and rock-free terrains [2]. Considering as a refer-
ence baseline the recent study of NASA Jet Propulsion Lab-
oratory (JPL) and the Ames Research Center on the Mars
science helicopter (MSH) [8], this research provides an
in-depth analysis of an enhanced Mars hexacopter (MHex)
configuration, which includes shape and size of the main
subsystems, as well as autonomous navigation and control
strategies. The choice of a six-rotor rather than a quadrotor
configuration is preferred because hexacopters demonstrate
better stability, redundancy, payload capacity, and increased
lifting power. Communication delays between the Earth
and Mars cannot guarantee a continuously direct link for
real-time data transfer, commands, and operations. For this
reason, it is realistic to consider that: 1) the MHex will
receive limited (transmitted-encoded) commands from the
ground control station (GCS); 2) the MHex will be able to
autonomously navigate and execute specific tasks/missions
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in a GPS-denied environment; and 3) the MHex will main-
tain a stable attitude along its trajectory relying only on its
onboard guidance, navigation and control (GNC) system.

The objectives and aims of this research center around:
1) providing an accurate model for the proposed MHex.
Sizing onboard sensors, tracking camera, 3-D LiDAR,
and other equipment of the MHex are based on available
data from [9], [10], and [11]; 2) developing a simulator
architecture for both the Martian environment and simu-
lated experiments by integrating robot operating system
(ROS), Gazebo, and Ardupilot, which allows for implemen-
tation and testing of simultaneous localization and map-
ping (SLAM), navigation, and control algorithms; and 3)
defining a specific mission profile for which SLAM and
autonomous navigation strategies are developed. As such,
implementation of the unknown input observer (UIO) [12]
is adopted to estimate the MHex states and unknown dis-
turbances that act on the system [13], [14], [15], [16],
[17], [18]. Note that due to the atmospheric conditions
on Mars [19], [20], the MHex flight envelop challenge is
tackled by implementing model-based controllers for better
trajectory tracking accuracy when compared to the default
Ardupilot PID controller [21].

The rest of this article is organized as follows. Section II
defines the mission requirements according to the Mars
atmospheric conditions, as well as the design and size of
the MHex. Section III presents the onboard GNC system
and the overall architecture of the simulator tool. Obtained
results are given in Section IV. Finally, Section V concludes
this article.

II. MISSION PROFILE AND SYSTEM DESIGN

This section describes the mission profile of the MHex
under the Martian atmospheric conditions in the Jezero
region, where the Belva crater is located, together with the
architecture of the hexacopter system.

A. Mars Atmosphere

The Martian atmosphere limits flight conditions and,
in turn, the configuration of aerial vehicles. Because of
such atmospheric conditions and composition, oxidizing
power sources cannot be used, and the gravitational accel-
eration g and atmospheric density ρ become the driving
factors in lift generation. The low-density that reflects low
Reynolds numbers, Re, in the range between 10 000–25 000,
impacts significantly the airfoil design and aerodynamic
performance, and suggests the use of lightweight materials
for the hexacopter structure. Furthermore, the lower sound
speed limits the rotors’ maximum rotational speed. Table I
compares the Earth and Mars atmosphere, also considering
the atmospheric conditions of the Jezero region, which
impact the design and analysis of the MHex. The sound
speed on Mars refers to a Mach number (M) of 0.7.

B. Mission Requirements

The planned mission focuses on autonomous explo-
ration of the Belva crater. An SLAM technique is adopted

TABLE I
Atmosphere Comparison on Earth and Mars (Jezero Region)

Fig. 1. Study area of the Belva crater in the Jezero region. Image
obtained from the HiRISE dataset.

to collect data from the implemented autonomous mapping
process (see Section IV). The MHex, as designed, increases
the range of the examined terrain compared to traditional
rovers [22], the endurance and range of which is limited
because of ground obstacles and harsh terrains, such as
craters and caves. Moreover, because of the near-surface
flight altitude, the MHex guarantees a higher resolution than
orbiters, resulting in a promising solution to better explore
the Mars surface. For the mission under consideration, a
34-Km2 area within and around the Belva crater is chosen
for autonomous navigation and mapping, see Fig. 1. This
area is of scientific interest [23] as this region is related to
the Mars 2020 Landing site [1] and it is deemed suitable for
surficial deposits of ichnofossils as morphological evidence
of past biological behavior.

