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Autoscaling Solutions for Cloud Applications
Under Dynamic Workloads

Giovanni Quattrocchi , Emilio Incerto , Riccardo Pinciroli , Catia Trubiani , and Luciano Baresi

Abstract—Autoscaling systems provide means to automatically
change the resources allocated to a software system according to
the incoming workload and its actual needs. Public cloud providers
offer a variety of autoscaling solutions, ranging from those based
on user-written rules to more sophisticated ones. Originally, these
solutions were conceived to manage clusters of virtual machines,
while more recently, they have also been employed in the opera-
tion of containers. This article analyses the autoscaling solutions
provided by three major cloud providers, namely Amazon Web
Services, Google Cloud Platform, and Microsoft Azure, and com-
pares them against two solutions we develop based on control theory
(ScaleX) and queuing theory (QN-CTRL). We evaluate the different
approaches using both an in-house simulation engine and cloud
deployments by feeding them with various synthetic and real-world
workloads. Our extensive evaluation collects both simulation re-
sults and real measurements by which we can assess that both
ScaleX and QN-CTRL outperform industrial techniques in most
cases when considering the trade-offs between the service-level-
agreement (SLA) violations and the optimal usage of resources.

Index Terms—Autoscaling, elastic computing, cloud computing,
containerization, containers, control theory, optimal control.

I. INTRODUCTION

SOFTWARE systems are increasingly sophisticated, and
they frequently need to handle a wide range of dynamic

workloads while maintaining a set service quality [1], [2]. As
a result, system scalability is extremely important, and compu-
tational resources should be allocated as needed [3], [4], [5].
Provisioned resources should, ideally, match the intensity of
dynamic workloads to be served and avoid both underprovi-
sioning (i.e., resources are not enough to handle the workload)
and overprovisioning (i.e., resources are more than needed)
scenarios [6], [7].
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Nowadays, cloud computing provides different means to
change and provision resources to an application up to a the-
oretically infinite upper-bound [8]. These means lead to au-
toscaling systems. They were originally conceived for clusters
of virtual machines (VMs), and users were in charge of defining
the rules that change cluster sizes (i.e., horizontal scalability).
VMs are “slow” to boot, scale, and manage, and thus limit
the efficiency of autoscaling mechanisms that can only operate
at low frequency. The autoscaling systems dedicated to VMs
offered by Cloud providers are usually focused on horizontal
scalability (adding/removing VMs), while their vertical scal-
ability (resource configuration of an existing VM) is almost
unexplored.1

Compared to VMs, containers [9], i.e., a lightweight virtu-
alization technology, are quicker to boot and manage. They
provide means to quickly start new replicas in a few seconds,
and to (partially) reconfigure provisioned resources at runtime
in hundreds of milliseconds [10]. Containers can be run on
bare-metal machines or on VMs to allow for multiple processes
to share resources in a controlled way and without a signif-
icant overhead [11]. This motivates the usage of containers
thus enabling faster and finer-grained autoscaling capabilities,
compared to VMs, and allowing for the management of rapid
changes and fluctuations of dynamic workloads [12], [13]. As for
VMs, industrial approaches focus on the horizontal scalability
of containers.

Public cloud providers allow users to directly manage both
VMs and containers and also offer diverse autoscaling capa-
bilities, either built-in or added by external orchestrators (e.g.,
Kubernetes [14]). Although these solutions are largely adopted
by industry [15], they are based on rules that are defined by
users or heuristics and they may encounter sub-optimality (i.e.,
violation of requirements due to under-provisioning, or high
costs for over-provisioning).

This paper analyses these autoscaling solutions and focuses on
those provided by the three major cloud providers: Google Cloud
Platform, Amazon Web Services (AWS), and Microsoft Azure.
In a continuous effort to foster the usage of theoretical-based au-
toscaling solutions, we propose an extensive comparison among
industrial autoscalers and two novel approaches that we build
on top of our previous work: ScaleX (initially conceived in [16],
and extended here), which is based on control theory [17], and

1To the best of our knowledge, Google and Amazon Web Services do not
offer means to vertically scale VMs. Microsoft Azure supports this feature, but
modifications must be applied to a pool of VMs and changes must be applied to
all the VMs at the same time.
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TABLE I
SUMMARY OF THE MAIN AUTOSCALING SOLUTIONS PROVIDED BY POPULAR PUBLIC CLOUD PROVIDERS

QN-CTRL (based on a symbolic solution of software perfor-
mance models [18], and newly combined with optimal control
in this manuscript), which is based on queuing theory [19]. While
industrial solutions and most of the work in the literature focus
on the horizontal scalability of VMs and containers, the main
novelty of our approaches is that they exploit vertical scaling
to allow containers to reconfigure allocated resources almost
instantaneously [10].

Our empirical evaluation, carried out on both simulated and
cloud-based environments, shows how the proposed techniques
are able to outperform industry solutions by both minimizing
response time violations and allocating fewer resources under a
variety of synthetic and real-world workloads. The comparison
also includes an in-depth sensitivity analysis of ScaleX and QN-
CTRL, which allows highlighting of important trade-offs.

To summarize the contributions of this article are i) a survey of
the existing, industry-provided autoscaling mechanisms, ii) two
novel autoscaling solutions, i.e., ScaleX and QN-CTRL, iii) an
open-source and extendable simulation engine for autoscaling
mechanisms, and iv) an extensive comparison of the different
solutions based on the aforementioned simulator and on execu-
tions in the AWS cloud.

The rest of the manuscript is organized as follows. Section II
discusses industrial solutions. Sections III and IV provide de-
tails on ScaleX and QN-CTRL, respectively. Section V presents
simulation- and cloud-based experiments, and reports on the
assessment we carried out. Section VI surveys related work and
Section VII concludes the article with future research directions.

II. INDUSTRIAL APPROACHES

This section provides an overview of the main autoscaling
systems available on cloud providers. We consider the solutions
implemented in Google Cloud Platform (GCP), Amazon Web
Services (AWS), and Microsoft Azure, three of the main public
cloud providers. Table I summarizes the main solutions and
highlights their characteristics.

These systems exploit the horizontal scalability of either VMs
or containers, while the vertical scaling in industrial approaches
is still in its early days.

The control period of an autoscaling system is capped by the
speed of actuation, i.e., the time it takes to complete a scaling
action. While VMs take around one minute to be fully started or
terminated in the three cloud providers analyzed, containers are
faster and are bootstrapped in a few seconds. Re-configuring
a container using vertical scalability is almost instantaneous
(hundreds of milliseconds on average) [10].

TABLE II
EXAMPLES OF STEP SCALING RULES

Rule-based: AWS and Azure provide autoscaling mecha-
nisms based on rules, known as simple scaling in AWS [20]
and AutoScale in Azure [21]. Typically users define a constraint
on a given metric (e.g., CPU utilization < 80%) and, when it
is violated, a scaling action is triggered (e.g., adding a VM).
In AWS this approach is based on CloudWatch, i.e., the AWS
monitoring system. CloudWatch allows users to observe the
fluctuations of a set metric. Metrics in CloudWatch are either
infrastructural (e.g., CPU utilization) or custom and provided
by the user. Metrics are continuously collected and a data point
is created by aggregating over a time window (usually 1 or
2 minutes). CloudWatch provides means for defining alarms
when a threshold of the set metric is reached. Similarly, Azure
Monitoring allows users to observe different metrics and trigger
alarms.

When the alert is triggered, a so-called policy is executed. A
policy can add or remove a given amount of VMs (e.g.,+3VMs)
or proportionally to the current size (e.g., +20% of running
VMs).

When an action is triggered, the autoscaling mechanism re-
mains idle for a so-called cool down period (default is 180 sec-
onds) so that the system stabilizes after executing the action. This
way, different and possibly conflicting actions do not overlap.

