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ABSTRACT This paper studies the distributed bipartite output formation control problem of heterogeneous
discrete-time linear multi-agent systems (MASs) via cooperative output regulation theory. To construct
the bipartite formation, under the structurally-balanced augmented directed signed graph, the followers
of two antagonistic subgroups are supposed to respectively keep the desired relative positions with the
leader, also called as the exosystem, in the same magnitude but the opposite sign. Since the information
of exosystem can not be directly obtained by all followers, the distributed exosystem observer based on the
discrete-time algebraic Riccati equality (ARE) is presented and the distributed state feedback controller is
further designed. Moreover, in the case where the states of followers are not available, the distributed output
feedback controller is proposed by introducing the state estimator. Finally, two numerical examples are given
to demonstrate the effectiveness of analytic results.

INDEX TERMS Bipartite output formation, discrete-time, multi-agent systems, cooperative output
regulation, directed signed graph.

I. INTRODUCTION aerial vehicles (UAVs) [1], adaptive formation control for

The MASs are composed of multiple intelligent and
independent agents. In a multi-agent network, the com-
plex collaborative task is completed through the mutual
coordination between each single agent. With the rapid
development on advanced manufacturing technology and
artificial intelligence technology, MASs have received wide
attention in many engineering disciplines. Therefore, the
cooperative control for the complex MASs has become
an important and challenging research topic. For example,
cooperative bounded tracking control for multiple unmanned
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multiple vehicles [2], cooperative surrounding control for
multiple robots [3], and so on.

The MASs under cooperative controllers can achieve
multiple collective behaviors, such as flocking [4], ren-
dezvous [5], distributed optimization [6], and formation [7].
In particular, formation control has made considerable appli-
cations and achievements in military and industrial fields. The
main purpose of formation control is to design distributed
control protocol to make each agent maintain a predetermined
geometric constraint at a certain state level. In recent years,
the control community has two main formation control
strategies, which are based on the artificial potential field
and the consensus theory, respectively. The control strategies
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via artificial potential field [8], [9], [10] mainly use the
gradient of local minimum potential function, which have
certain advantages in real-time and high efficiency. However,
due to the complexity of the artificial potential field, it can
only be used to solve the formation control problem of
some low-order MASs. Compared with the artificial potential
field method, the consensus-based control method is more
simpler and flexible, and can be further applied to MASs with
complex dynamic models. Recently, consensus problem has
become the basis and core of cooperative control problem.
In general, the formation control protocol based on consensus
theory usually requires a leader who can generate the desired
trajectory, and then designs a controller to drive all followers
to asymptotically track the leader through a predetermined
offset. For example, the simultaneous tracking and formation
control problem of MASs was solved in [11] with a
virtual leader. The consensus formation control problem of
a recurrent neural network was studied in [12].

It should be pointed out that the dynamics of MASSs in
the above formation control literatures are considered to be
homogeneous. In other words, all subsystems have the same
dynamic characteristics, which means that the controllers
with the same structure cannot meet the control requirements
of different subsystems at the same time. Therefore, scholars
have begun to pay attention to the formation control problems
of heterogeneous MASs in recent years. In particular, a fixed-
time formation control protocol for heterogeneous MASs
subject to parameter uncertainties, disturbance and actuator
faults was presented in [13]. The cooperative formation
problem of heterogeneous UAVs with parameter uncertainty
was studied in [14]. The time-varying formation of nonlinear
heterogeneous multi-agent systems under uncertainty and
interference was studied in [15]. However, the control
protocols proposed in these literatures are mainly used to
achieve state formation control for MASs. Furthermore, how
to achieve the consistent output of all agents is also a direction
worthy of attention.

