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ABSTRACT Due to massive increase in wireless access from smartphones, IoT devices, WLAN is aiming
to improve its spectrum efficiency (SE) using many technologies. Some interesting techniques for WLAN
systems are flexible allocation of frequency resource and cognitive radio (CR) techniques which expect to
find more useful spectrum resource by modeling and then predicting of channel status using the captured
statistics information of the used spectrum. This paper investigates the prediction accuracy of busy/idle
duration of two major wireless services: audio service and video service using neural network based
predictor. We first study the statistics distribution of their time-series busy/idle (B/I) duration, and then
analyze the predictability of the busy/idle duration based on the predictability theory. Then, we propose a data
categorization (DC) method which categorizes the duration of recent B/I duration according the their ranges
to make the duration of next data be distributed into several streams. From the predictability analysis of each
stream and the prediction performance using the probabilistic neural network (PNN), it can be confirmed
that the proposed DC can improve the prediction accuracy of time-series data in partial streams.

INDEX TERMS Channel status duration prediction, WLAN audio/video traffic, data predictability analysis,

probabilistic neural network (PNN).

I. INTRODUCTION

The next-generation wireless technology is aiming to hold
diversified services, applications considering the usage of
huge number of devices which is reshaping and facilitating
our daily life [1]. Among them, wireless local area network
(WLAN) are widely used in indoor scenarios such as home,
office for wireless access which holds over 80% wireless
traffic [2]. To meet this trend of massive increase in access
and capacity, WLAN with Wi-Fi hot-spots is expected to
transmit or receive increasing amounts of data in more
indoor scenarios. Therefore, some efficient techniques are
prompting to further improve the spectrum efficiency (SE)
of WLAN [3]. There are many ongoing research items
for realizing the purpose such as increasing the number of
antennas to 8 streams for IEEE 802.11ac (Wi-Fi 5) and
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enlarging the bandwidth to 160MHz band for IEEE 802.11ax
(Wi-Fi 6) [4]. In addition, mmWave MIMO technique
is considered for IEEE 802.11ay which can utilize the
bandwidth of 8 GHz over 60 GHz frequency band [5].

One of the most promising techniques for WLAN system is
cognitive radio (CR) technology. CR dynamically estimates
the channel status, predicting the coming channel state
and finding the promising wireless resources in its vicinity
to avoid congestion and reduce interference with a smart
way [6]. Recent progresses of CR technique using machine
learning (ML) and predictability analysis on spectrum usage
have further cultivated and prompted the next generation
WLAN system [7]. To achieve high SE, WLAN system with
CR needs to correctly detect the channel usage status or data
pattern. A realistic, accurate channel occupancy pattern for
the wireless traffic of each wireless service is essential and
extremely useful. Then, WLAN system also aims to correctly
capture current channel state and predict the coming channel
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status before its start of packet transmission. A tutorial
paper [8] has summarized the existing prediction schemes for
the CR optimization and allocation of the wireless frequency
resource. These research activities have presented many
efficient and smart methods for CR system which mostly
consider the prediction for some key statistics parameters
such as spectrum usage, channel occupancy or utilization
rate with the time resolution like second, hour or day. These
predicted statistics parameters and properties would help the
improvement of spectrum utilization and the policies for
access optimization.

If WLAN system with CR technology can correctly predict
its start and end of the channel busy/idle status or status
duration in very short time, it can efficiently utilize the
available frequency bands in a resource-efficient way, and
further improve the SE especially when the limited wireless
channel resource is requested by a large number of devices.
As one example, CR technology can utilize channel idle
duration scattered in multiple WLAN frequency bands by
splitting one long transmission packet into several short
sub-packets, then transmit them on the multiple bands [9],
[10]. In addition, correct prediction within short period will
improve the overall SE of all WLAN bands especially for
some environments with heavy wireless traffic where the
wireless spectrum resources are limited. The prediction of
channel status duration is extremely important but difficult
and sometime impossible because the time-series status
duration is unstable and disordered in short period. This
makes the prediction of the status duration to be intangible
and difficult [6], [11].