In addition to the rule-based approach available for VMs,
AWS provides a similar autoscaling system for containers in its
dedicated container-as-a-service solution (ECS). Instead, other
providers rely on Kubernetes for container orchestration which
uses a different type of logic (i.e., target) for scaling containers,
as explained in the following.

Step: Step scaling is provided by AWS [20] and it is an
evolution of the rule-based approach. This mechanism allows
users to provide a policy table to define the scaling actions to
be carried out when certain conditions are met. In particular, for
a CloudWatch alert, users define the amount or percentage of
VMs/containers that should be added or removed when differ-
ences in metrics are observed. For example, Table II shows how
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a user can specify step scaling rules based on CPU utilization
(i.e., metric UCPU ).

Step scaling requires the definition of a warm-up time (and
not a cool-down period), i.e., the time to wait before considering
a VM launched or terminated. This way, multiple policies can
be executed consecutively, but their effect is taken into account
only after a set amount of time.

Target: AWS [22] and GCP [23] offer a more advanced scaling
technique that does not require users to write “complex” inputs
(such as rules or policies) but only needs to define a target value
for a given metric. In this case, the goal of the autoscaling system
is to keep the metric as close as possible to the target value by
adding/removing VM instances. Both AWS and GCP do not
disclose the algorithm behind this technique. Cool-down and
warm-up periods are used to keep the system stable and to avoid
overlaps in action executions.

A similar approach is provided by Kubernetes, a popular
container orchestrator, that is offered as-a-service by AWS,
GCP, and Azure. Kubernetes uses target scaling for managing
container instances through a dedicated component called Hor-
izontal Pod Autoscaler (HPA) [24].

HPA computes the number of container instances (ci) needed
to meet the target value (tm) for a given metric. ci is computed
proportionally to the ratio between the current monitored metric
value (cm) and tm: ci = ceil(ci ∗ cm/tm).

The new replicas are created (if needed) only if cm/tm is
greater than a given threshold (default value is 0.1). Containers
are much faster to be booted and managed compared to VMs,
thus, HPA computes the new allocation every 30 seconds (con-
trol period). A so-called stabilization period (default 5 minutes)
is waited after a new value of ci is computed and enacted.

Kubernetes also offers a similar approach based on vertical
scaling (VPA) [25] of CPU and memory. This approach is still
in beta2 and does not provide in-place vertical scaling since
containers must be restarted to be reconfigured. Containers
are also not scaled independently and all the replicas must be
reconfigured in the same way. Moreover, the integration with
HPA and JVM-based containers is not fully supported.

Others: AWS [26], Azure [27] and GCP [28] provide sched-
uled scaling, that is the ability to set time triggers for executing a
scaling action. For example, users can schedule to increase VMs
during the weekend and decrease them on Monday. Predictive
scaling, provided by AWS [29], is an evolution of this approach:
it analyzes the workload patterns of the previous 14 days, calcu-
lates the required VM allocation for the next 2 days, and auto-
matically computes scheduled scaling actions accordingly. The
algorithm behind this approach is not disclosed. Scheduled and
predictive scheduling can be seen as complementary proactive
approaches to rule, step, and target scaling (reactive). The former
produces long/mid-term actions, while the latter can quickly
respond to unexpected changes in the execution environment.
In the rest of this work, we focus on reactive approaches being
them necessary when the execution environment (including the
dynamicity of workloads) is not fully predictable.

2https://github.com/kubernetes/autoscaler

III. SCALEX

ScaleX is our control theoretical autoscaling system. Its
lightweight, hierarchical architecture allows one to manage
container-based systems with extremely fast control loops by
exploiting in-place vertical scaling which is the ability to recon-
figure computing resources allocated to a system without the
need to add, remove, or restart any component.

The scaling mechanism of containers is based on a fea-
ture of the Linux kernel called cgroups, which allows for
(re)configuring at runtime CPU cores and memory. Cores can
be allocated using either CPU shares, CPU reservation, or CPU
quotas. Shares enforce a limit to the CPU allocated to each
container only in case of resource contention, while reservations
let users pin single cores to a given container (exclusive use).
Instead, ScaleX uses quotas since they set a hard limit on re-
source usage and cores can be allocated with decimal precision.
Memory can be allocated to containers in a hard or soft way.
The former sets a strict upper bound to usable memory; the
latter gives more freedom.

ScaleX unlocks the speed of container management by fea-
turing a lightweight design. Each container is managed by
an independent controller that continuously reconfigures al-
located resources. Given that ScaleX supports multiple con-
tainers (i.e., different applications) running on the same ma-
chine, the sum of allocated resources may exceed available
capacity. ScaleX does not employ any synchronization mech-
anism but provides an additional heuristic-based controller, i.e.,
the Supervisor, deployed on each machine. This component
gathers the allocations computed by the controllers, and be-
fore enacting them, it scales them (if needed) proportionally
to prevent resource contention. The Supervisor can be cus-
tomized to accommodate non-proportional heuristics so that
the most demanding applications can be prioritized in case of
contention.

ScaleX uses lightweight Proportional-Integer (PI) controllers
that are able to compute the next state of the system (i.e., the
next resource allocation) in constant time, allowing for the afore-
mentioned fast control period. Our PI controllers are grey-box
meaning that they embed a characteristic function describing the
dynamics of the controlled system. This function captures only
the main behavior of the system and we rely on the PI feedback
loop for runtime adjustments.

We have developed PI controllers for microservices [30],
serverless functions [31], big-data batch applications [13], and
GPU-accelerated machine learning applications [32]. The goal
of all of these controllers is to guarantee that the response
time does not exceed a set threshold while efficiently allocating
resources. Each system shares the control architecture presented
in Section III-A and, at the same time, considers the unique
characteristics of each system. For example, in our work related
to big-data applications, the response time is not computed as
an aggregation of several (almost instantaneous) requests but,
since execution may last minutes or hours, each single request is
controlled and the requirement on its response time is considered
a “deadline”, that is the maximum allowed time to finish that
specific execution.

https://github.com/kubernetes/autoscaler
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Fig. 1. Control architecture of ScaleX.

Although the version of ScaleX presented in this paper focuses
on vertical autoscaling only, it can easily interface with horizon-
tal autoscaling mechanisms. Indeed, while each PI controller
manages a single existing container, ScaleX computes significant
indicators of the performance of each component. These values
can be used by horizontal autoscaling systems (e.g., Kubernetes
HPA) for allocating more containers and/or machines.

Unlike heuristic-based approaches (e.g., all the industrial
ones described in Section II), control-theory provides some
key formal guarantees on the control carried out [17], [33]. In
particular, stability defines the ability of the system under control
to reach a set point and to remain in its neighborhood. Settling
time describes the pace of the system in converging to a stable
point. Maximum overshooting captures the maximum difference
between the set-point and the measured controlled variable (e.g.,
the monitored response time). Finally, steady-state error is the
difference between the value reached at steady-state and the
set-point.

A. Control Architecture

Fig. 1 depicts the control architecture of ScaleX. Each con-
tainer C (the controlled system) is deployed along with a dedi-
cated PI controller given the defined application type. For each
application/container, users provide a set-point, that is a target
response time (τ ◦C), similarly to the target controllers described
in Section II.

At runtime, unknown disturbances (D) affect the container’s
response time (τC), which is monitored together with other
metrics (M ). At each control step (1 s), the controller computes
the error ε, defined as the difference between τ ◦C and τC . Then
it computes a resource allocation for the container uC by using
the error and M so that, ideally, τC = τ ◦C .

