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ABSTRACT In recent years, both convolutional neural networks (CNN) and transformers have demonstrated
impressive feature extraction capabilities in the field of medical image segmentation. A common approach
is to utilize a combination of CNN and transformer encoders to efficiently learn both local and global
features, making them widely adopted techniques in semantic segmentation of medical images. However,
challenges remain due to the limited sample size of medical image datasets and the intricate foreground
edge information in these images. These challenges make it difficult for models to capture key structures
and information related to foreground edge details, especially when trained on smaller datasets. To address
these issues, we propose a U-Net-based model called ‘‘Rotate U-Net’’ (RotU-Net). Our model design is
inspired by the successful U-Net architecture, which is characterized by direct connections between encoders
and decoders, and skipping connections at multiple resolutions. Meanwhile, we propose weight rotator as
a feature extraction module, which enhances network to discriminate edge information in the foreground
region by computing partial element correlations to improve the network to focus on the foreground region
while reducing redundant information in the features. Finally, we have validated RotU-Net on the Synapse
Multi-Organ Segmentation Dataset (Synapse) and the Segmentation of Multiple Myeloma Plasma Cells
in Microscopic Images (SegPC). The experimental results show that RotU-Net with a very small number
of parameters achieves impressive performance, which demonstrates the effectiveness and efficiency of
RotU-Net.

INDEX TERMS Medical image segmentation, U-Net, weight rotation.

I. INTRODUCTION
With the development of computer vision field, advanced
techniques of artificial intelligence and deep learning have
been widely used in the medical field [1]. Medical image
segmentation is pivotal in the field of medical image analysis
and is a fundamental component of structural examina-
tion. Accurate and reliable medical image segmentation
algorithms can help doctors to diagnose disease types,
monitor disease progression and predict disease severity
and consequences, and also accelerate the automation and
intelligence of medical image processing [2], [3], [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Francesco Mercaldo .

Since the speedy development of deep learning, CNN have
been favored by researchers in the field of medical image
segmentation because of their robust feature extraction, and
as a result, a multitude of CNN-based networks have been
widely used in the field [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15]. The networks are not only able to adapt to
arbitrary size inputs, but also ensure the output of accurate
results by increasing the upsampling of data size. Notably,
U-Net is a widely used CNN-based network [11], which is
usually used in the task of segmenting organs, lesions and
structures in medical images such as CT scans, MRIs, X-rays,
and it achieved excellent results [12], [13], [14], [15]. Its
network structure mainly has encoder and decoder, where
the encoder learns the global contextual representation by
downsampling the extracted features layer by layer, and the
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decoder reduces the extracted representation to the resolution
used for pixel semantic segmentation by upsampling layer by
layer. In addition, in order to recover spatial information that
may have been lost during the downsampling process and
to enhance the ability of the network to capture foreground
detail, U-Net employs skip connections to link the outputs
of encoders and decoders of different resolutions. Although
such U-shaped convolutional networks have a powerful
ability to learn representations and have shown excellent
performance, they learn remote dependencies in a way that
only passes through the local receptive field, which leads to a
lack of remote modeling ability, for example, unsatisfactory
segmentation of structures of different shapes and scales.
Some researchers have tried to solve the above problems
by using dilated convolution or increasing the convolution
kernel [16], [17], which increases the receptive field to a
certain extent but also loses part of the detail information.
Therefore, there is still potential for improving the resolution
of intrinsic constraints associated with convolutional kernels.

In the past few years, transformer has achieved state-
of-the-art (SOTA) results in the field of natural language
processing (NLP) on a variety of tasks [18]. The self-attention
mechanism in transformer achieves it by modeling the impor-
tance of each element with respect to the other elements,
allowing the model to dynamically assign corresponding
weights to each element and to focus on important elements
in the feature map, thus achieving the ability to capture the
global contextual information. Thanks to the development
of transformer, more and more academics have applied
transformer in computer vision [19], [20], [21], [22], [23].
Transformer can help the network to perceive the relationship
between the elements in the image, and improve the model
performance when dealing with images with a large range
of organ structures. Among them, Cao et al. proposed
SwinUNet to solve the problem of poor local modeling
ability of transformer, which is difficult to focus on the local
information of foreground region effectively [24]. SwinUNet
is a U-shaped network composed entirely of transformers,
and local correlation computation is achieved by designing
sliding windows, which solves the problem of poor extraction
of local features and reduces the computational complexity,
but it cannot change the weak local modeling of transformers.
Chen et al. proposed transUNet combining U-Net and
transformer [26], which has the advantages of both and is a
powerful alternative for medical image segmentation. With
the combination of U-Net, transformers can be used as a
powerful encoder for segmentation tasks by recovering the
local spatial information.The proposal of transUNet lays the
foundation for subsequent research combining CNN and
transformer. At the same time, the weights of the transformer
need to be pre-trained using a large amount of dataset,
which may lead to unsatisfactory results on small sample
datasets. Although all of the above proposed networks can
effectively achieve global and local elemental modeling,
they produce redundant information in calculating elemental
correlations, which makes the networks pay little attention

to the foreground region. Meanwhile, the edge structure
and information of the foreground region is beneficial for
segmentation, which has often been neglected in past studies.
Considering the shortcomings in past studies, we propose
RotU-Net. Overall, we make the following contributions:

• We designed the weight rotator, a module that breaks the
fixed spatial structure of the feature map through local
image rotation, allows features at different locations to
interact with each other remotely and computes some of
their correlations, thus enhancing the ability of network
to utilize foreground information as well as discriminate
the edge structure and information in the foreground
region.

• We propose a new U-Net-based network: RotU-Net,
which retains the design of U-shaped structure, extracts
features layer by layer by CNN and calculates the
correlation of some important elements by weight rota-
tor, which enhances our model to focus on foreground
regions and better localizes and segments foreground
regions.

• Our model is validated on Synapse and SegPC datasets.
Results of the experiment validate and demonstrate the
effectiveness of RotU-Net.

II. RELATED WORK
A. CNN-BASED NETWORK ARCHITECTURE
Before deep learning was widely used, medical image
segmentation wasmainly performed bymanually segmenting
the foreground region or by traditional machine learning
methods. Since the introduction of CNN in medical image
tasks, the number of CNN-based segmentation networks has
exploded and achieved SOTA on various medical image
segmentation datasets. e.g., FCNs [9], V-Net [10], U-
Net [11], R50 U-Net [26], DARR [27] and U-Net++ [28].
Long et al. proposed fully convolutional network (FCNs) to
solve the segmentation problem [9], which utilizes softmax to
obtain the classification information for each pixel point and
achieve pixel-level prediction. Milletari et al. proposed a 3D
image segmentation method based on a fully convolutional
neural network: the V-Net [10], which utilizes a V-shaped
CNN to learn the complex structures in medical images, and
can achieve high-precision segmentation, while the V-shaped
structure provides a new method for later segmentation
networks. The working principle of U-Net is mainly to learn
the global contextual representation through layer-by-layer
downsampling in the encoding stage, and to reduce the
extracted representation through layer-by-layer upsampling
in the decoding stage, while using skip connections to link
the encoder and decoder with different resolution. However,
with the application of U-Net, more researchers have found
some problems with the U-Net structure and proposed
improvement methods [26], [27], [28], [29], [30]. Although
the skip connections of U-Net improves the problem of
losing too much spatial information in the downsampling
process, some researchers believe that such a connection
brings the problem of semantic divide. So as to improve the
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TABLE 1. Part of the related work overview.

semantic divide issues of U-Net, researchers have proposed
the UNet++ and UNet3+ [28], [29], and the formers solve
the semantic divide problem through a complex nested
connection structure, and the latter combines different levels
of semantic information through a full-scale connection
framework. However, the improved skip connections increase
the computational complexity of the model and are not
conducive to model generalization. In terms of improving
U-Net to extract foreground information in feature maps.
Xiao et al. proposed to use skip connections operation in the
encoder of R50 U-Net to deepen the depth of downsampling
and expand the sensory field [26], which is useful for
segmenting foreground regions with large targets. However,
the network structure with too much depth causes too much

detail information to be lost during downsampling, leading
to poor performance in small target segmentation. Meantime,
scholars are working on solving small target segmentation.
Xiao et al. added attention module to the R50 U-Net [26]
to make the model focus on the foreground region, and the
introduction of the attention module at the local level also
accelerated the development of small target segmentation
methods for medical images. Overall, a very large number
of researchers have improved the segmentation results of
medical images by improving the U-shaped network, and
their methods have gained a certain degree of success.
However, CNN-based network architectures have inherent
structural drawbacks: the convolutional kernel can only cap-
ture small-sized local information aspects because of its fixed
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receptive field, which leads to an inability to learn global
contextual information, and it performs poorly in establishing
long-range spatial dependencies, which seriously affects the
segmentation results. Therefore, the U-shaped network based
on CNN still has room for improvement.