The whole mission consists of five segments: 1) take-off,
2) climb at the required altitude, 3) cruise, 4) descent, and
5) land (Fig. 2). The flight trajectory is based on geological
waypoints sent by the ground station to the MHex. After
landing and recharging for 1 sol with solar panels, the MHex
is expected to continue mapping with a target scanning
range of about 3 Km2 for each flight. This represents the op-
erative area including slight deviations from a direct course.
After mapping a consistent region, the MHex returns to the
lander to download the collected scientific data to optimize
the onboard processor weight and power management. A
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Fig. 2. MHex mission case for autonomous mapping of the Belva
crater. Readapted from [24].

TABLE II
Mission Parameters for

MHex-Based Autonomous
Mapping

summary of the main mission parameters for the MHex is
reported in Table II.

C. System Architecture

Several studies using aerial vehicles for planetary ex-
ploration have already been conducted; a summary of the
proposed configurations may be found in [25] and [26].
However, findings in [27] show that a tailsitter design,
which is a challenging system, have not offered any major
advantage over a more conventional rotorcraft [28]. But as
mentioned in Section I, the hexacopter configuration is a
promising and robust design choice in this regard.

1) Mars Hexacopter Sizing: The MHex design process
starts with the definition of the mission requirements, thus
the P/L identification. The MHex design is implemented in
Solidworks, and the system sizing is based on the diameter
of the rotor blade which is optimized for the required thrust
in the Martian atmosphere. The six motors are sized with
a 150% control margin for hover power, accommodating
a motor speed up to 3008 r/min. The MHex blade is de-
rived from the fluidic analysis in [8], considering the same
diamond-shaped airfoils for the blade inboard sections with
an 8% thickness-to-chord ratio and flight (hover and cruise)
performance for M 0.55–0.8. The reference airfoil sections
are already optimized for better stall behavior and lower
power during flight. To account for modeling uncertainties,
the MHex design includes a contingency weight factor equal
to 20%, being the overall design at an early stage. Table III
summarized the MHex parameters and weights, while Fig. 3
shows the blade profile and the MHex architecture. The P/L
is intended as a sensing payload, containing the 3-D LiDAR
sensor for mapping the environment.

With respect to the MSH baseline [8], the whole air-
frame is increased (3 to 3.15 m) to better compensate for
drag effects acting on the rotors when rotating.

TABLE III
MHex Design. Geometry and Weights

Fig. 3. Solidworks design of MHex structure and blade profile, 0.64-m
disk radius, derived from airfoil sections in [8].

2) Sensors: The VLP-16 3D LiDAR [29] is chosen as
the primary sensor to perform the mapping of the Belva
crater. Even though cameras represent a good solution in
SLAM systems, the use of LiDARs has enabled advances
in the knowledge of planets, such as the Moon, Mercury,
Mars, and several asteroids [30] representing a prominent
technique in the future of planetary science. In 2019, a
study on the geological investigation at the Lofthellir site
(Iceland) was presented at the 50th Lunar and Planetary
Science Conference [31] to address the potential exploration
of lava tubes on the Moon and Mars through a 3-D LiDAR-
equipped drone, showing preliminary good results and a
successful mapping of the cave. Furthermore, recent studies
performed by NASA aim to develop advanced precision
landing technologies and accurate 3-D scanning of the
terrain through LiDAR-based navigation [32] to optimize
the descent and landing phase of landers.