Machine learning (ML)-based prediction methods show
powerful capabilities to cope with some complicated real-
time problems which are difficult to be described by
model-driven approach. By learning the relationship among
data, data-driven ML-based method can capture and ana-
lyze ambient WLAN signals to understand their physical
characteristics for usage. Recently, many ML-based methods
have been employed for wireless system, such as massive
MIMO channel prediction using deep convolutional neural
network (CNN) [12] and multi-layer perceptron (MLP) [13].
In [14], a joint design of beamforming vector and learning
rate in MIMO over-the-air computation for federated learning
has been researched. In addition, with reduced training
overhead and small dataset, a fast adaptive channel prediction
technique based on a meta-learning algorithm for massive
MIMO communications has been investigated in [15]. Reader
can find the details of ML-based methods in [16] which
systematically reviewed the current representative ‘‘learning
to optimize” techniques in diverse domains of 6G wireless
networks and investigating the specifically designed ML
frameworks from the perspective of optimization. These
researches provided many efficient ways to predict the
channel status duration of WLAN system.

In addition, after obtaining the statistics of spectrum usage
such as busy or idle duration, some fundamental but important
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questions for the time-series data are some like that: to
what level is the data predictable? Whether there exists
some methods to increase the predictability of the time-series
data? Regarding to these questions, using Fano inequality
and statistical entropy measures [17], [18], it can provide
some basic analysis on the predictability of the time-series
data. In addition, we also proposed a data categorization
(DC) method to divide time-series data into several streams
and each stream has different distribution property [19] with
different level of the predictability. The prediction accuracy
of some streams with a large predictability can be improved.

There is little research about the prediction of busy/idle
duration for WLAN system. The reason perhaps is that
such research is hard to be applied for real system because
the operation period for prediction needs to be within the
unit of busy/idle duration which is less than millisecond.
In addition, due to the short time of busy/idle duration
data, the distribution or statistics property of data used for
prediction is dramatically changed which generates outliers
and deteriorates the prediction accuracy. However, using
new machine learning technology and high powered sensing
devices, the WLAN system should be considered for hold
more device access with smart idle resource management
and prediction within more short time scale. On the other
hand, although many services generate WLAN traffic, two
widely and major used WLAN traffics, audio service and
video service, are more than 60% traffic over total IEEE
802.11 WLAN traffic [20]. Therefore, investigating the
statistics properties of busy/idle duration of audio and video
services and their predictability can benefit the CR technique
used for WLAN system [21], [22], [23], [24].

In this paper, using the Fano inequality and statistical
entropy measures, we study the modeling and predictability
analysis on time-series busy/idle duration of 802.11 WLAN
traffic for video and audio services [25]. Then we show their
prediction performance using PNN based predictor with the
proposed DC method. The major novelties and contributions
of this paper are as follows.

1) We study the statistics distribution properties of time-
series busy/idle duration of 802.11 WLAN traffic for
audio and video services. The similar work considering
for VoIP skype service and FTP service has been
investigated in [24]. Furthermore, we will consider
video and audio services on two scenarios: the ideal
case (the data is captured in an anechoic chamber), and
real case (the data is captured in an indoor office) to
compare the different distribution properties between
two cases.

2) The predictability of the time-series busy/idle duration
of both services is analyzed to find the lower bound
and upper bound of predictability. Although it is still
unknown how to realize the bound of accurate predic-
tion, the comparison and analysis show the different
predictability of time-series busy/idle duration between
ideal and normal cases.
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3) We propose the busy/idle (B/I) duration prediction
method using PNN based predictor with the DC
method. In [19], we have analyzed that, by introducing
the categorization range of the duration of recent B/I
statuses, the duration of the next B/I status can be
distributed into several sets (streams) with different
predictability. Then even the low-complexity AR-
based predictor can achieve the promising prediction
accuracy for some streams with high predictability.
In addition, it is known that ML-based probabilistic
neural network (PNN) predictor can learn the rela-
tionship among the data. Therefore, whether DC is
required or not for PNN predictor is unclear. This paper
contributes to this topic.