B. TRANSFORMER-BASED NETWORK ARCHITECTURE
Because of transformer powerful context learning and global
modeling capabilities, and it was also quickly applied
in various domains. Dosovitskiy et.al first proposed vit-
transformer [19], which explored the potential of transformer
in computer vision. Vit-transformer has achieved SOTA per-
formance on large datasets in various computer vision tasks,
but the results achieved on small datasets are unsatisfactory.
This is due to the fact that the transformer has too many
parameters, which makes it difficult to converge when trained
on small datasets. Therefore, researchers have made many
efforts to speed up transformer training and and improve
model performance in computer vision tasks. Cao et. al
proposed SwinUNet [24] in order to speed up transformer
training while ensuring model performance. SwinUnet is a
purely transformer-based u-type codec structure with skip
connections. It reduces the overall computational complexity
of the model through the W-MSA module and computes
the feature maps through the attention mechanism of
the transformer, while the SW-MSA module is proposed
to realize the information interaction of local features.
Azad et al. proposed DAE-Former [31], a novel transformer
architecture guided by a dual attention mechanism, whose
main contribution is to maintain computational efficiency
by restricting the attention mechanism to a localized region
while capturing spatial and channel relationships across the
feature dimension. In addition, skip connection paths are
redesigned by means of a cross-attention module to ensure
feature reusability and to enhance the segmentation capability
of the model.Li et al. proposed Segtran [32], which centers
on the possibility of simultaneously capturing global context
and detail features with the help of an improved Squeese-
and-Expansion Transformer layer, while using a new feature
encoding approach that can apply continuous inductive bias
to the image. The transformer is widely used for its excellent
global modeling capabilities and superior performance on
large datasets. However, the transformer tends to ignore the
local information in the feature map when computing the
global information through the attention mechanism. For
medical image segmentation, the sample size of the dataset
is limited, and at the same time, the foreground regions in
medical images often require the model to extract their local
information. In summary, for medical image segmentation
models, using only the transformer structure will affect the
final segmentation results.

C. NETWORK ARCHITECTURE WITH COMBINATION OF
CNN AND TRANSFORMER
In order to improve the insufficiency of CNN global
feature extraction and transformer local feature extraction,

Chen et al. made the attempt to combine U-Net and
transformer and proposed TransUNet [25]. It extended
the U-shape network structure and skip connections of
U-Net and added the last layer of downsampling to
the transformer. In subsequent studies, researchers have
improved the network based on TransUNet to enhance the
segmentation performance. For example, Yao et al. proposed
TransClaw U-Net [33], which combines a convolutional
network with a transformer in the encoding stage, where
the convolutional part is responsible for extracting shallow
spatial features to help recover the resolution of the image
after up-sampling. the transformer part is responsible for
encoding the patches. The decoding phase preserves the
structure of the upsampling to achieve better detail seg-
mentation performance. However, such a network structure
also brings great computational complexity and greatly
occupies computational resources. Chen et al. proposed
TDs-TransUNet based on swin transformer [34], of which
dual-scale encoder to extract different coarse-grained and
fine-grained feature representations, while the Transformer
Interactive Fusion (TIF) in the network effectively establishes
the dependencies between multiscale features. Heidari et al.
extracted twomulti-scale feature representations in HiFormer
with the pioneering swin transformer module and CNN-
based encoder [35], and proposed to cross-fertilize the two
representations with global and local features using the
DLF fusion module. In addition, several excellent CNN
and transformer combination methods have emerged in the
field of medical image segmentation [36], [37], [38], [39],
[40], [41], [42], [43], [44], [45], and these hybrid structured
networks aim at balancing the weights of the proposed
obtained local and global information, but at the expense of an
excessive number of model parameters and a complex model
structure.

In order to show more clearly the related work in recent
years, we show some of the related work overview in Table 1.

III. METHODS
In this section, we introduce RotU-Net, and model overview
is shown in Figure 1. RotU-Net mainly consists of encoding
phase and decoding phase. The model components included
in the encoding phase are the CNN layer, the feature layer,
and the weight rotator. The decoding phase mainly recovers
the feature mapping by inverse convolution. We use skip
connections between the encoder and decoder to minimize
the loss of spatial and semantic information during the
downsampling process. In the following we explain each part
of RotU-Net in-depth.

A. ENCODER OF ROTU-NET
Our encoder references the network architecture of ResNet50
in the CNN layer. ResNet50 is more likely to learn identity
mapping at certain layers, whereas residual networks allow
information to flow between layers, including providing
feature reuse during forward propagation and mitigating
gradient signal vanishing during backpropagation. Figure 2
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FIGURE 1. Overview of the RotU-Net.

FIGURE 2. Encoder stage and convolutional blocks and of RotU-Net.

shows the encoding stages of RotU-Net, where stage 1,
stage 2 and stage 3 are executed three times respectively.
We use two kinds of convolutional blocks in the encoding
stage, and the most used one is block 2. Block 2 adopts a two-
branch structure, and the size of the convolutional kernels
of the two branches are 3 and 1 respectively. We believe
that different convolutional kernel sizes affect the granularity
of local feature extraction, and in order to extract the
foreground information more adequately, our model adopts
this convolutional block structure.RotU-Net has multiple
encoding stages. The size of the input encoder feature maps
is 3 × 224 × 224 and the size of the output feature maps
is 1024 × 14 × 14. The computation of the feature maps in
the encoding stage is demonstrated in Figure 2. It is worth
mentioning that the CNN blocks used in our network use
group normalization in the normalization part compared to
the convolutional blocks of ResNet. This is because the
batch normalization of the ResNet can lead to failure of
the experiment in case of limited computational resources.
Whereas, the group normalization used in our model can be a
good solution to the situation where the experimental results

are poor because the input batch is too small. The number of
groups chosen for group normalization is 32.