3-D LiDARs can provide structural and rich information
about the scanned environment, operating efficiently in
low-light/varying illumination conditions. The generated
point cloud provides depth information without the need for
stereo matching or depth inference by directly capturing the
geometry of the environment, reducing the need for com-
plex feature extraction algorithms required by camera-based
systems. The MHex LiDAR tilting mechanism considers the
exploration of both wide areas, such as craters and caves,
allowing obstacle detection and collision avoidance by scan-
ning the surrounding ground and the vertical range with a
rotation of 1 Hz (Fig. 4). However, since a single-sensor
SLAM system is usually fragile and full of uncertainty
when performing localization, the MHex carries onboard
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Fig. 4. MHex LiDAR tilting mechanism, Gazebo simulation.

TABLE IV
MHex Sensor Specifications

three different sensors to perform precise SLAM navigation,
as further described in Section III. Table IV provides a
summary of the sensor features [33], [34] used onboard
the MHex.

The Garmin Lite v3 altimeter, currently used onboard
the Ingenuity helicopter [35], is a light, optical distance
measurement sensor that uses infrared pulses of light pro-
jected down to the ground to measure the flight altitude of
the MHex with respect to the ground.

D. Simulator: High-Level Architecture

The simulation environment relies on the integration
of Ardupilot, a widespread open-source autopilot system,
along with the Gazebo simulator and the ROS. This combi-
nation of free and open-source tools allows for simulating
the dynamic behavior of the MHex model in a Mars-like
environment, accounting for high accuracy of the numerous
MHex attributes, such as mass, inertia, wind gusts, and noise
thus allowing it to behave realistically when simulating.
Because of the complexity of the simulated mission, ex-
tensive design and some software modification are required
to achieve a realistic simulation. Particularly, continuous
efforts in implementing advanced control strategies and
integrating control techniques into the Ardupilot system not
only highlight the significant adaptability of the software
but also allow researchers to develop in-depth analysis and
get realistic results in complex simulation environments.
Recent works considering the implementation of control
strategies, such as the adaptive integral sliding mode con-
trol, as well as the adaptive control integration into the
Ardupilot software, can be found in [36] and [37]. Ex-
periments on the adaptive method for the Ardupilot-based
controller can also be found in [38] for fixed-wing UAVs.
For this research, the simulator runs on Ubuntu 20.04, with
ROS Noetic, Gazebo 11.11.0, and Ardupilot Copter 4.3.
Fig. 5 displays an overview of the resulting workflow that
the simulation environment allows.

E. Mathematical Modeling

To design model-based controllers and considering the
hexacopter configuration of Fig. 6 the total thrust T and
torques τ = [τφτθτψ ] can be modeled as
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where �i is the ith rotor’s angular velocity while k =
1.83×10 − 4 and b = 2.41×10 − 5 are the thrust and drag
coefficients of the propeller, respectively. These parame-
ters are computed from hovering simulation as a result
of the LiftDrag plugin aerodynamic effect. The complete
mathematical model of the hexacopter can be obtained by
considering the forces and torques of (1) into the general
multirotor dynamical model

p̈ = 1

m
T Re3 − ge3 (2)

η̈ = J−1
R (τ − Cη̇) (3)

where p is the inertial position vector, m is the multirotor
total mass, R is the rotation matrix from the body refer-
ence frame to the inertial reference frame which depends
on the choice of Euler angles sequence η = [φ, θ, ψ]T ,
e3 = [0, 0, 1]T is the inertial z-axis vector, g the gravitational
acceleration, and JR = W T JW is the rotated inertia matrix
withW being the matrix which relate angular velocitiesω to
Euler rates η̇ and J the symmetric constant inertia matrix. C
is the matrix accounting for centrifugal and Coriolis effects.
The full description of the multirotor model can be found
in [39].