This paper is organized as follows. Section II describes
the methodology of data collection and the modeling of the
collected busy and idle duration of both services. Section III
analyzes the lower bound and upper bound of predictability
of the collected busy/idle duration data and shows the
predictability results using DC method for the time-series
busy and idle duration data. The PNN-based predictor with
the DC method and its different prediction performance for
different streams are discussed in Section IV. The paper
concludes the results in final Section V.

Il. DATA COLLECTION AND MODELING OF TIME-SERIES
BUSY AND IDLE DURATION
A. THE WIRELESS TRAFFIC EXPERIMENTS AND DATA
COLLECTION
Several wireless traffic experiments of WLAN based audio
and video services have been conducted to obtain the data
of the time-series busy and idle duration. The data process
is shown in Fig. 1. The experiments of WLAN based video
services using two resolutions as 1K P and 480 P, and audio
service with average transmission rate as 320 kbps using
WLAN system operated at 5 GHz band have been carried out
in an indoor environment (real case, Fig. 2a). For comparison,
we also captured the time-series data of spectrum usage of
the same experiments in an anechoic chamber (ideal case,
Fig. 2b) to study the impact of interference from other
services in the real case.

Frame header data of packets has been recorded using
a commercial sniffing software on Channel 36 in W52
at the 5GHz band. The data-rate, frame arrival time,
and frame length were extracted, and the number of
bits per symbol, used bandwidth and the standard of
system (IEEE 802.11b/g/n) were also recorded from the
data-rate information of captured frames according to the
IEEE 802.11-2016 standards [26] which employed orthog-
onal frequency division multiplexing (OFDM) technique.
Then, the duration of frames was estimated from the
value of the required number of OFDM symbols and the
corresponding duration of MAC header with PHY preamble.
Then the busy/idle duration sequence was calculated with a
granularity of 9 us per slot or point according to the current
WLAN standards.
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FIGURE 1. Main process of experiment.

(a) Office scenario (real case)

VW

(b) Anechoic chamber (ideal case)

FIGURE 2. Experiment of data capture.

B. THE DISTRIBUTION PROPERTY OF BUSY AND IDLE
DURATION

For fitting the statistic probability distribution, the empirical
cumulative distribution function (CDF) and probability
density function (PDF) of collected time-series data need
to be calculated. Table 1 lists some major probability
distribution models employed in the fitting process, which
are exponential (EX), gamma (GM), log-logistic (LLG),
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TABLE 1. Statistics probability distribution functions for fitting.

Distribution function ‘ PDF f (x;parameters)

CDF F'(z;parameters)

N e x>0, W J1—e?* x>0,
Exponential (EX) fex(z;\) = { 0 220 Fpx(z;\) = { 0 <0
—1
faow) | 5 _ (ott@-m\E
Generalized Pareto fep(z;p,0,8) = ( - +1) £70, Fop(zyp,0,8) = ! - £#0,
e = 1—e 5 £=0
— 2 —
Log-normal (LN) fon(asp o) = — 127r exp (— (IH;UQ") > Frn(zyjp,0) =2 erfc ( 1“;”72“)
. A 2)°
LogLogistic (LLG) froa(z;p,o) = W Frre(z;p,0) = 1+< ¥ -
m
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exp(—s) exp(— exp(—s)) £E=0 exp(—exp(—s)) £=0.

Gamma (GM) fom(z;a,B) = Bﬂll(a)xa_l e—/B

Fom(za,B) = 7(Fa((ﬁm)
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2u2

fra(z;p, A) = \/27313 exp [

M] ®(x): Normal distr.

B(—y/2(2 - 1))

>\
+e "

Fra(w; i \)=(y/2(2

Log-normal (LN), generalized extreme value (GEV), gen-
eralized Pareto (GP) and Inverse Gaussian (Inv-Gaussian)
distributions, respectively.

To estimate the major parameters of probability distribu-
tion from empirical data, an efficient inference technique
which based on maximum likelihood estimation (MLE)
is widely adopted. The authors in [27] have utilized the
method of moment (MOM) inference scheme to estimate the
parameters of statistics distribution and compared with that of
using MLE-based method. Their research results concluded
that the MLE-based method is generally better than that of
the MOM-based scheme. Therefore, MLE-based method is
selected to calculate the parameters of different distribution
functions. To measure the suitability or accuracy of the fitting
results, after fitting, we choose the probability distribution
function which has minimum value of Kolmogorov-Smirnov
distance between the empirical data and model data gen-
erated from the distribution function as the same to that
in [27].