B. WEIGHT ROTATOR
As shown in Figure 3, we demonstrate the operation of weight
rotator. To explain how it works, we assume that the input
feature map of the module is represented as F ∈ R1×h×w,
where 1 represents the channel of the feature map, h is the
length of the feature map and w is the width of the feature
map. For capturing and learning the relationships of elements
at different positions in the feature map, the weight rotation
module takes the 1/4 featuremap as the basic unit. The feature
map F is divided into four feature blocks:

F =

(
J1 J2
J3 J4

)
(1)

The four feature blocks are represented as Ji ∈

R1×
h
4×

w
4 (i = 1, 2, 3, 4). Specifically, J1 =

(
I(0,0) I(0,1)
I(1,0) I(1,1)

)
,
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FIGURE 3. Weight Rotator: In order to describe the activation ranges of row softmax and column softmax, we take the first row and column of
the feature map as an example and label them with red and purple boxes, and use the softmax for the other rows and columns.

J2 =

(
I(0,2) I(0,3)
I(1,2) I(1,3)

)
, J3 =

(
I(2,0) I(2,1)
I(3,0) I(3,1)

)
, and

J4 =

(
I(2,2) I(2,3)
I(3,2) I(3,3)

)
.

Then performe a 90 degree clockwise rotation for each
feature block to obtain the feature map F1:

F1 = Rotation(F) (2)

At this point, the four feature blocks of the feature map

F1 are J1 =

(
I(1,0) I(0,0)
I(1,1) I(0,1)

)
, J2 =

(
I(1,2) I(0,2)
I(1,3) I(0,3)

)
, J3 =(

I(3,0) I(2,0)
I(3,1) I(2,1)

)
, J4 =

(
I(3,2) I(2,2)
I(3,3) I(2,3)

)
. In order to enhance

the importance of foreground information in the feature map
and to strengthen the edge information in the foreground,
we activate the rotated feature map F1 using row softmax
and column softmax, respectively, and subsequently add the
parallel feature map to obtain the weighted feature map λ,
which we define as parallel softmax:

λ = Parallel softmax(F1)

= Row softmax(F1) + Column softmax(F1) (3)

Afterwards, the weighted feature map λ is rotated
90 degrees counterclockwise back to its original position to
obtain the weighted map λ1:

λ1 = Inverse Rotation(λ) (4)

Finally, so as to make model learn the elemental relation-
ship between the weighted feature map and the feature map,
the weighted feature map λ1 is multiplied with the original
feature map F and then summed to obtain the final weighted
feature map F2:

F2 = F + F × λ1 (5)

The above describes how weight rotator works. For feature
map F , weight rotator breaks its intrinsic spatial structure,
allows elements at different positions in the feature map to
interact to capture more inter-element semantic information,
and enhances the utilization of foreground information by
calculating the correlation between some of the elements to

enhance the attention of network to foreground regions. At the
same time, the model also learns the feature representations
under different transformations, which improves network to
discriminate foreground edge information.

C. DECODER OF ROTU-NET
The decoding stage in this paper is the same as the TransUNet
decoding stage and uses the same number of skip connection.
Figure 4 shows the complete computation of the feature map
in the decoding stage. The decoding stage uses an extended
convolutional kernel to recover the size of the feature map
where the size of the convolutional kernel is 3×3. The
method used for upsampling in the decoder is the bilinear
interpolation algorithm. Meanwhile, in order to minimize
the missing important information caused by downsampling,
the skip connection in the model concatenate the feature
maps from the decoder with the feature maps from the
previous layer in the channel. The U-shaped structure of the
skip connection combine low-level features and high-level
semantic features.

D. LOSS FUNCTION
Due to the limited size of the medical image dataset and the
fact that the region to be segmented in the image is only a
small part of the entire image. These issues can cause the
model to overfit during training. We propose to use Dice loss
function and cross-entropy loss function as loss functions to
solve these problems. The main role of the Dice loss function
is to solve the negative problem caused by the imbalance
between foreground and background information in medical
images, And it emphasizes foreground information more
during the training process. The Dice loss is related to the
Dice coefficient, which is used to evaluate the similarity
between the label and the predicted value, the higher the
Dice coefficient, the higher the similarity is proved. The Dice
coefficient is shown as follows:

Dice =
2 × |M ∩ N |

|M | + |N |
(6)
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FIGURE 4. Decoder of RotU-Net.