The cooperative output regulation principle [16] is an
effective method to achieve output cooperative control for
heterogenous MASs. Its objective is to make all followers
asymptotically track the output trajectory of the autonomous
exosystem, which is also viewed as the leader in the classical
leader-following MASs. Nowadays, some distributed cooper-
ative formation controllers based on output regulation theory
have been proposed in the literatures such as [17] and [18].
However, the above approaches for continuous-time dynam-
ics are not effective for discrete-time case since the discrete
stability region is interior of unit circle, which imposes a
severe constraint than the continuous-time case with a relaxed
and open left-half complex plane. To solve the cooperative
output regulation problem of discrete-time MASs, scholars
recently proposed the distributed controllers to achieve output
consensus of discrete-time counterparts [20], [21]. Note that
some contractive conditions are usually needed in these
studies. That is, the system matrix of exosystem is neutrally or
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exponentially stable, which bring difficulty in obtaining the
information of exosystem in distributed structure. Thus, how
to find an effective observer design method for discrete-time
heterogenous MASs still a challenging issue.

In practice, it is difficult to meet the industrial and military
requirements if only considering the cooperative relationship
among agents. For instance, two groups of UAVs in the
opposite direction at the same time [22]. The properties
of nonnegative graph in the traditional consensus protocols
will not generally hold in the situation that the competition
and cooperation interactions coexist in the communication
topology with negative weights. Thus, the so-called bipartite
consensus was firstly defined in [24] and described in the
signed graph with both positive and negative weights, which
were used to describe the relationship between cooperation
and competition among agents. Moreover, bipartite controller
design technique has been applied in the formation control
problem under the traditional leader-following framework.
The purpose is to make the two competitive subgroups
asymptotically keep the desired relative positions with the
reference signal of leader in the same magnitude but the
opposite sign. For example, the bipartite formation of
multi-robot system with time-varying delays was realized
in [25]. The event-triggered bipartite consensus of MASs
under structural balanced signed graph and its application
in satellite formation were realized in [26]. Specially,
for the heterogeneous continuous-time MASs, the bipartite
output regulation framework was built in [27]. Moreover,
the bipartite time-varying formation problem with multiple
leaders was solved by using output regulation theory in [28],
however, it can not easily be extended to achieve the similar
bipartite formation for MASs in discrete time form. There is
still lack of a new bipartite output formation framework with
heterogeneous and discrete-time dynamics under a general
directed signed graph.

Motivated by the above mentioned discussions, we inves-
tigate the bipartite output formation control problem of
heterogeneous discrete-time linear MASs in this paper,
where both cooperative and antagonistic interactions between
agents exist in an augmented directed signed graph. First,
the bipartite formation issue is converted into the cooperative
output regulation problem and the state feedback controller is
developed by synthesizing a distributed exosystem observer.
Then, considering that the more practical scenarios that
the states of followers are not easily accessible, the output
feedback controller is constructed by further embedding a
state estimator. The salient contributions of this paper are
listed as follows:

1) A new output bipartite formation framework of
heterogenous discrete-time MASs is established in this
paper. Specially, both state and output feedback con-
trol laws by virtue of output regulation theory are
proposed.

2) A distributed observer based on discrete-time ARE is
designed to guarantee the desired relative positions with the
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FIGURE 1. Multi-agent system model diagram.

exosystem. Moreover, the system matrix of exosystem is no
longer constrained to be neutrally or exponentially stable.

3) The proposed distributed bipartite formation controller
can be further applied to deal with the similar state/output
formation/consensus issues of heteregenous/hotomogenous
under directed/undirected nonnegative/signed graphs.