Each controller on a machinem transfers to the Supervisor the
computed uC that aggregates all the allocations in a vector3 Ūm,
and, if needed, computes a feasible resource allocation u′

C for
each container according to a specified policy (e.g., proportional,
priority-based, requirement-based). Moreover, if the sum of to-
be-allocated resources is lower than the capacity of the machine,
the supervisor can (optionally) scale up the allocations to speed
up applications’ performance at the expense of a sub-optimal
allocation (over-provisioning).

3A variable super-scripted with a bar is a vector.

Before enacting the computed u′
C on each container, the

supervisor produces two indicators: RM and R̄A, that are,
respectively, the saturation level of the machine and the needs
of each application running on it.

The complexity of the control loop is constant (in time and
space), and no synchronization among different controllers is
necessary thanks to the highly distributed and hierarchical ar-
chitecture of ScaleX. This is key to allow for very short control
periods (e.g., 1 s) even when controlling large-scale systems.

IV. QN-CTRL

QN-CTRL is the novel optimal autoscaler for containerized
applications that we propose in this paper. Its objective is similar
to that of ScaleX, i.e., to determine the computational resources
required by application containers for meeting performance
requirements under highly variable workloads. As the objective
of the two controllers is similar, so is how they interact with
the controlled containers. After the computation of each new
allocation, QN-CTRL translates it into proper actuation signals
via the Linux cgroups interface (i.e., through the period and the
quota parameters) or the chosen container engine (e.g., Docker).
QN-CTRL is based on two main components: i) an automatically
generated queuing network (QN) model of the system, ii) an
efficient optimization problem. At each control loop, the opti-
mization problem is solved to compute the minimum amount
of CPU quota required by the container to reach the desired
service level objective under the measured load. In addition, the
QN model is updated in a moving horizon estimation fashion,
taking into account past measurements of response time and
the system load (the output and input from the previous phase,
respectively). By doing so, QN-CTRL keeps its performance
model always up-to-date with the recent behavior of the system.

The main difference between ScaleX and QN-CTRL is in the
architecture of their control loops. As presented in Section III,
ScaleX is hierarchical: each container is equipped with an inde-
pendent PI controller and a supervisor ensuring compliance with
the computational limits of the platform. This way, ScaleX prior-
itizes controller efficiency (i.e., algorithmic complexity) over the
quality of the computed allocations. In contrast, QN-CTRL uses a
centralized approach and calculates the allocation for all contain-
ers simultaneously through a single optimization problem that
also takes into account the constraints imposed by the platform.
As a result, QN-CTRL favors the precision of the allocations over
their computational complexity. However, the formulation of the
control and estimation problem as a nonlinear local optimization
makes QN-CTRL very efficient even for hundreds of variables
and constraints [34] (i.e., in the experimentation of Section V,
QN-CTRL takes few milliseconds for both the model estimation
and optimal allocation computation). In the following, we detail
QN-CTRL and its estimator.

A. Control Architecture

Fig. 2 depicts the architecture of QN-CTRL on a machine
with M containers where, NNNk = (Nk,i)1≤i≤M is the vector of
sampled load (i.e., number of users) for each container i at
time k, τττo = (τoi )1≤i≤M is the vector of desired service level
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Fig. 2. Control architecture of QN-CTRL.

objective,uuuk = (uk,i)1≤i≤M is the vector of optimal allocation,
τττk = (τk,i)1≤i≤M is the vector of measured response time and
θ̂̂θ̂θk = (θ̂k,i)1≤i≤M is the vector of the QN’s model parameters
for container i at time instant k.

The key ingredient of QN-CTRL is an efficient steady-state
solution [18], [35] of a closed QN model [19]. It allows predict-
ing the system’s key performance indices (i.e., response time,
throughput, and utilization) as a function of the number of active
users, CPU cores, and container’s service time (i.e., the average
time required for the container to execute a request when there
are no queuing phenomena). Then the QN solution is encoded
in a nonlinear optimization problem (i.e., the optimal controller
of Fig. 2) that is solved at runtime to compute the CPU capacity
(i.e., uuuk). Such capacity value is required by the controlled
container to achieve the desired performance objective (i.e.,
the user-defined target response time τττo). Finally, to create an
optimal autoscaler that is effective and easy to use in practice,
we equipped QN-CTRL with a QN model estimator (the QN
estimator box of Fig. 2) suitable to calibrate the performance
model. The technical details of the different components of
QN-CTRL are discussed in the following.

B. Efficient Steady-State Solution of Closed QNs

QNs are a family of stochastic models widely used in soft-
ware performance engineering [36], [37]. Their essential idea
is to model the traffic of customers/jobs that are routed across
different services (i.e., stations) and compete for a limited pool
of computational resources. To model parallelism, each station is
composed of multiple, independent, and identical servers (e.g.,
the thread concurrency levels for software resources or multiple
cores for hardware resources). Service times are described by
a probability distribution, where a commonly used one is the
exponential one. In any case, the proposed optimal control
approach is easily extensible to a more general class of service
time distributions (i.e., the Coxian one that can approximate any
given general distribution arbitrarily closely [38]), as already
partially done in [18]. A QN may be closed or open depending
on whether or not a fixed population of customers remains within
the system. In this work, we focus on closed QNs with a multiple
class of users, i.e., with each class, we model the performance
of co-located containers and how they affect each other. Finally,
a multi-class think station is used to model the incoming request
rate to the services provided by the system.

Fig. 3. QN model of M containerized application within QN-CTRL au-
toscaler. We denotes with ttt = (tc)1≤c≤M ,eee = (ec)1≤c≤M ,µµµ = (µc)1≤c≤M ,
CCC = (Cc)1≤c≤M the vectors of think times, service times, CPU quotas, and class
users, respectively.

Following the mathematical notation already adopted in [18],
[39], [40], a QN is formally specified by a set of multi-class
think and service stations denoted by N = {0, 1, . . . , n} and by
the following parameters:
� μi,c denotes the server multiplicity (i.e., number of CPU

cores) assigned to class c at the ith station, with i ∈ N ;
the total number of cores available in station i is equal to∑M

c=1 μi,c where M is the number of classes deployed on
that station (e.g., the number of containers sharing the same
machines).

� ei,c is the average value of the exponentially distributed
service time of service class c at the ith station, with i ∈ S;

� Cc is the total number of clients of class c simultaneously
interacting with the system.

� tc is the average value of the exponentially distributed think
time between two subsequent requests to service class c;

The performance dynamics of M co-located containerized
applications within QN-CTRL is modeled by following the
scheme depicted in Fig. 3. In particular, we model the different
applications through a single multi-class station (i.e., with M
classes) that represents the computational load induced by the
corresponding users (i.e., Cc). Since we adopted a closed QN
model, upon completion, a user waits for an exponentially
distributed delay before submitting a new request to the sys-
tem. Section V will show how this modeling choice allows to
effectively control real-world applications. Indeed, the reported
numerical results demonstrate the benefit of the QN estimator
in tuning the model at runtime to resemble the performance
behavior of different co-located applications with high fidelity.