The modeling fitting results of the time-series busy and
idle duration collected from the ideal case and real case
are given in Fig. 3 respectively. For the modeling fitting
results of the ideal case in Fig. 3(a) and (b), it easy to
find that the busy duration data is well-fitted with some
simple statistics distributions than the idle duration data,
especially for the duration data of WLAN-based audio
service. In addition, the statistics distribution of the data
duration collected from video service has more concentrated
on the specific range than that of the data duration collected
from audio service. The reason is due to that the data
duration of the audio service includes frames with different
length. However, the statistics distribution of idle duration
of both services appear more randomness which reduces
the accuracy of modeling fitting. For real case that some
other wireless interference occurs. The results in Fig. 3(c)
and (d) showed that the fitting error of statistics distribution
increases for the busy duration data of both video and audio
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service. In addition, idle duration data collected over real
case has a better fitting accuracy than that over ideal case.
The results imply busy duration of both services over the
ideal case has more constant traffic pattern. The idle duration
appears more randomness than that of the real case. The
randomness makes the fitting of statistics distribution more
difficult.

IIl. PREDICTABILITY ANALYSIS OF THE TIME-SERIES
BUSY IDLE DATA

After obtaining the statistics of the busy or idle duration,
it is still difficult to find that the time-series busy/idle data
is easy to be predicted or not because their PDF or CDF
properties cannot reveal their correlation properties which
highly decides the predictability level. Intuitively, for some
time-series data like additive white Gaussian noise (AWGN)
which has no correlation among the succeeding data, the
predictability of these is not larger than 1 /M (M is the number
of different kind of values of time-series data. For AWGN,
M = o0). Therefore, some fundamental but important
questions for the time-series data are that: to what level is
the data predictable? Whether there exists some methods to
improve the predictability of the time-series data? Regarding
to these questions, using Fano inequality and statistical
entropy measures [17], [18], it can provide the basic analysis
on the level of the predictability of time-series data. For the
second question, we also proposed a data categorization (DC)
method to separate the time-series data into several streams
according to the setting range, and each stream has different
distribution and correlation property [19] which differentiates
the level of each stream.

A. PREDICTABILITY DEFINITION AND ANALYSIS

Here we firstly explain the predictability concept which
decides the fundamental prediction limitations or bound of
time-series data.
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FIGURE 3. The statistics distribution fitting for busy/idle duration data.

One random variate X is assumed with M kind of values.
The entropy of X is represented as S(X) as follows

M
S(X) = — > x(i) log(f (x)).

i=1

6]

with f (x) as the PDF of X. In similar way, the average entropy
of the time-series data X ([x1, x2, ..., xy]) with length as N
is represented as

o1
SX) = Nh—r>noo NS(xl, X2, ...y XN)- 2)
We also use a conditional entropy defined as S(X’) and
S(X/) = lim S(XN |xN_1, XN—=2, 0y xl). (3)
N—o00

The average entropy S(X) is equal to its conditional entropy
S(X') (N — 00) represented as

. 1
SX) = ngnoo NS(xl,xz, o, Xp)

= lim SGylxv—1,xN-2,...,%1)
N—o0
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Here S(i) and h;_{ are S(i) =
[xi—1, xi—2, ..., x1], respectively.

The S(X) of N-length time-series data is related to the
value of X and their joint PDF, and is difficult to be obtained.
Usually, its approximate value is calculated as S®¢?/(X) using
Lempel-Ziv algorithm [28].

If there is no correlation among N -length time-series data,
only using its PDF, the average entropy SY"¢(X) can be
simply calculated as

S(xilhi—1) and h;_1=

M
SUX) = = > x(i) log(f (x). )

i=1
For time-series data, we suppose there exists one prediction

method and its accuracy probability P, is given as
P, = Prob{x, = x,|hy—1}. (6)

The predictability value of one time-series data can be defined
as the maximum accuracy probability among all prediction
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TABLE 2. The entropy and predictability probability (ideal case).