Notations: Through this paper, R, C, R”, Iy and 1y rep-
resent real number set, complex number set, n-dimensional
real vector, N-dimensional unit matrix and N-dimensional
column with all elements of 1, respectively. For any real
matrix P, PT and P~! represent transpose matrix and inverse
matrix of P, respectively. diag(P1, P3, - - - , Py) represents a
block diagonal matrix. If P is a symmetric matrix, then P > 0
(resp. > 0) means that P is a positive definite (semi-positive
definite) matrix, otherwise P < 0 (resp. < 0) is negative
definite (semi-negative definite) matrix. For the square matrix
A, let Ny (A), Amax (A), Amin (A) and o(A) represent the
m-th eigenvalue, the maximum eigenvalue, the minimum
eigenvalue and the spectrum of matrix A, respectively. The
symbol ® denotes Kronecker product. The sign function
sgn(-) is expresses as

1 x>0
sgn(1) =10 x=0 (1)
-1 x<0

Il. PRELIMINARIES AND PROBLEM STATEMENT

A. PRELIMINARIES

Algebraic graph theory is usually used to analyze the
communication topology of MASs, and the corresponding
model diagram as shown in Figure 1. G (V, £, A) is used
to describe directed signed graph, where V = {v{,--- , vy}
represents the set of nodes composed of N nodes, and
each node represents an agent. £ = V x V is defined as
an edge set composed of two different nodes, which can
also be regarded as information transmission between two
agents. &; = (vj, v,-) represents the interaction between
node v; and vj, that is, node v; can transmit information
to node v;. Then the neighbor set of node v; is defined by
N; = {vj € V|(vj,vi) € €, i #j}. Suppose that the directed
topology graph G of this paper is a simple graph and satisfies
(vi, vi) ¢ &, that is, there is no self-loop and multiple edges.
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A = (a5) € R¥*N is defined as the neighbor set matrix
of the graph G. If &; € &, one has a; > 0, otherwise
a; < 0, where a;; is the weight of edge &;;. Moreover,
a;j > 0and a;; < O represent the cooperative and competitive
relationships among agents, respectively.

In traditional nonnegative graphs, the Laplacian matrix
plays a fundamental role in the study of consistency problems
and can usually be defined as

.2 aNj)_-A 2

L= [lij] = diag Z ajj, -

NxN N, je N
In this paper, there exists not only cooperation but also
competition among each agent. That is, the weights of the
corresponding edges of the signed graph can be positive
and negative, and the corresponding Laplacian matrix can be

defined as
3 Wz’)
JEN;

Furthermore, 7 = diag{d;} € RV*V is defined as an in-
degree matrix, where d; = Zje N |a,~j|. In addition, node v
as a leader can exchange information with some followers.
Furthermore, by adding the leader into communication
topology, an augmented directed signed graph is described
by Q(V,E,.,ZD, where V = {vo,---,vn} is the set of
nodes. In order to describe the relationship between leader
and followers, the pinning matrix is defined as G =
diag{gi, -, gn}. Ifthe node v; canreceive the information
transmitted by the leader v, then the weight g; > 0, otherwise
gi = 0. Specially, if there exists a directed Bath from the node
vo to any other nodes in graph G, then G is said to have a
directed spanning tree with vg as the root node.

Assumption 1: The directed signed topological graph G
has no multiple edges. Moreover, G has directed a spanning
tree, where v is the leader and root node.

Definition I (Structurally Balanced [24]): The  signed
graph G is structurally balanced if the node set V can be
divided into two non-empty subsets Vi and V, satisfying
V1 U Vz Y and V1 N Vz 2. For any two nodes v;, vj € V
(g e{1,2}) satisty a;; > Oand v; € Vg, v; € V34 satisfy
a;; < 0. Otherwise, a;; is nonpositive.

Based on the structurally balanced condition given in Defi-
nition 1, a diagonal matrix D =diag{d;, da, --- ,dn}.d12 €
{1, —1} is constructed to classify two subgroups with
competitive relationship. At the same time, in order to solve
the bipartite cooperative control problem of multi-agent
systems, the following lemma needs to be introduced.

Lemma 1 ([27]): If the signed digraph G is structurally
balanced, then all elements of DAD are nonnegative. More-
over, if the directed spanning tree assumption is satisfied, then
the matrices £ = £S5+ GandL = D (L5 +G)D = DL D
are positive definite.