M and N represent two sets, respectively, where |M ∩ N |

denotes the number of elements intersecting M and N , and
|M | and |N | denote the number of elements in the sets M
and N , respectively. The Dice loss is calculated as follows:

LDice = 1 − Dice = 1 −
2 × |M ∩ N |

|M | + |N |
(7)

where M and N represent ground truth and predicted value,
respectively. Meanwhile, using only the Dice loss function
creates the problem of loss saturation. In contrast, cross
entropy loss as multiclassification loss function, treats each
pixel point equally when calculating pixel loss.

LCrossEntropy = −

∑
x
(p(x) log q(x)) (8)

where p(x) and q(x) represent ground truth and predicted
values respectively. The ground truths are the labels in the
datasets and the predicted values are the outputs predicted
by the model. A small cross-entropy value indicates that
the labeled and predicted values are similar and the model
predicts better. To summarize, our loss function combines
Dice loss and cross-entropy loss in the training process.
In order to optimize both loss functions equally, these two
loss functions are each given weight coefficients µ1 and µ2,
both coefficients are fixed values of 0.5:

Lloss = µ1 × LDice + µ2 × LCrossEntropy (9)

IV. EXPERIMENTS
A. DATASETS
1) SYNAPSE MULTI-ORGAN SEGMENTATION DATASET
(SYNAPSE)
This dataset includes 3779 2D axial abdominal clinical CT
images extracted from 30 3D samples [25]. These images

contain a varying number of organs, with some containing
8 foreground organs (aorta, gallbladder, left kidney (Kid-
ney(L)), right kidney (Kidney(R)), liver, pancreas, spleen,
stomach), some containing 4 foreground organs (aorta, left
kidney (Kidney(L)), right kidney (Kidney(R)), liver), and
some containing 3 foreground organs (aorta, kidney(L), kid-
ney(R)). foreground organs (aorta, liver, stomach). Overall,
the images in this dataset consisted of different categories of
organs, respectively. Since the distance between foreground
organs in these images varies, some organs are very close to
each other and some are far away from each other. Therefore,
to accurately segment the various categories of organs in this
dataset, it is more important for the network to have both local
and global modeling capabilities. Similar to TransUNet, this
paper uses 2211 images as the training set and 1568 images
as the test set.

2) SEGMENTATION OF MULTIPLE MYELOMA PLASMA CELLS
IN MICROSCOPIC IMAGES (SegPC)
This dataset was taken from bone marrow aspirate sections
of patients with multiple myeloma, a form of leukemia [46].
The dataset consists of 491 images, each containing several
myeloma plasma cells, with segmentation targeting the
cytoplasm and nucleus of the cells. We will use 398 images
as a training set and the remaining 93 images as a test set.
The dataset is available for download and we will provide the
download address at the end of the paper.

B. EXPERIMENTAL SETUP
In our experiments, python version is 3.6 and pytorch version
is 1.6. the models are trained and tested on two NVIDIA
Tesla V100 GPUs. We have no data augmentation of both
datasets, and set the image size of the input network to
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224 × 224. During training, we use the SGD optimizer,
in which momentum is set to 0.9 and the learning rate is set
to 0.01. Meanwhile, we set the batchsize to 24 and the epoch
to 600.

C. EVALUATION METRICS
Because medical images containing a lot of noise, the
background information area tends to be larger than the fore-
ground information area. Even if all foreground information
is misclassified as background, the accuracy may still be
high. So we use the Dice score (DSC) and Hausdorff distance
(HD) metrics as benchmark metrics to evaluate the network
performance. The similarity coefficient is a measure used to
evaluate the similarity between sets and is usually quantified
by the following formula:

DSC =
2 × |X ∩ Y |

|X | + |Y |
× 100% (10)

For our experiments, X and Y represent the ground truth
and predicted value, respectively.

Hausdorff distance is an evaluation metric for measuring
the similarity of two sets in space, and HD can be defined
as the discrete value obtained by quantifying 95% of the
maximum difference between the labeled value and the
predicted value. It is calculated as follows

HD = max
k=95%

[d(X ,Y ), d(Y ,X )] (11)

whereX and Y represent the ground truth and predicted value,
respectively.

D. RESULT ON SYNAPSE
1) COMPARATIVE EXPERIMENTS ON SYNAPSE
In Table 2, we present experimental results for RotU-Net and
other SOTA methods on Synapse. In subsequent sections,
we analyze these results in light of various network properties
and experimental results.