Grounded on the theoretical foundation reported in [35], the
equations that allow computing the key performance indices
(i.e., response time and throughput) of the QN model described
in Fig. 3 are defined. Equation (1) reports the mathematical ex-
pressions for the steady-state (i.e., in the long-run) performance
indices of service class c:

Xc = min

(
Cc

tc + ec
,
μc

ec

)
and Tc =

Cc
Xc

. (1)

As expected, the throughput of the cth class, i.e., Xc in (1), is
strongly influenced by the number of cores available for that
application and by the number of its clients Cc. Finally, the
steady-state response time (i.e., Tc) can be calculated through
Little’s law [19] which relates the number of clients with the cor-
responding throughput. In the following, we use these equations
to create the QN-CTRL optimal autoscaler and the QN Estimator.
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C. Autoscaler Formulation

The definition of the QN-CTRL optimal autoscaler goes
through the encoding of (1) in a nonlinear optimization problem
able to compute, at runtime, the number of CPU cores (i.e.,
uc, 1 ≤ c ≤ M ) needed to achieve the desired value of response
time (i.e., T o

c ) for service c when Cc clients are simultaneously
interacting with the system. Equations (2)–(6) depicts the for-
mulation of the aforementioned optimization problem.

minimize
uc

C∑
c=1

|Tc − T o
c | (2)

subject to:

Xc = min

(
Cc

tc + ec
,
μc

ec

)
(3)

Tc =
Cc
Xc

(4)

0 ≤ uc ≤ ūc (5)

with 1 ≤ c ≤ M

M∑
c=1

ui,c ≤ ū (6)

In particular, through (3) and (4), we encode the performance
behavior of all the controlled containers as a constraint of the
optimization problem. With the objective function, i.e., (2), we
drive the selection of the number of servers to ensure that the
application’s response time is as close as possible to the desired
one, i.e., by minimizing the absolute value of the error between
the reference value T o

c and the one computed by (4) while
minimizing the total number of allocated cores. Equation (6)
concludes QN-CTRL optimal autoscaler by enforcing that the
sum of the CPU quotas assigned to each container (i.e., to each
service class c) is less or equal to the available CPU cores on the
hosting machine (i.e., ū). We remark that to make the optimiza-
tion problem as efficient as possible, in the experimentation of
Section V, we substitute the minimum function of (3) with its
smooth approximation [41].

D. QN Estimator Formulation

minimize
ec

W∑
i=1

|Ti,c − T m
i,c | (7)

subject to:

Xi,c = min

(
Ci,c

ti,c + ec
,
μi,c

ec

)
, 1 ≤ i ≤ W

(8)

Ti,c =
Cc
Xi,c

, 1 ≤ i ≤ W (9)

The QN Estimator is defined as an optimization problem, i.e.,
via the encoding of (1). However, unlike (2)–(5), the inputs and

outputs are reversed, i.e., the number of cores uc is a measured
variable while the service time (i.e., ec) is the decision variable.
Indeed, the goal of the estimator is to compute the parameters
of the QN model of Fig. 3 starting from the last W samples
of response times, number of servers, and number of clients
(i.e., the QN model used by QN-CTRL at control step t is
estimated by using the information collected in control steps
from t−W to t− 1). For estimating the think times ti,c we
considered the difference between the completion and arrival
times of two consecutive requests for service class c made by
the same user. Considering that for estimation purposes the
optimization problem of each container can be solved in parallel
(i.e., no joint constraints are enforced), below we present the
estimator focusing on the single container c. The extension to
the multi-container case is achieved by duplicating M times the
optimization problem (7)–(9) solved with the data corresponding
to the container under estimation.

Equations (8) and (9) encode the response time of the QN
model to be estimated as a function of its unknown service time
(for doing so, we use the lastW measured number of coresui and
number of clients Ci with t−W ≤ i ≤ t− 1). The estimator is
completed by the objective function (7), which steers the service
time to be the one that minimizes the absolute error between
the response times calculated in (8)–(9) and the measured ones
(i.e., T m

i,c ). The accuracy of our QN estimator is evaluated in
terms of the achieved SLA, as usually done for tuning classical
controllers [42]. Section V reports a similar strategy to determine
the ScaleX parameters used in the numerical evaluation, and QN-
CTRL provides evidence of satisfactory results across different
applications and workloads.

Combining the techniques presented in Sections IV-C
and IV-D, we formulate an efficient optimal autoscaler that
adapts to different applications by estimating the corresponding
QN-based performance model at runtime.

V. EVALUATION

This section presents a comprehensive comparison of dif-
ferent autoscaling solutions for containerized applications per-
formed in simulated and cloud environments (AWS cloud). Sim-
ulation provides a controlled environment tailored to application
service time and control signal actuation. Cloud-based experi-
ments, instead, allow one to assess techniques with applications
executed in realistic environments. In both cases, we compare the
industrial approaches presented in Section II against ScaleX and
QN-CTRL whose implementation is discussed in the following.

Autoscaling Systems: We analyze and compare the number
of violations and allocated cores of 8 autoscaling solutions
dedicated to containers.
� Static (1) —available in AWS, GCP, and Azure: we only

allocated one core independently of the observed workload
and its intensity;

� Rule-based (+1) —available in AWS and Azure: We define
the following rules:

response time > 0.9 ∗ SLA + 1core

response time < 0.5 ∗ SLA − 1core
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� Rule-based (+3) —available in AWS and Azure: We defined
rules similar to those above, but we add/remove 3 cores
when triggered;

� Step —available in AWS: We defined the following steps:

response time ≥ 1.3 ∗ SLA + 30%cores

SLA ≤ response time < 1.1 ∗ SLA + 20%cores

0.9 ∗ SLA ≤ response time < SLA + 10%cores

response time < 0.8 ∗ SLA − 10%cores

� Target —available in AWS and GCP: We exploited Kuber-
netes’ HPA (the only available algorithm);

� TargetFast —available in AWS and GCP: We started for the
above implementation and adopted a faster control period;

� ScaleX, the solution presented in Section III;
� QN-CTRL, the approach presented in Section IV.
As explained in Section II most of the available techniques

exploit horizontal scalability that requires longer actuation times
compared to vertical scaling (employed by ScaleX and QN-
CTRL). For this reason, we configure all the industrial ap-
proaches, except TargetFast, with a control period of 30 seconds,
i.e., the default value of multiple solutions (e.g., Kubernetes
HPA), while ScaleX and QN-CTRL are set with a control period
of 1 s to properly exploit vertical scaling capabilities. Being
Target the most evolved and wide-spread solution among in-
dustrial approaches, we also considered a “fast” version of the
approach (control period 1 s), namely TargetFast, that can be
employed to scale containers vertically (e.g., Kubernetes VPA).
All industrial approaches are configured with no cool-down and
warm-up periods so that they are able to scale up and -down
resources as fast as possible since we assume an immediate
actuation (e.g., in-place reconfiguration of containers).

A. Simulation-Based Experiments

To enable and ease the comparison of different autoscaling
solutions in a controlled environment, we developed a simulator
called RAS4 (Resource Allocation Simulator).

RAS is a lightweight simulation environment written in
Python, that allows mocking different autoscaling solutions,
workloads, and applications. It comes with a library of exist-
ing components but developers can easily customize them and
conceive new ones. In particular, RAS provides three main in-
terfaces, Generator, Controller, and Application, plus a Runner
class. The Generator aims to abstract the workloads used for
the experimentation (i.e., they map a number of users to each
simulated time-instant according to the chosen load function).
The Controller exposes a control method that returns a CPU
allocation for each control time instant and workload intensity.
The Application interface abstracts the logic necessary to calcu-
late the application response time as a function of the number of
users and the cores computed by an instance of Controller. The
Runner class coordinates the components of RAS: it determines

4The source code and the replication data of the simulated and cloud-based
experiments are available at https://github.com/deib-polimi/RAS and https://
github.com/deib-polimi/RAS-real, respectively.

TABLE III
WORKLOADS USED TO EVALUATE AUTOSCALING SOLUTIONS IN SIMULATED

EXPERIMENTS

the progress of the simulation, generates the control events, and
collects the measurement points. Thanks to this class hierarchy,
new autoscaling scenarios are easily implemented by provid-
ing the appropriate concrete implementation of the interfaces
mentioned above and by using the runner provided by RAS.
Applications, workloads, and autoscaling solutions described in
the following are implemented with these means.