TABLE 3. The entropy and predictability probability (real case).

SReal SUnc T1Real

Data type more [ M

SReal SUnc T1Real

Data type mone | M

Busy (Video 480P) | 4.36 5.46 0.57 0.44 295

Busy (Video 480P) 3.88 6.97 0.68 0.35 635

Idle (Video 480P) 4.94 6.19 0.67 0.57 4766

Idle (Video 480P) 5.65 7.46 0.60 0.45 3582

Busy (Video 1KP) 4.44 5.61 0.58 0.44 393

Busy (Video 1KP) 4.69 6.58 0.59 0.38 561

Idle (Video 1KP) 4.34 5.34 0.69 0.61 2301

Idle (Video 1KP) 4.79 6.07 0.66 0.56 4284

Busy (Audio 320K) | 5.20 6.72 0.51 0.33 404

Busy (Audio 320K) | 3.35 6.10 0.72 0.42 469

Idle (Audio 320K) 5.37 6.77 0.61 0.49 2361

Idle (Audio 320K) 6.52 8.81 0.56 0.38 6670

methods represented as
M(hp—1) = sup{in = xulhp—1}. (N

Therefore, for one N-length time-series data, the average
predictability value IT is given as

N
I
M= lim ~ > MG
N N & ©. ®

with TI(0) £ f (hy—1)T1(hy —1).

Using Fano inequality, the relationship between the
entropy of time-series data and its predictability can be built
as

SGnlhy-1) < —[plogy p + (1 — p)log,(1 — p)]
+ (1 —p)logy,(M — 1)
£ Sp(p) = Sp(M(hy—1)), 9)

where p is [1(hy—_1). From the equation, the upper bound
(UB) and low bound (LB) of predictability are given as

SReal < SF(HReal)

— —[rReal log, TReal 4 (1— HReal)10g2(1 _ l—[Real)]
+(1 = %) logy (M — 1), (10)
SUnc < SF(HU"C)

_ _[HUnc log, e 4 (1— HUnC) log,(1 — HUnc)]

+ (1 — 1Y) log, (M — 1). (11)

Using Eqgs.(10) and (11), it is easy to calculate the LB
197 and UB T1R¢? of predictability with its entropy SU
and S®¢4! However, [1U"¢ and [TRed! just measure the level or
difficulty of the prediction on time-series data, but they do not
mean the actual prediction method exists to realize ITR¢# For
some complicated time-series data, it is maybe impossible to
find such prediction method.

B. ENTROPY AND PREDICTABILITY OF BUSY/IDLE
DURATION DATA

An iterative Lempel-Ziv algorithm [28] can be employed to
calculate the value of S®¢9! and explore the relation between
time-series busy/idle duration data. In addition, it can also
utilizes the partial data for the calculation of SR if the
process system has limited memory used for huge size of data.
On the other hand, SY"¢ is calculated using the probability
distribution information of the busy and idle duration with
Eq. (9).
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Table 2 and Table 3 provide the estimated values of SR/
gUnc [iReal [1Unc and M of busy and idle duration for the
ideal case and real case using the Lempel-Ziv algorithm,
respectively. The results reveal that the predictability of time-
series duration data collected from the ideal case has the
larger value than that from the real case except of the busy
duration data of audio service. In addition, the predictability
value of the prediction methods using PDF information
can only reach to about 30%—50%. While exploring the
correlation properties among the data, prediction accuracy
can be increased to 50%-70%. In addition, from the
values of predictability and entropy, the results accord with
the intuition that the smaller the entropy is, the higher
predictability the data has. Because the higher entropy usually
means the more uncertainty of the data.

C. PREDICTABILITY ADJUSTMENT WITH DATA
CATEGORIZATION (DC)

From Eqs.(10) and (11), it is known that for time-series
data, the correlation property highly decides its predictability
value. For some time-series data without correlation among
the data like additive white Gaussian noise, the T1Y"¢ and
[1Rea! gre the same as 1 /M to 0. In other words, the difference
value of the predictability as (ITR@ — [1U"¢) can be regarded
as the gain from the correlation information of time-series
data. However, exploiting the correlation property of data is
challenging, difficult and impossible for some cases which
related to the huge volume, multiple dimensions and length
of the time-series data.