The liver, as the organ with the largest area and the
most edge information among the eight foreground organs,
requires the network to be able to model global features
correlatively for global feature extraction. Our analysis
is proved in the experimental results that the networks
dominated by the transformer have better global modeling
capabilities, so they achieve higher DSC when segmenting
the liver. Taking the DSC of the main few networks as a
comparison, SwinUNet and TransUNet, the networks with
transformer as the main architecture, have an averageDSC of
94.19% in liver segmentation, and U-Net and Att-UNet, the
networks with CNN as the main architecture, have an average
DSC of 93.5% in liver segmentation. The results show that
transformer-based networks are more effective in segmenting
larger organs such as the liver, which can also prove that
transformer has better global modeling capability.

In the segmentation of aorta, the network composed of
convolutional kernel has better DSC , for example, U-Net has
89.07% DSC in the segmentation of aorta, and Att-UNet has

up to 89.55% DSC in the segmentation of aorta. In contrast,
networks with transformer as the main architecture have
lower DSC in segmenting the aorta, for example, DSC of
SwinUNet for aortic segmentation is 85.47%, and Tran-
sUNet, which performs better, has a DSC of only 87.23%.

From the results in the Table 2, it is clear that CNN-based
network has better results in segmenting the aorta. When
analyzed in relation to specific medical images, this is
because the aorta has the smallest area among the eight
foreground organs and is located far away from other
organs. In order to achieve accurate segmentation of aortic
organs, the network needs to extract local features from
the image. Compared to transformer-based architectures,
CNN-based networks have better local feature extraction
capability. Therefore, CNN-based networks perform better in
segmenting smaller organs such as the aorta.

The gallbladder organ requires the network to have strong
local modeling and organ boundary sensing ability when
segmenting, this is because the boundary of the gallbladder
organ is closely connected to the boundary of the liver organ.
In the comparison experiments in Table 2. The DSC of
U-Net and Att-UNet are 86.67% and 87.3%, which are better
compared to TransUNet in gallbladder organ segmentation.
The network proposed in this paper has a DSC of 70.51%
in gallbladder segmentation, and we analyze that the weight
rotator in the network enhances the ability to perceive and
discriminate the structure and information of the edges of
the foreground region. For pancreas segmentation, its main
segmentation difficulty lies in the multiple and complex
boundary information caused by the non-smooth surface
of the organ. This requires the network to have global
modeling capability while also requiring the network to
locally model the boundary parts of the organ. Networks
architectures containing CNN and transformer have better
segmentation results compared to networks with only CNN,
the average DSC of pancreas for SwinUNet, TransUNet is
56.22%, while the average DSC of pancreas for U-Net and
Att-UNet is only 56.01%. The network proposed in this
paper has a DSC of 64.92% in pancreas segmentation, and
the comparative results demonstrate that our network adds
local modeling without weakening the global modeling for
foreground information.

Spleen, kidney (left), kidney (right), stomach and other
organs have the same characteristics in medical image
segmentation, they are relatively large in area and close to
other organs. The above organ distribution characteristics
require the network to have the ability of global modeling
and local modeling. At the same time, the network is also
required to have certain boundary recognition ability. From
the experimental data in Table 2, compared with the network
with only CNN, the network with both CNN and transformer
has better segmentation effect. For example, the average
DSC of TransUNet for these four foreground organs is
79.9%, while U-Net and Att-UNet are only 77.16% and
78.04%, respectively. The RotU-Net significantly improves
the segmentation performance of all four organs with an
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TABLE 2. DSC (%) and HD (mm) obtained for each different network architecture and ecological network on the Synapse.

average DSC of 84.37%, which is an improvement of 4.47%
compared to TransUNet. This also proves that our model has
strong local modeling and boundary structure identification
capabilities while maintaining global modeling.

Figure 5 shows the predicted images of state-of-the-
art models in the field of medical image segmentation in
recent years. In the visualized image, we can see that the
network with CNN has better performance for segmentation
of small organs. The network with transformer structure
can segment large organs such as liver better because of
its global modeling capability, but this also weakens the
local modeling and boundary perception capability of model.
For example, in the second row of the prediction images,
we can see that the network with transformer structure has
the problem of misjudging the foreground information and
blurring the boundary segmentation. The proposed weight
rotator enhances the recognition of the boundary structure
because it fully extracts the edge information, thus improving
the overall performance of the network.

2) ABLATION EXPERIMENTS ON SYNAPSE
Table 3 shows the DSC(%) and HD(mm) of the networks
row softmax, column softmax and parallel softmax with
different dimensional softmax after rotation. We can see that
the average score of weight rotator with column softmax is
slightly higher than that of weight rotator with row softmax,
which is due to the fact that after local rotation, there are more
organ edges in the vertical texture of the image, which allows
the network to learn more edge information and improve the
DSC , whereas the weight rotator with parallel softmax can
take care of both horizontal and vertical image textures, which

allows the network to fully utilize the organ edge information
and achieve the highest DSC of 82.15%.