F. Mars Hexacopter Model With ROS and Gazebo

The MHex model is exported from Solidworks to urdf
file format, which is then converted to Gazebos’s sdf format
maintaining all inertial characteristic and meshes. The aero-
dynamic profile of the propellers is implemented using the
LiftDrag Plugin, and the motor actuation from Ardupilot
flight controller is managed through the Ardupilot Gazebo
Plugin. To simulate the sensor fusion output, the odometry
information is taken from an odometry sensor publishing
up to 200 Hz. Indeed, given the Martian conditions, the
global navigation satellite system (GNSS), barometer, and
magnetometer would not be available. To this end, these
sensors are disabled and the alternative selection of sensors
from Table IV, along with the IMU, is implemented to
guarantee navigation, control, and mapping functionalities.
Considering the use of a rotating VLP-16 LiDAR, the
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Fig. 5. Simulator architecture.

Fig. 6. Ardupilot Hexacopter X configuration. Readapted from [40].

spinning sensor is modeled and attached to the MHex body
to account for its additional dynamics.

III. GNC SYSTEM

As previously described, the MHex can explore harsh
environments and remote areas otherwise denied to ground
vehicles. For this reason, it requires a robust GNC system
to perform precise GPS-denied autonomous navigation and
advanced control stability. Moreover, in complex scenar-
ios, such as the Martian terrain, both stability and overall
performance must go along with the robustness of the
MHex against external and unknown disturbances acting
on the system. A well-known category of filters developed
in the last decades to address such issues refers to Kalman
filters. Particularly, a wide range of applications includes
the extended Kalman filter (EKF) thanks to its simplicity
and versatility in many operative contexts. Kalman filters
provide an optimal estimation bounded under the strong as-
sumption of Gaussian noise distribution, such as a complex
tuning of parameters and covariance matrices, especially
with high-dimensional systems.

The UIO is an estimator that combines an easier design
and robustness to modeling uncertainties in the system
dynamics when compared to different types of filters and

observers [41]. Indeed, as further shown in Section III-A1,
the UIO performances are higher than for the corresponding
EKF, as it efficiently handles unknown external distur-
bances (e.g., wind gusts) together with good management
of sensors’ noise, guaranteeing the asymptotic convergence
of the estimation error without prior assumptions of noise
distribution or bounded unknown input signals, thus over-
coming the limitations of the Kalman filters. Fig. 7 pro-
vides the GNC framework for the MHex. In the proposed
system, the perception and estimation block collects the
measurements coming from a 3-D LiDAR, a downward
laser altimeter, a tracking camera, and the onboard IMU to
obtain partial information about the MHex’s state through
the sensor fusion of different odometry estimations [Li-
DAR inertial odometry (LIO), and visual inertial odometry,
(VIO)]. Then, the UIO estimates both the unknown inputs
of the dynamic system, which are not directly measured
by the onboard sensors, and the full state of the MHex.
The planning block performs the optimal trajectory given
a series of waypoints sent from the ground station, and the
SLAM algorithm allows for the autonomous mapping of
the surrounding environment, in turn sending feedback to
the path planner for trajectory optimization. The controller
block computes the control action required to steer the
MHex along the desired trajectory. Given the underactuated
property of multirotors, the control structure is divided in
outer (position) and inner (attitude) loop. The stock position
controller within Ardupilot computes the attitude trajectory
to reach the mission waypoints while the custom deployed
inner loop controller provides the control action for attitude
tracking. The following paragraph provides an in-depth
analysis of the first two blocks, while the control strategies
are discussed in paragraph III-B.

A. Autonomous Navigation Strategy

1) Unknown Input Observer Design: Single-sensor
SLAM systems are usually fragile and full of uncertainty
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Fig. 7. GNC subsystem: Perception and estimation, planning and control frameworks.

when performing localization. Considering the complexity
of the mission when performing autonomous navigation,
the MHex carries onboard three different sensors to perform
precise SLAM, as shown in Fig. 7. Multisensor fusion ap-
proach merges incoming information from the three sensors
into a single, consistent estimate of the full MHex state
by separately processing measurement data of each sensor
and fusing them to achieve the latest state estimation. In
the proposed scheme, LIO uses point cloud data to obtain
both the MHex pose estimation and the 3-D map of the
environment, while VIO is in charge of achieving the pose
estimation by combining visual sensor data and IMU data.
The fusion of these two pieces of information, together with
laser altimeter data for a more accurate altitude state, allows
for an accurate estimation of the MHex state.