Applications: We compare the autoscaling solutions using
two applications that are based on two different response time
models. These models assume: (i) the behavior (i.e., response
time) of the considered system depends on the load intensity (i.e.,
number of requests to process) and on the number of allocated
resources (i.e., CPUs or cores); (ii) other system resources (e.g.,
memory) are scaled proportionally to CPUs and are always
sufficient when CPU-bound applications are considered, as in
our case.

The model in [30] (hereinafter AppDet) considers requests
with a deterministic service time and defines the response time
as a function that decreases monotonically as the number of
cores increases, whose minimum value is constrained by a lower
bound to which the response time tends when all requests of the
application are served concurrently by the available cores. The
model defines the response time as:

RT = (1 + ν) · (c1 + c2) · req + c1 · c3 · cores
req + c3 · cores

, (10)

where req is the number of requests to serve, cores is the
number of available CPUs to process the requests, and c1, c2,
c3 are obtained through profiling. For this evaluation we used
c1 = 0.00763, c2 = 0.0018, and c3 = 0.5658 as in [30]. We add
a noise, ν ∼ Unif(−0.1, 0.1), i.e., ±10% disturbance, to the
model presented in [30] to consider interference among requests.

The other model (hereinafter AppExp) is a recursive technique
(Mean Value Analysis, MVA [43]) that analytically derives the
performance metrics (e.g., average response time) of a closed
QN with a low computational cost [44] and assumes all requests
are processed with an exponential service time. MVA and its
approximations are widely used in the literature to study the
performance of various real-world systems, e.g., Industry 4.0
warehouse automation [45], Apache Cassandra [46], cloud ap-
plications [47].

Workloads: Autoscaling solutions are evaluated with syn-
thetic and real-world workloads whose characteristics are sum-
marized in Table III. The load intensity (i.e., the number of
requests to process) depends on time, req(t), and is defined
by different workload types. Sine (SN1 and SN2) is a periodic

https://github.com/deib-polimi/RAS
https://github.com/deib-polimi/RAS-real
https://github.com/deib-polimi/RAS-real
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workload that follows a sine function; Stair (ST1 and ST2) is
a workload whose intensity varies between two values (e.g.,
low and high) instantaneously (impulse like); Ramp (RP1 and
RP2) increases/decreases linearly up to a given value where
it stabilizes. These are synthetic workloads whose shapes are
typically used to test (and stress) control systems at design time;
they are meant to capture the main characteristics of real-world
workloads (e.g., a Stair workload captures an abrupt increase in
the system load) [48], [49]. Twitter (TW) is a publicly available
real-world trace [50] that collects the number of tweets submitted
every second on January 1st, 2021. It is used in the literature, e.g.,
to study the performance of frameworks for machine learning
inference requests [51].

Service-level Agreement (SLA): To analyze and compare the
autoscaling solutions, we set the SLA to 0.6 seconds, i.e.,
requests must be served within the given time to avoid SLA
violations. For target/set-point based solution, a common strat-
egy to make the system meet the SLA is to use a target response
time lower than the SLA [52]:

TargetRT = α · SLA, with 0 < α ≤ 1. (11)

For these experiments, α = 0.8 and TargetRT = 0.48.
1) Results: For each considered autoscaling approach, we

present the number of SLA violations and the average number
of cores allocated to all containers. All autoscaling solutions
control the system for 1000 seconds. SLA violations and the
number of allocated cores are monitored at the end of each
control window with a different time horizon depending on the
controller being evaluated. Specifically, for TargetFast, ScaleX,
and QN-CTRL data are averaged over the last second (i.e., their
control period), while results of all other approaches are carried
out on the previous 30 seconds.

AppDet: Table IV shows SLA violations (V ) and the number
of allocated cores (Aµ) of the 8 autoscaling strategies (Ap-
proach) under different workloads (W), when they control the
AppDet application. Response time statistics (i.e., average, μ,
standard deviation, σ, minimum value, m, and maximum value,
M ) are computed by observing the response time of each control
period. For each workload, we highlight (in bold) the best
autoscaling strategy, i.e., the one with the lowest number of SLA
violations and, in the event of a draw, with the lowest number of
allocated cores.

With AppDet, ScaleX is the autoscaling approach that per-
forms better except when used to control the ST2 workload.
Generally, ScaleX does not violate the SLA and is the solution
with the smallest number of allocated cores among strategies
with the same number of SLA violations. Static (1) is the
autoscaling approach with the largest number of violations
and in some cases (i.e., ST1 and TW) it serves no requests
within the SLA. Intuitively, the constant allocation provided by
Static (1) cannot properly handle highly dynamic and fluctuating
workloads. When the system is controlled by QN-CTRL only
a few violations are observed and the number of allocated
cores is comparable to the one of ScaleX. QN-CTRL performs
particularly badly (i.e., 62 violations) with the RP1 workload due
to the initial small number of requests in the system that does not
facilitate the learning process on which the approach relies [53].

TABLE IV
AUTOSCALING SOLUTIONS FOR A SIMULATED SYSTEM UNDER DIFFERENT

WORKLOADS TO CONTROL THE RESPONSE TIME OF APPDET

Instead, QN-CTRL is better than ScaleX when it is used to control
the ST2 workload. Although the initial number of requests is still
small (i.e., only 50 requests, see Table III), the workload grows
soon to a large value. As discussed in Section IV, QN-CTRL is a
technique based on differential equations and works better (i.e.,
its predictions are more accurate) when the number of requests
increases.

Fig. 4(c) and (e) show the response times and allocated re-
sources obtained by ScaleX, QN-CTRL, and the best performing
industrial solution when controlling SN1 plotted in Fig. 4(a).
ScaleX, QN-CTRL, and TargetFast do not violate the SLA.
TargetFast is generally far from the SLA since it allocates more
resources with respect to our approaches. TargetFast provides an
allocation that is only proportional to the mismatch between the
target response time and its monitored value (i.e., the error). This
approach is more sensible to noise compared to our solutions
(e.g., ScaleX embeds an integral factor to mitigate overshoot-
ing) and leads to a more unstable system. This is also clearly
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Fig. 4. Workload (1st row), response time (2nd row), and number of allocated
cores (3 rd row), for ScaleX, QN-CTRL, and the best industrial controller.

observable in the standard deviation of response times: 0.40 of
TargetFast against 0.21 of ScaleX and 0.05 of QN-CTRL.

QN-CTRL and ScaleX are close to the SLA (they meet well
the specified target, i.e., 0.48 seconds), but QN-CTRL initially
uses more cores than ScaleX to serve the requests (i.e., due to
the inaccuracy of the underlying performance model in the early
phases of calibration).

AppExp: Table V shows the performance of the 8 autoscaling
solutions when they control the AppExp application. In this
case, QN-CTRL is the autoscaling approach with the smallest
number of violations. This is due to QN-CTRL assuming that
the service time is exponentially distributed, see Section IV.
Independently of the considered workload, there is no other
approach that performs as well as QN-CTRL when considering
SLA violations. This comes with a larger number of cores
allocated by QN-CTRL, i.e., it is always larger than the one of
other strategies, except Step (Sine workloads) and TargetFast (all
workloads). TargetFast presents a large number of violations,
independently of the considered workload. Interestingly, it is

TABLE V
AUTOSCALING SOLUTIONS FOR A SIMULATED SYSTEM UNDER DIFFERENT

WORKLOADS TO CONTROL THE RESPONSE TIME OF APPEXP

also the approach that allocates the largest number of cores. In
this case, combining a fast control period and proportional-only
resource provisioning leads to a highly fluctuating system that
struggles to reach stability.

Fig. 4(d) and (f) show the response times and allocated re-
sources obtained by ScaleX, QN-CTRL, and the best performing
industrial solution when controlling ST1 depicted in Fig. 4(b).