But it exists one simple way called as data categorization
to increase the predictability by changing the PDF or
CDF of the time-series data. In [19], we showed that the
busy /idle duration data captured from the channels over
the environments with heavy WLAN traffic has strong
correlation. By changing their distribution property, the
accuracy of prediction for the partial data can be improved
using a low-complexity auto-regressive based predictor.

The time-series busy/idle duration of wireless traffic data
usually has correlation property. For some WLAN based
services such as video, audio or FTP etc., the data packets or
frames have some similar patterns or duration distributions.
Therefore, the predictability of partial data can be increased
using the correlation property or busy/idle status transition
probability. For example, from Eq. (5), if the PDF of the
duration data is centralized type with a fixed range, the
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FIGURE 4. Data categorization for time-series busy/idle data.

entropy value SU"¢ becomes small which enlarges the value
of predictability [TV,

The idea of DC method for the busy/idle duration data is
shown in Fig. 4 as an example. The duration of busy or idle
is divided into several non-overlapping sets. For example,
The duration data is divided two sets with range as B_setl
€ [0, a] and B_set2 € (a, oo] for busy duration X;_» and
I_setl € [0, b] and I_set2 € (b, oo] for idle duration X;_,
respectively. Then the busy duration data X; is categorized
according to the set ranges of the busy duration data X;_»
and the idle duration data X;_1. Since both busy duration data
X,;_» and idle duration data X;_; are divided into two sets,
therefore, according to the set information of previous data
X;_» and X;_1, the next duration data X; will be allocated
into four different streams with busy data. As an example,
if X;_» € B_set2 and X;_ | € [I_set2, then data X; will
be allocated into the fourth duration stream. The similar
idea can be further employed for C layers. The captured
original busy/idle time-series duration data is firstly allocated
according to the categorized set ranges with C layers and each
layerincludes S; (i = 1, ..., K) sets. Therefore, the busy/idle
duration can be divided into § (S = HEIC S;) different
streams. After DC process, for each stream, the prediction
algorithm is operated for the next duration prediction.

The parameters of the DC method such as L, S; and set
ranges decide the distribution properties of the data in each
stream. If there is correlation among the time-series data,
the DC method will differentiate the predictability of each
stream and makes the data in some streams to be easily
predicted. However, for some data without any correlation
with each other such as AWGN, DC method just makes the
data into different stream just like the data sampling and
cannot improve the data predictability of any streams. In other
words, TT8¢@ and T1U"¢ have the same values and no any
prediction improvement method exists for this case.

To show the effectiveness of the proposed DC method, here
we compare the SReal - gUnc TReal [Unc and M value of
all busy and idle duration in each stream using DC method.
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TABLE 4. The predictability results using DC method (Video 480P, real
case).

SReal SU’nc T1Real

Data type mone | M

Busy (All data) 3.881 6.966 | 0.68 0.35 635
Busy (Set (1, 1)) | 5.367 6.851 0.52 0.35 540
Busy (Set (1, 2)) 1.851 4.001 0.86 0.66 507

Busy (Set (2, 1)) | 6.383 7.862 | 041 0.23 584
Busy (Set (2,2)) | 6.272 7918 | 0.43 0.23 605
Idle (All data) 5.651 7.462 | 0.60 0.45 3582

Idle (Set (1, 1)) 4.969 6.198 | 0.64 0.54 2700
Idle (Set (1, 2)) 5.453 6.612 | 0.60 0.50 2304
Idle (Set (2, 1)) 6.798 9.443 | 0.50 0.26 3076
Idle (Set (2, 2)) 5.302 6.497 | 0.58 0.46 1173

Data sample

Data sample

Output
result
Data sample
Input Patten Summation Output
layer layer layer layer
FIGURE 5. The architecture of PNN.
Row 1
A .
----------- T TR S 7 S
\ ’ )
K Row 2
Prediction length: L
AT N A S
rowz [5G | % Jeomeeeenes
] j |
o [ | S Joeeoeeeeo
Target data
Input vector

FIGURE 6. The structure of input data used in PNN.