After obtaining preliminary information on the system
with the onboard sensors, the UIO handles disturbances
acting on the MHex and not directly measurable, such
as external wind disturbances, as well as sensor bias, and
estimates the final MHex’s states to be used for navigation
and control. In the design of the UIO [42], [43], the state es-
timation process is decoupled from the unknown inputs, the
latter reconstructed once the state estimation convergence
is obtained. Following the reasoning in [12], the linearized
MHex system can be modeled in matrix form as

ẋ = A x + B u + W δ

y = C x + D u + H δ (4)

where x ∈ R
n is the state vector, u ∈ R

p and δ ∈ R
v are the

known and unknown input vectors, respectively, y ∈ R
c is

the output vector, and A, B, C, D, W , and H are matrices of
suitable dimensions. Without loss of generality, matrices D
and H in (4) are assumed null, thus the output matrix only
depends on the state.

Considering the Lth Taylor series vectors U L and �L of
the known and unknown inputs, i.e., u(t ) and δ(t ), the Lth
system’s response vector is given by

Y L = CAL x +
L−1∑
i=0

CAL−1−i
(
B u(i) + W δ(i)

)
(5)

then, in the compact form

Y L = OL x + JL
u U L + JL

γ �
L (6)

where OL is the Lth order observability matrix, while JL
u and

JL
γ are the Lth order invertibility matrices corresponding

to the known and unknown input signals. In this setting,
following the analytical reasoning described in [43], an UIO
for the system in (4) is given by

˙̂x = E x̂ + F
(
Y L − JL

u U L
) + B u (7)

with E and F being two design matrices. Considering (6),
a direct computation of the state estimation error dynamics,
i.e., ˙̃x = ˙̂x − ẋ(t ), leads to

˙̃x = E x̂ + F
(
Y L − JL

u U L
) + B u − A x − B u − W δ

= E x̃ + F
(
Y L − JL

u U L
) + (E − A) x − W δ

= E x̃ + F OL x + F JL
γ �

L + (E − A) x − W δ

= E x̃ + (
F OL + E − A

)
x + F JL

γ �
L − W δ (8)

and it is proved that, if the following conditions are simul-
taneously satisfied:

F JL
γ = [

W, 0n×v

]
E = A − F OL (9)

the estimation error dynamics takes the form

˙̃x = E x̃. (10)

Finally, by virtue of an appropriate choice of the matrix E ,
the system in (10) can be made convergent to zero. The
solvability of the above conditions can be satisfied if and
only if (4) is invertible and strong observable, i.e., for some
L ≤ n must hold

rank
(
JL
γ

) = v + rank
(
JL−1
γ

)
(11)

n = rank
([

OL, JL
γ

]) − rank
(
JL
γ

)
. (12)

2) 3-D LiDAR Mapping and Odometry: As described
in the GNC framework of Fig. 7, the Planning block is in
charge of implementing the SLAM process along with the
path planning algorithm. 3-D LiDARs permit to capturing
of fine details of wide environments without being affected
by variable illumination conditions. The SLAM method
is also preferred in the context of the mission because of
the complexity of autonomous navigation in a GPS-denied
environment; thus, a dedicated localization and mapping
technique is required from the MHex to perform the mission
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Fig. 8. 3-D LiDAR odometry and mmapping system overview.