All autoscaling solutions show some violations, especially
when the number of requests in the system suddenly changes.
QN-CTRL reacts faster than ScaleX and Target to workload
variations by allocating additional cores, especially when the
number of requests is large. This allows QN-CTRL to signifi-
cantly reduce the number of SLA violations, see Fig. 4(d). QN-
CTRL violates the SLA during initial control periods, i.e., while
learning the workload to control, but it allocates an optimized
amount of resources faster than other approaches for the rest of
the experiment.
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TABLE VI
SENSITIVITY OF SCALEX AND QN-CTRL TO DIFFERENT THRESHOLD VALUES

TABLE VII
SENSITIVITY OF SCALEX AND QN-CTRL TO DIFFERENT THRESHOLD VALUES

Target versus SLA: The sensitivity of ScaleX and QN-CTRL
to α, i.e., the parameter used to define the target/set-point of
the controller in (11), is shown in Tables VI and VII for two
workloads, ST2 and TW, respectively, when scaling strategies
control the response time of AppDet. When the two approaches
control ST2, QN-CTRL always allocates a (slightly) smaller
number of cores than ScaleX, independently of α. However,
ScaleX allows violating the SLA less than QN-CTRL when
α > 0.90. Looking at the average response time observed for
the two autoscaling solutions, QN-CTRL is always closer to the
given target than ScaleX.

Considering the real-world workload (i.e., TW), see
Table VII, ScaleX works always better than QN-CTRL with a
smaller number of SLA violations and allocated cores, inde-
pendently of the value of α. Moreover, ScaleX meets the SLA
for larger values of α (i.e., the SLA is not violated even with
α = 0.90), thus enabling larger savings for what concerns the
allocation of cores. With this workload, both approaches keep
the response time close to the desired target.

B. Cloud-Based Experiments

After evaluating ScaleX and QN-CTRL in a simulated environ-
ment, we analyze the performance of two applications deployed
in AWS that serve different loads.

TABLE VIII
WORKLOADS USED TO EVALUATE AUTOSCALING SOLUTIONS IN

CLOUD-BASED EXPERIMENTS

Applications: We consider two CPU-intensive systems (i.e.,
dynamic-html and graph-mst) from the SeBS benchmark [54],
i.e., a widely used suite for the performance analysis of mi-
croservice applications. Dynamic-html is a web application that
generates dynamic HTML from a predefined template. Graph-
mst replicates analytic and engineering applications that solve
irregular graphs using minimum spanning tree.

Workloads: Synthetic (SN3 and RP3) and real-world (TW
and WK) traces are used to load the two SeBS applications, see
Table VIII. The Wikipedia workload (WK) is a trace of traffic
extracted by the Wikipedia archives which has been widely used
in the literature [56], [57] as a benchmark. The intensity (i.e.,
requests per second) of real-world workloads is downsized by a
factor of 40 to meet the limited number of resources that we can
deploy on AWS. The shape and autocorrelation [58] of these
workloads remain unchanged and identical to those observed
in the available traces. TW and WK workloads are depicted
in Fig 5(a) and (b), respectively. Requests are generated using
Locust [59], a Python-based load-testing tool.

Environment: Applications and the workload generator are
deployed in a c3.8xlarge AWS instance (32 vCPUs, 60 GB
memory, 8 GB SSD, and Amazon Linux 2 OS). The SeBS
applications are instantiated using Docker containers whose
resource availability is 16 vCPUs. The OS uses 8 vCPUs for
internal operations, while Locust generates new requests using
the remaining 8 vCPUs. Since applications are deployed in a
real environment, each experiment is repeated five times, for a
total of 320 runs.

Service-level Agreement (SLA): For both applications, we set
the SLA to 0.25 seconds and α = 0.7. Therefore, TargetRT =
0.175, see (11).

1) Results: Dynamic-html. Table IX reports the performance
of all industrial controllers, ScaleX, and QN-CTRL when they
are used with the dynamic-html application. The experiments
confirm the trends observed in simulation-based tests: industrial
approaches violate the SLA a significantly higher amount of
times compared to ScaleX and QN-CTRL. On average, they
violate 122 times the SLA against only 2.75 and 0 times of
ScaleX and QN-CTRL, respectively. If we focus only on the
top-performing industrial approach for each workload (namely,
TargetFast for SN3 and WK, and Step for RP3 and TW), we
still observe that the average number of SLA violations is 15,
which is over 5 times more than the violations obtained by our
solutions. The number of violations of TargetFast with SN3
and WK workloads is comparable to the one of ScaleX, but
the industrial approach allocates a larger amount of resources.
Furthermore, ScaleX and QN-CTRL provide, in most cases,
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Fig. 5. Workload (1st row), response time (2nd row), and number of allocated
cores (3 rd row), for ScaleX and QN-CTRL.

faster response times compared to industrial approaches with
standard deviations that are always lower. This means that our
solutions can keep the system responsive and stable, while
industrial solutions obtain more fluctuations.

In terms of resource allocation, QN-CTRL provision between
2 to 3 cores depending on the considered workload and never
violates the SLA. ScaleX provides better performance (i.e., no
violation and fewer allocated cores) compared to QN-CTRL only
with workload RP3. Figs. 5(c) and (e) depict the performance
(response time and allocated cores, respectively) of ScaleX
and QN-CTRL under workload TW. Solid lines depict average
values, whereas shaded areas show the performance distribution.
While QN-CTRL keeps the response time always far from the
provided SLA, requests controlled by ScaleX occasionally vi-
olate the given objective. This means that QN-CTRL is more
conservative: it allocates a (slightly) larger number of cores
compared to ScaleX to safely keep the response time under the
SLA.

TABLE IX
AUTOSCALING SOLUTIONS FOR A CLOUD SYSTEM UNDER DIFFERENT

WORKLOADS TO CONTROL THE RESPONSE TIME OF DYNAMIC-HTML

Graph-mst: Similar results are observed with application
graph-mst, as shown in Table X. Industrial approaches obtain
overall worse performance compared to our solutions. QN-CTRL
never violates the SLA no matter the considered application but
allocates more cores compared to ScaleX. ScaleX obtains zero
SLA violations by using fewer resources compared to QN-CTRL
with workloads RP3 and WK.

Overall, Step and TargetFast are the best industrial ap-
proaches, but they never outperform our solutions except for
TargetFast that violates fewer times the SLA compared to ScaleX
with workload SN3. As with application dynamic-html, the
average response times and standard deviations obtained by
ScaleX and QN-CTRL are lower compared to those of industrial
solutions in most of the cases.

Figs. 5(d) and (f) depict the response time and the number of
cores used by ScaleX and QN-CTRL with workload WK. Our
solutions are able to keep the response time always under the
SLAs considering both the average and the maximum values.
QN-CTRL tends to allocate more cores than ScaleX (3.20 cores
against 2.85) with a resulting faster average response time (0.15 s
vs 0.18 s).

C. Cost Analysis

While ScaleX and QN-CTRL appear to clearly outperform
industrial solutions, understanding the trade-off between the
two approaches requires further analysis. Sections V-A and V-B
show that ScaleX outperforms QN-CTRL with more determinis-
tic applications and that, in most cases, it allocates fewer cores
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TABLE X
AUTOSCALING SOLUTIONS FOR A CLOUD SYSTEM UNDER DIFFERENT

WORKLOADS TO CONTROL THE RESPONSE TIME OF GRAPH-MST

than QN-CTRL. In contrast, QN-CTRL performed better with
more “noisy” applications and tended to produce fewer SLA
violations.

Besides allocated resources and violations, we present a cost
analysis to deepen the comparison. We adopt the model proposed
by Kumar et al. [60], which formalizes the cost of running a sys-
tem by means of two terms: (i) when the system behaves above
agreed expectations (SLA), namely resource over-provisioning,
and (ii) when the system is below the desired performance (SLA
violations), i.e., resource under-provisioning. The cost is defined
as follows:

COST =

T∑
t

{
P ∗ (τt − τ ◦), if τt > τ ◦,
C ∗ (τ ◦ − τt), otherwise.