We set the number of layer and set as 2 which is the same to
Fig. 4. The ranges of two sets are set with a = b = 0.5ms for
both idle and busy duration.

Table 4 gives the results of SReal  qUnc [yReal 1Unc g4
M of the busy/idle duration of each stream after the DC
process for the video service. It shows that the proposed
DC differentiates each stream with different predictability
probability. For the busy duration data, the second stream has
the larger value I1Y"¢ than that of without the proposed DC
method. This also means the time-series busy data allocated
to second stream is easier to be predicted than other stream.
The idle duration data after DC process has similar results.
Table 5 shows the calculated results of the busy/idle duration
allocated to each stream using DC for the audio service. The
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FIGURE 7. Busy duration prediction using PNN (¢ = 0.5) with DC method (Video 480P, real case).

TABLE 5. The predictability results using DC method (Audio 320K, real
case).

Data type SReal SUnc HReal HUnc M
Busy (All data) 3.351 6.098 0.72 0.42 469
Busy (Set (1, 1)) | 5.096 6.441 0.52 0.35 359
Busy (Set (1, 2)) | 1.993 3.756 0.84 0.67 360
Busy (Set (2, 1)) | 5914 7.305 0.43 0.24 392
Busy (Set (2,2)) | 5.606 7.120 0.47 0.28 411
Idle (All data) 6.519 8.814 0.56 0.38 6670
Idle (Set (1, 1)) 5.812 7.463 0.59 0.45 3264
Idle (Set (1, 2)) 5.651 6.961 0.56 0.43 1501
Idle (Set (2, 1)) 7.640 10.305 | 0.45 0.20 4086
Idle (Set (2, 2)) 5.623 6.954 0.53 0.39 893

busy data allocated in second stream is easier to be predicted
than other streams, and than that of all busy data without DC
method.

IV. PROBABILISTIC NEURAL NETWORK (PNN) BASED
PREDICTOR WITH DURATION CATEGORIZATION

A. PROBABILISTIC NEURAL NETWORK

Based on a radial-basis function network, PNN is a devel-
oped feed-forward Bayesian network. The core of PNN
implements the statistical method called as Kernel Fisher
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discriminant analysis. It can classify the input training data
into different classes by estimating the PDF of each class and
optimize the weights of all neurons used for the prediction
stage. Fig. 5 shows PNN architecture which includes four
layers as input layer, pattern layer, summation layer and
output layer, respectively. During training stage, the input
vector as training values is received at input layer and then
passed to the pattern layer. Here, the dimension of the input
vector is same to the number of neurons of input layer.
In both pattern and summation layers, the Euclidean distance
between the reference vector and the incoming is calculated
and the multiplied by the result of a Gaussian activation
function at each neuron. Then, the contributions of the i-th
class is summed to result in a probability from the all
neurons in the summation layer which can be represented
with following equation as

| Ng; ||V*Viéj||2
Pi(x) = e i (12)
! o 2 J_Zl

Here vector v and v.; are the sample vector and the jth
training vector, respectively. We use Ng. and o; to represent
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FIGURE 8. Idle duration prediction using PNN with DC method (Video 480P, real case).

the number of training vectors for i-th class and the Gaussian
spread, respectively. [[v — v; ;] |> represents the squared
Euclidean distance between the jth training vector of i-th class
and the input vector. Finally the output layer selects the class
with the highest probability.

We use Fig. 6 to explain the data structure of the input data
used for PNN. Both the training stage and the prediction stage
of PNN algorithm have the same structure for the input data.
As shown in Fig. 6, the busy or idle data is processed and
shifted as data vectors (rows) and then input into the PNN
network for the training or the prediction. For i-th input row
which includes V duration data as [X;, - - - , Xj1+v, the target
data is represented as Xy with the prediction length as L.
For training stage, the value of Xy is labeled with index
as the target of output results of PNN. Therefore, the value of
target index is decided by the number of different values or M
in Table 2 and Table 3. The PNN method can find the efficient
weights of all neurons to build the class relation between the
W x V input matrix and their corresponding W x 1 vector with
the target indexes during the training stage. After that, for
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TABLE 6. PNN parameters.