Figure 6 shows the predicted images of the ablation
experiment on the Synapse dataset. The weight rotator with
column softmax is more sensitive to the edges of foreground
segmentation than weight rotator with row softmax. For
example, in the first and third row prediction images, column
softmax delineates more edge structures than row softmax.
While parallel softmax, which parallelizes row softmax and
column softmax, almost completely distinguishes between
foreground and background information, captures and uti-
lizes more local information in the first and second rows
of prediction images, reducing the area of false positive
segmentation. Meanwhile, in the third and fourth rows,
parallel softmax segmented the foreground structures that
almost overlapped with the labels, which is due to the fact that
the weight rorator of the parallel softmax network performs
a two-dimensional softmax, which learns more foreground
edge information in between the rows and columns. The
visualization of the predicted images proves the effectiveness
of weight rotator.

E. RESULT ON SegPC
1) COMPARATIVE EXPERIMENTS ON SegPC
As shown in Table 4, we show the experimental results
for different network architectures on the SegPC dataset.
We can see in the table that the network segmentation
performance of CNN-based architecture is better than that
of transformer-based structure. For example, the DSC of
U-Net and Att-UNet are 79.62% and 78.59%, respectively,
while the scores of networks with transformer architectures
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FIGURE 5. Predicted images of different networks on the Synapse dataset. The white rectangular boxes in the figure represent elements that were
misclassified as elements in other categories.

TABLE 3. Results of ablation experiments of the weight rotator on Synapse.

such as TransClaw and TransUNet are only 78.10% and
78.95%. The image of the SegPC dataset consists of two
kinds of foregrounds, cytoplasmic and nucleus, which not
only have a small in area, but also small in neighboring
distance. By analyzing the SegPC dataset in combination
with its characteristics, the model is required to provide
better local modeling and boundary sensing capabilities
if better segmentation is to be achieved. Therefore, the
CNN-based network represented by U-Net performs better
than the transformer-based network on this dataset. It is worth
mentioning that our network achieves optimal segmentation
results on the SegPC dataset. We analyze that the weight

rorator can better model the foreground information, and at
the same time fully utilize the foreground edge information
so that the model as a whole can better recover the contour of
the foreground.

Figure 7 shows the prediction image of the different
networks we obtained on the SegPC. From the prediction
images in the second and fourth rows, we can see that
the CNN-based network is excellent in local modeling but
poor in discriminating the connected foregrounds, which
is because the connected foregrounds require the network
to extract the foreground edge information in order to
sense and discriminate the foreground structure. The weight
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FIGURE 6. Predicted images of ablation experiments on the Synapse
dataset. White rectangular boxes represent region elements that were
misclassified as elements of other categories.

TABLE 4. DSC(%) and HD (mm) obtained for each different network
architecture and ecological network on the SegPC.

rorator proposed in this paper enhances the perception of
foreground edges and structures by locally rotating the image
without degrading the local modeling capability. So RotU-
Net has better performance in segmenting tightly connected
foregrounds compared to other network structures. As we can
see from the predicted images in the first row, U-Net and R2-
UNet do not dominate to the foregrounds at longer distances
when segmenting the images, whereas Att-UNet improves
the lack of global modeling ability to some extent because
of the addition of the attention mechanism. Meanwhile,
the models of other transformer-based structures except
TransUNet segmented the foregrounds that are far away from
each other through global modeling, we analyze that the
reason why TransUNet failed to segment the feature points

TABLE 5. Results of ablation experiments of the proposed module on the
SegPC.

at a long distance is that the convolutional blocks in this
network play a greater role in extracting the image features.
From the predicted images of different models, our model
can better distinguish between the two types of foregrounds,
which proves the effectiveness of RotU-Net.

2) ABLATION EXPERIMENTS ON SegPC
As can be seen from Table 5, weight rotator with parallel
softmax outperforms weight rotator with column softmax,
which in turn outperforms weight rotator with row softmax,
while they both improve their performance compared to
the existing SOTA models. This proves that weight rotator
can indeed improve the original model underutilization of
foreground structure and edge information. In addition,
compared with the softmax for rows and columns alone,
the parallel column softmax and row softmax can further
enhance the perception and discrimination of foreground
edge information in the net.

As shown in Figure 8, we demonstrate the predicted
images of the ablation experiments on the SegPC dataset.
Although all three have the error of mistaking background
information for foreground information, parallel softmax
has the lowest overall error rate. Meanwhile, we can see
from the prediction images that parallel softmax has clearer
boundaries in segmenting the foreground region compared
to row softmax and column softmax, while having smaller
misclassification regions. This is due to the local modeling
capability of our proposed network as well as the boundary
awareness capability.