(12)

where τt is the monitored response time at time t, T is the total
considered time, τ ◦ is the set point on the response time (i.e.,
desired performance), andP andC are two constants, defined in
[0,∞], that represent the cost of penalties and over-allocation,
respectively. In essence, each contribution is proportional to the
distance from the set point, and the ratio R = P

C defines the
weight of penalty costs compared to the ones caused by over-
allocation.

We compute the cost of each experiment in Section V-B
using (12) with C = 0.0015 as in [60], and R = P/C =
[1, 2, 3, 4], thus understanding the impact of this ratio on the
cost-effectiveness of each approach. This way we obtained a
total of 320 data points.

TABLE XI
SCALEX AND QN-CTRL: COST COMPARISON

The comparison metric, named COMP , is then given by the
following formula:

COMP =
(COSTScaleX − COSTQN−CTRL)

min(COSTScaleX , COSTQN−CTRL)
(13)

COMP quantifies which approach performs better and by how
much. If the result is negative, ScaleX is more cost-effective;
otherwise, QN-CTRL outperforms the cost-effectiveness. The
numerical values indicate the percentage of the comparison, e.g.,
a COMP value of 0.30 indicates that QN-CTRL is 30% more
cost-effective (i.e., cheaper) than ScaleX. Similarly, a value of
−0.50 means that ScaleX is 50% more cost-effective than QN-
CTRL.

Table XI presents the values (averaged over 5 repetitions run
for each experiment and approach) of COMP in the 32 cases
taken into account: 2 applications × 4 workloads × 4 values
for R. For application dynamic-html, all values, no matter the
workload, are negative with R = 1, 2, which suggests a higher
cost-effectiveness for ScaleX. However, with R > 2, the value
becomes positive for some workloads (TW and WK), which
indicates a shift in cost-effectiveness in favor of QN-CTRL. Sim-
ilarly, with application graph-mst, with low R′s, the values are
generally negative or close to zero, which suggests that ScaleX
exhibits similar or superior cost-effectiveness. However, as R
increases (i.e., R > 1), the values become consistently positive,
that is, they witness that QN-CTRL is more cost-effective.

Summarizing, as expected, R plays a key role in defining the
cost-effectiveness of a solution. With low values of R′s, that
is, when SLA violations and over-allocations have the same
impact, ScaleX tends to be more cost-effective. This means
that users may prefer very efficient core allocations at the cost
of occasional violations. Higher values of R′s mean that SLA
violations are considered more costly (important) than allocated
resources, and this leads QN-CTRL outperforming ScaleX. This
is the case when a more conservative resource allocation aims
to minimize SLA violations.

D. Lessons Learned

The experiments based on both simulated and cloud execu-
tions allowed us to extensively compare six industrial autoscal-
ing solutions, ScaleX and QN-CTRL.

One may think that the industrial solutions available in public
cloud platforms are optimized to reduce SLA violations while
providing a conservative resource allocation (higher billing but
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better performance). However, our results show that none of
the industrial approaches we tested can consistently minimize
response time violations no matter the type and shape of the
workload, the target application, and the execution environ-
ment (simulation or cloud-based deployments). Some heuris-
tics appear to be better than others in some cases, but their
simple design makes them not flexible enough to perform
well in different scenarios. In contrast, both ScaleX and QN-
CTRL obtain significantly fewer SLA violations. Thanks to
their theoretical foundation, they can properly adapt to dif-
ferent workloads and, on average, their response times are
closer to the set points with small standard deviations, in-
dicating that the controlled system is kept responsive and
stable.

If we consider simulation-based approaches, when requests
are served with a deterministic service time, ScaleX generally re-
duces the number of SLA violations and allocated cores. ScaleX
copes well with deterministic requests since it is feedback-based.
Since the QN-CTRL assumption (i.e., exponential service time)
deviates from the attributes of the controlled system (i.e., deter-
ministic service time), QN-CTRL does not perform as well as
ScaleX. The only exception is observed with the Stair workload
(i.e., ST2), where the best autoscaling approach is QN-CTRL.
This may be due to sudden changes in the workload intensity
that mostly keep large values and facilitate the learning process
on which QN-CTRL relies.

When the service time follows an exponential distribution
(i.e., a common practice when considering cloud computing
applications [61], [62], [63]), QN-CTRL is the autoscaling ap-
proach that provides the best performance (i.e., the smallest
number of SLA violations and allocated cores). This is due to
QN-CTRL assuming exponentially distributed service time for
the controlled application.

Cloud-based experiments assess the performance of ScaleX
and QN-CTRL with respect to industrial controllers and show
possible directions to improve both approaches. The response
time of real cloud applications is rarely deterministic due to
application interference [64] and other noise. Hence, ScaleX may
underestimate the application requirements and violate the given
SLA since it leverages a feedback-based control mechanism.
QN-CTRL may allocate a large number of cores when the service
time does not follow an exponential distribution. This is due to
the QN estimator that should be extended, as part of our future
work, to subsume generic distributed service times.

All approaches need to comply with user-defined SLAs, a
common practice in robust control is to define a target by scaling
down the given SLA to facilitate controllers in their task [52],
see (11). For this purpose, a scaling parameter is adopted, i.e.,
α in (11). Correctly tuning this parameter based on the response
time model and workload enables enhanced performance and
further savings.

Our evaluation shows that both ScaleX and QN-CTRL outper-
form all the examined industrial solutions. Moreover, our anal-
ysis indicates the choice between our two approaches depends
on the criticality of the controlled application and the user’s
requirements. From an architectural standpoint, ScaleX is more

lightweight and scalable than QN-CTRL due to its hierarchi-
cal approach. Conversely, QN-CTRL consistently demonstrates
fewer SLA violations and a generally higher core allocation.
The cost analysis detailed in Section V-C aims to focus on this
aspect, evaluating the two autoscalers across increasing levels of
criticality. The findings emphasize that if the objective is to mini-
mize core allocation, even if it entails occasional SLA violations,
then ScaleX is likely the more fitting choice. On the contrary,
QN-CTRL is the preferable solution if the primary aim is to
reduce SLA violations through a more conservative allocation
strategy. As a result, the decision hinges on the application’s
criticality and, by extension, the acceptable balance between
allocated resources and violations.

E. Threats to Validity

We conducted the experiments using two different applica-
tions exposed to a variegate set of seven representative work-
loads. Even if ScaleX and QN-CTRL outperform industrial solu-
tions with respect to some metrics, in the following we argue on
threats that may constrain the validity of obtained results [65].

Internal threats: The presented autoscaling techniques aim
to control the average value of the performance metrics of
interest (e.g., the system response time), not the distribution
of values (e.g., tail latency) that instead may trigger further
fluctuations to be managed. Both ScaleX and QN-CTRL require
to set a percentage (i.e., α) that provides some flexibility from
the user-defined SLA. This is intended to better manage dis-
turbances in the control objectives and prevent violations. Our
experiments demonstrate that setting α = 0.8 works reasonably
well for the considered techniques, and this setting is motivated
through experimenting with other values for sensitivity analysis
purposes. Besides, QN-CTRL technique requires an estimation
window to learn (or update) the application model, hence the
control effectiveness is affected by such learning procedure. In
our experiments, we observe that a small amount of time (i.e.,
tens of seconds) is required to learn the initial model (i.e., the
slowest one to be learned).