Parameter Value
PNN column length W 400
PNN rows length V' 200, 400
Step size of sliding-window 1 sample
Number of neurons pattern, summation layer | 400, M
Percentage of training samples 70%
Percentage of testing samples 30%
Gaussian spread value o 0.5,0.8

prediction stage, the index value related to the corresponding
duration value is predicted using the weights of all neurons
of PNN.

B. THE PREDICTION PERFORMANCE OF PROPOSED DC
USING PNN

We utilize the busy idle duration data of Video-480P captured
at real case for the evaluation of prediction performance of the
DC method with PNN. The parameters of the PNN are listed
in Table 6. To evaluate the correlation among the time-series
data, we set the rows length V as 200 and 400, respectively.
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The Gaussian spread o has been set with two values of 0.5 and
0.8 for comparison. We use the CCDF (complementary
cumulative distribution function) distribution of prediction
error (Prob {prediction error > Err}) of the busy/idle duration
prediction in every stream to show the prediction performance
of PNN using DC method. Here the prediction error means
the difference between the true duration X;,. and the
predicted value Xpreq as (Xure — Xpre). Therefore, the
prediction error can be a negative value when Xpreq > Xpure.

Figs. 7 show the prediction performance of busy duration
using DC method with different rows length V, and
Gaussian spread o is set as 0.5 and 0.8, respectively. From
Fig. 7(a) to (d), the second stream (set (1, 2)) with about
16.373% total busy data shows the higher prediction accuracy
than that of using whole data without any DC process. From
the values of SReal gUnc [Real anq T1Un¢ in Table 4, the
values ITR¢@ and T1Y"¢ of time-series busy data of the second
stream are increased to 0.86 and 0.66, respectively. However,
the values TTR¢@ and TTY” of that in other three streams are
decreased which means the DC method differentiates the
whole data to make partial data to be easily predicted. The
PNN predictor can largely improve the prediction accuracy of
the second stream compared with that of without DC method.
The value V and o also have large impact on the prediction
performance of the second stream. The smaller V and o have
better prediction accuracy for the second stream. However,
for the other three streams, the values of V and o have less
influence on the prediction performance for the first stream
(set (1,1)) and third stream (set (2, 1)).

Fig. 8 shows the prediction performance of idle duration
using DC method with different rows length V', and Gaussian
spread o is set as 0.5 and 0.8, respectively. Similar to the
predicted results of busy duration in Fig. 7, the proposed
DC method also differentiates the whole data to make partial
data to be easily predicted. However, the prediction accuracy
is worse than that of busy duration prediction. The reason
is that, different with distribution of idle duration, the busy
duration of video service has many fixed length which makes
the prediction be more accurate. In addition, the value o of
the PNN-based predictor has large impact on the prediction
accuracy when the value V is 200.

It should be noted that the performance of prediction
accuracy is different with our previous DC method researches
in [19] and [25] where we used an auto-regressive based
predictor using the duration data captured at one major
railway station of Japan [19], and of audio service (real case)
[25], respectively. Based on our simulated results, the AR-
based predictor has worse prediction accuracy than that of
using PNN-based predictor because AR method is generally
linear model which cannot represent the complex relationship
among time-series data.

V. CONCLUSION

This paper has investigated the prediction accuracy of
busy/idle duration of two wireless services: audio service
and video service using neural network based predictor.
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We first studied the statistics distribution of their time-series
busy/idle duration, and then analyzed the predictability of
these busy/idle duration based on the predictability theory.
Then, we proposed a data categorization (DC) method which
categorizes the duration of recent B/I duration according the
their ranges to make the duration of next data be distributed
into several sets or streams. From the predictability analysis
of each stream and the prediction performance using the
probabilistic neural network, it can be confirmed that the
proposed DC can largely improve the prediction accuracy of
time-series data in partial streams.

The proposed DC method still exists many issues need
to be researched. For examples, how to decide the best
number of sets and set parameters for different time-
series data? What is the relationship between categorization
data and data predictability? And how to find one low-
complexity prediction method to achieve the upper bound of
predictability? These issues will be investigated in our future
research.
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