tasks. The SLAM framework implemented onboard the
MHex is shown in Fig. 8. The SLAM system receives data
input from the VLP-16 LiDAR and then generates outputs
regarding the computed map (map output) and the pose with
respect to the generated map (transform output). The overall
SLAM system is divided into four modules: In the point
cloud registration module, the segmentation takes the scan’s
point cloud Pt = {p1, p2, . . ., pn} acquired at time t and,
based on the VLP-16 horizontal and vertical resolution (0.2◦

and 2◦) projects it onto a range image of resolution 1800
by 16. The points pi in the point cloud are then represented
in the range image by a unique pixel with a corresponding
Euclidean distance ri from the sensor. A second level of
clustering is applied to the range image and the selected
points are grouped into different clusters of 50 points each.
A final selection only keeps and saves features of char-
acteristic points (ground points and segmented points) in
the range image allowing for an efficient computation of
the entire data processing. In the feature extraction module
the selected points are processed and sorted based on their
roughness c with respect to a threshold cth

c = 1

|S|.||ri|| ||
∑

j∈S, j �=i

(r j − ri )|| (13)

where S is the points set. Points for which c > cth are
classified as edge features, while planar features for c
smaller than cth are then saved in two different sets Fe

and Fp. In the odometry module, the sensor motion is
estimated between two consecutive scans by finding the
corresponding features between points in the feature sets
and the ones collected in the previous scan. The odometry
algorithm performs at a high frequency (but low fidelity) to
estimate the LiDAR’s velocity, while the mapping algorithm
runs at a lower frequency for fine matching of features in
the set {Fe, Fp} to a surrounding wider point cloud map
Qt−1 and further registration of the point cloud. For a better
computation of data, each feature set is stored in Qt−1

instead of a single point. Each feature set is associated with
the pose of the LiDAR when the scan is taken, considering
the sensor field of view (FoV), and the selected feature sets
are then transformed and fused into Qt−1.

B. Controllers

This section briefly describes the control algorithms
applied to the MHex. For the study case in analysis, the

Ardupilot stock PID (A-PID) attitude controller [21] is
compared through closed-loop simulations with custom
deployed PID with feedback linearization (PID-FL) and
backstepping (BC) controllers.

1) PID-FL: PID is one of the most common controllers
in literature and industry due to its straightforward im-
plementation and ease of tuning, including model-based
dynamic compensation into the loop which has been shown
to further improve tracking performance [39]. To this end,
feedback linearization is used to exactly linearize the MHex
nonlinear dynamics. As such, the commanded torque vector
is written as

τc = J (η)v + Cτ (η, η̇)η̇ (14)

so that the closed-loop system becomes

η̈ = v (15)

which correspond to the following linear system:

ẋ = Ax + Bv (16)

where

A =
[

03×3 I3×3

03×3 03×3

]
,B =

[
03×3

I3×3

]
, x =

[
η

η̇

]
(17)

hence, the virtual control vector v becomes the control
action to be designed [44]. To show the performance im-
provement, the feedback linearization is placed in cascade
to the Ardupilot attitude PID controller and, as such, the
A-PID output value is assigned to v.

To be noted: the feedback linearization is performed
using the nonlinear attitude model (3).

2) Backstepping: BC model-based control has been
shown to be very effective in controlling nonlinear system
in presence of noise and external disturbances [45]. The
following BC controller is presented in [46], for brevity,
only the commanded torque is listed here

τc,BC = J
(
η̈d −2e

) + Cτ (η̇d +e) + Krr + Ki

∫ t

0
rdt

(18)

with orientation tracking error e = ηd − η; sliding mode
error r = ė +e; and , Kr , and Ki gain matrices to be
tuned.

IV. SIMULATED EXPERIMENTS

In the simulated mission scenario, the MHex performs
the autonomous navigation along with SLAM given a series
of waypoints sent from the ground control station. The
takeoff is performed in the proximity of the crater region,
having as the main focus the mapping of both the entire
crater and surroundings. The MHex is required to perform
collision-free flights during the mapping process, thus with-
out prior information, and landing at the goal point when
the last waypoint is reached. Table V gives the aerodynamic
coefficients used to simulate the lift and drag experienced
by the MHex during flight.