F. COMPARISON OF NETWORK PARAMETERS
As shown in Table 6, we compare the model parameters
and Floating Point Operations (FLOPs) of the proposed
RotU-Net with previous SOTA methods. The results show
that the RotU-Net has the lowest parameters and the FLOPs
reach sub-optimal only after SwinUNet. This demonstrates
the excellent performance of the model proposed in this
paper despite the minimal number of parameters and
operations. It also highlights the effectiveness and innovation
of RotU-Net.

G. DISCUSSION
In the task of medical image segmentation, the intricate
nature of diverse foreground structural information within the
image, coupledwith a non-uniform distribution of foreground
features. These are the challenges to be faced by segmentation
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FIGURE 7. Predicted images of different networks on the SegPC dataset. The dataset includes two types of foreground information and one type of
background information.

FIGURE 8. Predicted images of ablation experiments on the SegPC.

networks at this stage. Over the recent years, the widespread
adoption of CNN-based and transformer-based models
in the medical image domain has yielded commendable
results, prompting an increasing number of researchers to
improve the existing models based on CNN and transformer.

TABLE 6. Parameter (M) and FLOPs (G) between different network
architectures.

CNN-based networks mainly include U-Net and Att-UNet.
U-Net structures concatenate low-level features and high-
level features by skip connection, while the lightweight
structure has much room for improvement, but the down-
sampling process inevitably loses the edge information.
Xiao et al. proposed to add an attention module to R50 U-Net,
which makes the model more sensitive to foreground regions
andmore accurate for small target segmentation. Despite this,
the fixed-size convolutional kernel imposes restrictions on the
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receptive field, hindering optimal performance inmulti-organ
segmentation tasks. Transformer-based models such as
TransUNet and SwinUNet, mainly solve the problem of
global modeling. SwinUNet consists entirely of a U-shaped
network of transformers, and uses the swin transformer
as the basic unit for feature representation and learning
remote semantic information, with excellent performance and
generalization capabilities. In TransUNet architecture, the
transformer encodes the CNN feature map as a contextual
sequence, and the decoder upsamples the encoded features,
which are then combined with the high-resolution feature
map to achieve accurate localization. SwinUNet is a pure
transformer network that establishes correlations between the
overall elements of the feature map, but at the cost of losing
local information in the feature map. This makes SwinUNet
difficult for segmentation of small lesions.TransUNet uses
a shallow convolutional kernel to extract local information
from the feature map, and then uses transformers at deeper
layers of the network to extract global information between
elements in the feature map. While this allows the network
to have both local and global modeling capabilities, the
granularity of the local modeling still makes it difficult
to discriminate the classes to which the edge information
of a lesion area belongs. Therefore, how to utilize the
foreground information more effectively and better identify
and segment the foreground edges on the basis of local
modeling and global modeling has become a problem
that needs to be solved. In this paper, we introduce a
novel approach by incorporating a weight rotator into the
U-shaped network. This innovation leverages the local
rotation of the image to disrupt the intrinsic order of the
image, enabling features at different locations to interact
with each other across distances. By calculating correlations,
the model learns additional foreground edge information
without compromising the benefits of local and global
modeling. Consequently, this enhancement improves the
utilization of foreground information and refines the structure
and information extraction from the foreground region,
enhancing the capacity of model to recognize edge structures
and information within the foreground region. Moreover,
it significantly bolsters the model robustness. Table 3 and
Table 5 in this section demonstrate that RotU-Net has better
performance compared to full convolution or transformer
combined with convolution. Figure 5 and Figure 7 visualize
the prediction images of the state-of-the-art model. As can
be seen in the visualization, RotU-Net is more sensitive to
the foreground edge information in the image. Also, we have
conducted a number of ablation experiments to demonstrate
the effectiveness of the proposed module. In summary,
the proposed model improves the existing medical image
segmentation network to some extent and improves the
performance of the current network. However, RotU-Net
learns by local rotation of the image, and this local rotation
is chosen by human beings, how to make the model
automatically learn the correlation relation aspect of different
regions is the next direction of our research.

V. CONCLUSION
In this paper, we proposed a new U-shaped network: RotU-
Net. The proposed network not only extracts the local
information of the features by CNN, but also helps the model
to better recognize and capture the boundaries of the objects
by weight rotator, and computes the spatial correlation of
some important features to improve the perception of the
important features. We conducted experiments on Synapse
and SegPC datasets and verified the effectiveness of the
proposed model. Overall, RotU-Net shows the ability to
effectively perceive the edge structure of the foreground
region and extract edge information, and implements the
computation of important feature correlations. The corre-
lation computation method of weight rotator proposed in
this paper may ignore some background information, and
our future work will be devoted to achieve better feature
correlation computation.
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