External threats: To mitigate generalization issues, our exper-
iments use two different applications, multiple workloads, and
compare a set of relevant approaches. The two applications are
characterized by different response time models (already used
in the literature [30], [43]) and service times (i.e., deterministic
and exponential). We employ “standard” synthetic workload
shapes: sine, stair (i.e., step-like), and ramp with different mag-
nitudes obtaining comparable results to the ones measured with
a real-world workload. To further improve our tests, we plan in
the future to include more real-world workloads and types of
applications.

VI. RELATED WORK

The problem of autoscaling resources at runtime in cloud-
based applications has been widely studied [66], [67], [68],
[69]. State-of-the-art approaches provide evidence of three main
branches of research that we review in the following.
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Control theory autoscaling: Our previous work [70] belongs
to this category since we make use of control theory tech-
niques (i.e., Proportional-Integral-Derivative — PID) to scale
container-based applications on the basis of envisioned ex-
ecution times. Al-Dulaimy et al. [67] presents a multi-loop
autoscaling approach (including three layers) performing the
following tasks: regulate resources’ shares, scale resources, and
migrate VMs from one host to another. However, the three loops
work independently, and the lack of coordination in their actions
may represent a threat. This limitation has been recently tackled
in [66], where a Monitoring and Measurement Unit (MMU) is
introduced to orchestrate the three layers, at the cost of a major
complexity and performance overhead. Yu et al. [71] focuses
on response times and the goal is to produce close-to-optimal
allocations, however, it does not provide formal guarantees on
the control and it does not support vertical scalability. Podol-
skiy et al. [72] illustrate a comparison among different cloud
providers (AWS, GCP, and Azure), but we already showed
in [70] to scale faster than the others while targeting containers.
Zhang et al. [73] make use of workload usage and duration,
along with the cool-down period for scaling the containers in
the physical machines, however utilization of CPU is considered
only to vary the container size. Srirama et al. [74] present a
strategy for scaling out/down the computing resources based
on the resource utilization of the physical machines and the
resources requested by the non-warm containers for processing
the microservices. Salah et al. [75] evaluate the performance
of web services focusing on Amazon cloud platform, and the
comparison is performed between: (i) AWS EC2 Container
Service for container-based deployment, and (ii) AWS Elastic
Cloud Compute (EC2) for VM-based deployment. Results show
that the performance of container-based web services is more
critical, thus motivating our choice of designing experiments on
containers only. Padala et al. [76] propose the usage of classical
control theory techniques to automatically allocate resources
based on the dynamic workload changes; it represents seminal
work in the direction of designing adaptive resources that are
dynamically adjusted in their resource shares. With respect
to state-of-the-art control theory methodologies, our ScaleX
approach shows the advantage of targeting vertical scaling on
containers, and it turns out to provide the best solutions for a
large number of different workloads acting on an application
regulated by deterministic service times.

Analytical modeling autoscaling: In our previous work [18]
we make use of an efficient SMT solver [77] to derive feasible
control signals encoded in a QN performance model, but no
optimization was considered (as we do in this paper). Funari
et al. [78] propose an analytical model for evaluating stor-
age occupancy of clusters hosting containerized applications
and various scheduling policies are introduced to prevent the
growth of storage utilization as cluster size increases. Tadaka-
malla et al. [79] present a single-queue multiple-server system
model (G/G/c) subject to workload surges and scales the number
of servers or their capacity to mitigate the effects of such surges.
Cai et al. [80] propose a resource scaling engine that enables
provisioning for (non-)periodic workloads of long-running ser-
vices. It is constituted of three main components: (i) identifi-
cation of periodic patterns in history arrivals; (ii) continuous

tracking of request arrivals of services and prediction of future
resource demands; (iii) continuous monitoring of services la-
tency and re-provisioning of resources if a violation is imminent.
Khamse-Ashari et al. [81] make use of an optimization problem
relying on a system model that includes (i) servers distributed
over multiple geographically distributed clusters, and (ii) active
users/tenants. The goal is to minimize the operational costs of
servers, while guaranteeing fairness (in terms of a minimum
share of service) across different users. Ali et al. [82] present an
analytical autoscaling approach based on quantile regression.
Different from the solutions described in this paper, such an
approach focuses on (burstable) VMs. Biswas et al. [83] pro-
pose an autoscaling technique based on broker profit (that is
modeled analytically as the difference between user and broker
costs), specifically resources are acquired on demand from a
public cloud to service requests; however the broker itself may
become a system bottleneck in computing required resources.
With respect to state-of-the-art analytical modeling techniques,
our QN-CTRL approach shows the advantage of exploiting an
optimization formulation of the problem to minimize the number
of servers, differently from [81] that instead focuses on resource
sharing among services. Our methodology turns out to provide
the best solutions for all the variegate workloads acting on an
application regulated by the MVA algorithm.

Dynamic learning autoscaling: In our previous work [84]
we propose a machine-learning approach to derive QNs from
data and we found a maximum discrepancy of 10% between
learned models and ground truth. Sun et al. [85] foster a tech-
nique grouping nodes with similar performance to reduce the
waiting time for faster workers and improve the efficiency of
computing resources, using distributed deep learning. Abdullah
et al. [56] define the provisioning of resources as a learning
process based on the historical autoscaling performance traces;
the predicted workload is used to infer the number of containers
needed to satisfy the set response time. Forecasting workload
has been recently pursued by Feng et al. [86], where online
regression is adopted relying on a sliding window method
that takes into account trend and time correlations, along with
random fluctuations of workload. Osypanka et al. [87] target
cloud-based resource usage optimization through the discovery
and learning of historical data used to decide when scaling
system resources, specifically by comparing a pre-defined al-
location plan with current resources. Makridis et al. [88] pro-
pose dynamic CPU allocation to address resource provisioning
in virtualized servers by means of controllers that adjust the
resources by computing variances with respect to previous CPU
utilization.

Fangming Liu et al. [89] present MarVeLScaler, a prototype
system that provides a preliminary estimation, through multi-
view neural networks, of the required cluster size, adjusted at
runtime due to cluster’s real-time status. The learning process is
performed considering homogeneous VMs only, heterogeneity
is left as part of future work. Iqbal et al. [90] target the autoscaling
of multi-tier applications with the goal of minimizing the usage
of resources to handle dynamically increasing workloads and
satisfy the response time requirements. A supervised learning
method is adopted to identify the appropriate resources based on
the prediction of the application response time and the request
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arrival rate. Farokhi et al. [91] relies on a fuzzy controller that
builds upon known knowledge-based control, i.e., non-linear
functions implicitly constructed through fuzzy rules and fuzzy
inference by imitating human/learned control. Compared to
these approaches, our QN-CTRL methodology relies on learning
a QN model that is later used as a software-hardware abstraction
to define an efficient optimization problem. This way, QN-CTRL
shows the benefit of providing optimal control signals that are
efficiently deduced from the analysis of the learned performance
model.

VII. CONCLUSION

Autoscaling solutions are used by cloud providers to help con-
tainerized applications cope with fluctuating workloads. Several
industrial solutions have been proposed, ranging from ones
based on simple rules to others that employ more sophisticated
heuristics. This paper analyzes the most important autoscaling
solutions available on the major cloud providers and compares
them with two systems, that we developed, based on control
and queue theory, respectively. Unlike industrial approaches
that focus on horizontal scalability, our solutions exploit vertical
scaling that allows for faster control periods. Using a compre-
hensive empirical evaluation based on both simulated and cloud
executions, we demonstrate how our approaches outperform
the industrial competitors in almost all scenarios, and under
dynamic workloads. A cost analysis highlights that the choice
between ScaleX and QN-CTRL depends on the users’ priorities
in the trade-off between maximizing core allocation efficiency
and minimizing SLA violations.

In future work, we plan to combine our two autoscaling
techniques in a single controller that can adapt to different exe-
cution environments by efficiently alternating different control
strategies.
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