SOPEGNO ET AL.: ADVANCED HEXACOPTER FOR MARS EXPLORATION: ATTITUDE CONTROL 3575



TABLE V
MHex Aerodynamic Parameters

TABLE VI
UIO and EKF RMSE, Simulink Comparison

1) Observer Validation: As a first validation step, the
comparison between the EKF and the UIO is implemented
in Matlab/Simulink along a helix-based trajectory. For the
EKF, the equivalent noise considered in the simulation
follows a Gaussian distribution with μ = 0 and variance
σ 2 = 0.01, corresponding to the realistic sensor noise for
both the t265 camera and the VLP liDAR. Wind acting on
the system is simulated along the horizontal and vertical
directions. The modeling of the wind is also applied in the
second validation step with ROS and Gazebo, as follows.
Then, the UIO is implemented along with the MHex system.
To reach the form of (4), analytical calculations lead to the
matrices

A =
[

06×6 I6×6

06×6 06×6

]
B =

[
M 03×3

03×3 J

]
(19)

C =
[
I6×6 06×6

]
W =

[
06×6 I6×6

]
. (20)

The state vector x includes the inertial position p, orienta-
tion η, and their respective derivatives ṗ, η̇. Only the pose
(position and orientation) is taken as the system’s output,
while ṗ and η̇ are estimated through the observer. According
to (11) and (12), the smallest integer satisfying the above
condition is L = 2, with the invertibility and observability
matrices assuming the form

J2 =

⎡
⎢⎣ 0 0 0

CW 0 0

CAW CW 0

⎤
⎥⎦ ,O2 =

⎡
⎢⎣ C

CA

CA2

⎤
⎥⎦ (21)

for which it holds, based on (19), (20), rank(J) = 6 and
rank(O) = 12, thus satisfying the conditions of solvability.

The state estimation error for the EKF and the UIO is
given in Fig. 9 The UIO tracks the states even in the presence
of external disturbances and more effectively than the EKF.
Even in the presence of sensor bias, the UIO demonstrates
robustness to the noise maintaining an accurate estimate of
the states and a corresponding smaller error magnitude, also
not requiring any information about the unknown inputs,
here in the form of external disturbance. The computed root
mean square error (RMSE) for both the EKF and the UIO
is given in Table VI.

As a second validation step, based on the results gained
from the analysis in Matlab/Simulink, the UIO is tested in
the simulator architecture in order to both test and assess
the algorithm’s robustness to external disturbances and

Fig. 9. UIO and EKF comparison. (a) EKF state estimation error.
(b) UIO state estimation error.

TABLE VII
UIO RMSE, Simulator

TABLE VIII
MHex Controllers RMSE, Simulator

measurement uncertainties, and to obtain a software-in-
the-loop validation of the proposed system implementation.
The simulation results carried out in the simulator for the
analyzed mission are presented in Table VII and Fig. 10.
The wind is applied along the horizontal direction (v̄w)
with a maximum intensity of 4 m/s, and vertically up to
1 m/s (v̄w,z). As shown, the UIO is able to estimate the
unknown states of the system (velocities), having the pose as
input. The estimated states closely track the original states
without significant drift or deviation from the reference,
with the most significant impact during the landing phase.
The overall accuracy of the proposed method is validated
by the RMSE measurements.

2) Controller Comparison: Table VIII gives the com-
parison between the RMSE of the attitude with respect to
desired attitude trajectory along with the different control
approaches implemented. Two different simulated experi-
ments are performed in the simulator architecture: in the
first, only the sensor noises are taken into account without
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Fig. 10. UIO state estimation. (a) Position. (b) Orientation. (c) Linear
velocity. (d) Angular velocity.

other external disturbances, testing smooth flight condi-
tions. In the second one, both wind along horizontal (v̄w)
and vertical (v̄w,z) directions and sensor bias are considered.

As shown, the model-based control approaches are able
to achieve smaller RMSE compared to the A-PID controller.
The propeller angular velocity during cruise remains in
the range of M = 0.55 to 0.8 at tip, corresponding to

Fig. 11. MHex propeller angular velocity, simulated experiment
including wind. (a) A-PID. (b) PID-FL. (c) BC.

1910 to 2780 r/min [200 rad/s to 291 rad/sec, respectively,
with max peaks of 315 rad/sec (3008 r/min, M = 0.86)].
Considering the flight speed as ground speed, the limit of
8 m/s guarantees that the linear velocity at the propeller tip
is less than M = 0.89. The propeller angular velocity has
an average of 260 rad/sec (2483 r/min, M = 0.71), and a
median of 265 rad/s (2531 r/min, M = 0.73), resulting close
to the blade optimum operating point of M = 0.75, based on
the data available in [8], as shown in plots in Table IX. The
resulting control gains for each controller show the ability
of the tuning process to achieve the best performances
while avoiding saturation of the control action, while the
propeller rates, displayed in Fig. 11 remain bounded and
stable for all controller strategies. Finally, given the over-
all better performance, even during wind simulations, the
model-based approaches are preferable for mapping and
navigation tasks.

3) Mapping Experiment: Fig. 10 shows the mapping
process in the explored site based on the point cloud feature
extraction. As reported in Section III-A2, when performing
SLAM both the edge and planar features are extracted from
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TABLE IX
Controller Gains

Fig. 12. MHex mapping framework: The MHex approaches the crater
and performs the point cloud map. Edge and planar features are

progressively extracted, and selected subsets of points are then stored in
the final map.

the same LiDAR scan, and the corresponding feature subset
is first optimized through point cloud segmentation and
then processed by the mapping module. This procedure
allows for a reduction of the number of points stored in
the map, also filtering out unstable features based on the cth

threshold. The SLAM algorithm is able to track morpholog-
ical features of the crater while performing real-time pose
estimation. The VLP-16 provides precise and direct depth
measurements in the environment, resulting in accurate 3-D
point cloud data even in a wide and feature-poor scenario
such as Martian terrain. Moreover, since the entire mapping
process results optimized in terms of ground point cloud
segmentation, the liDAR-mapping accuracy is improved,
reducing the computational complexity when compared to
the vision-based counterpart. Last but not least, the LiDAR
FoV results in a wide range of collecting data, thus par-
ticularly valuable when a thorough comprehension of the
environment is essential during long-range exploration.

V. CONCLUSION

This article presented a system analysis for a future Mar-
tian hexacopter. After deriving a conceptual architecture
and sizing of the MHex prototype, autonomous navigation
based on a realistic mission scenario along with SLAM and
3-D mapping showed the capability of accurate mapping
and stratigraphic investigation of the surrounding environ-
ment, addressing the numerous challenges of Martian flight
together with the comparison of different control strategies.
To validate the entire GNC analysis, a simulator architecture
based on free and open-source software (ROS, Gazebo, and
Ardupilot) was proposed, and the simulated experiments
considering both state estimation and model-based control
were performed with promising results. Realistic software

in the loop (SITL) features included, along with Martian
environmental conditions, sensor noises, aerodynamic and
wind effects, VLP-16 LiDAR rotating dynamics, GPS-
denied position estimates, and conservative sampling rates.
First, an enhanced UIO was presented and compared to
the well-known EKF for filtering sensor output, showing
robustness against disturbances and sensor bias, guaran-
teeing accurate estimates of the unknown states and over-
coming the limitations of different classes of filters more
sensitive to external disturbances. Second, a comparison
between model-based control strategies (PID-FL and BC)
and the stock Ardupilot attitude PID controller (A-PID)
showed the advantage of considering the MHex nonlinear
dynamics for achieving a more precise control and com-
pensating for the tight flight envelope and environmental
conditions characterizing the flying on Mars. Finally, even
if experimental verification of both rotor structural design
and aerodynamic performance is required to validate the
entire MHex architecture, the presented examination of the
hexacopter gave consistency and substantial capability for
autonomous operation on Mars in the context of future
exploration. Moreover, the Ardupilot integration (or any
other flight controller unit) in the simulator pipeline will
allow for reducing the effort required to transition from
SITL to hardware in the loop. The authors intend to share the
code and documentation to enable other researchers to test
their applications on the presented simulator architecture.
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