£ = [l = dice

3
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Lemma 2 (Gersgorin Circle Criterion [29]): All  eigen-
values of matrix IT = [9;] € RY* are in the union of
the following N disks.

N N
U seC:|s =0 < z |ﬁlj} @)
i=1 Jj#Li=i

B. PROBLEM FORMULATION

We consider a discrete-time linear MAS which is composed
by a group of N nonidentical followers and one leader. The
network topology associated with the MAS is represented

as the signed digraph G. The dynamics of followers can be
governed by

xi(t+1) =
yi(t) =

Aixi(t) + Bjui(t)
Cixi(t) + Diui(t), i=1,--- N, t € Z*,

&)

where the vectors x;(t) € R", u;(z) € R™ and y;(t) €
R? respectively denote the state, the control input, and the
measurement output of follower agents in two different
subgroups.

The reference trajectory is generated by the leader, which
has an automatous discrete-time linear dynamics and is
governed by

rit+1)=
() =

S, r(t)

C,r(t), ©

r(0) =ro

where the vectors 7(t) € R" and y,.(r) € R? respectively
denote the state and the measurement output of leader.

To construct the desired bipartite formation, the relative
positions are given as

Mm Gi(0) = diyr () = 8i(0), i=1,--- . N N

where d; is the element of matrix D and §;(r) € R? is
a constant vector. Therefore, the desired relative position
between followers i and j is denoted as

3;(1) = yi() — yj(1)
= (diy, () — djy, (1)) + (8:(t) — ;1)) (8

In particular, the vector §;;() between two followers in the
same subgroup is simplified as §;;(t) = §;(t) — §;(?).

Hence, the bipartite formation error vectors are defined as
follows:

ei(t) = yi(t) —diy-(1) = 8i(1), i=1,--- N (9

Note that if lim; . €;(f) = 0,i = 1,---, N are satisfied
then the so-called bipartite formation can be achieved.

To achieve the bipartite formation control, the output
regulation theory is introduced in our paper. Under this
framework, exogenous reference signal is expressed as

wilt) = diy, () + 8i(t) (10)
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Define

w(t) = (dr" .87 0)

S, 0
5= (% )
! (Olp
Cv:(Cr’IP)

Then the so-called exosystem which can generate bipartite
reference signal of each follower can be written as

vi(t + 1) = S,vi(1)
wi(t) = Cyvi(1)

Combine with the output regulation technique, the so-called
bipartite formation control problem is described as follows:

Consider a heterogeneous discrete-time linear MAS com-
posed by (5) and (6), the bipartite formation control can
be achieved by designing the distributed controllers u;, i =
1,---,N,ie.,

1i=]7”'sN (1])

lim e;(£) =0, i=1,---,N (12)
11— o0

Remark 1: Different form the traditional formation con-
trol issues based upon the state consensus strategy over
nonnegative graphs, in this paper, the control aim is
that make all the outputs of followers in two subgroups
with antagonistic interactions track the leader in the same
magnitude but the opposite sign, while keeping the desired
relative positions with the exosystem. Thereby, the term (12)
can be equivalently written as

tlggo i) =8 = y (1), VieV 13)
Jm vi(0) = 8i(0) = =y, (1), Vi€V

Ill. MAIN RESULTS

In this section, two classes of distributed control protocols
are presented to accomplish the bipartite formation task, and
the corresponding control scheme is given in Figure 2. First,
since the reference information for the exosystem (11) is
not obtained by all followers, a new distributed observer
based upon the discrete-time standard ARE is introduced.
Then considering the case where states of followers are not
available, the state estimator is introduced and the distributed
bipartite formation control law under output feedback is
further designed. The following assumptions and lemma are
needed to realize the bipartite formation control.

Assumption 2: The pairs (A;,B;)),i = 1,---,N are
stabilisable.

Assumption 3: The pairs (4;,C)),i = 1,---,N are
detectable.

Assumption 4: Re(\i(S;)) = 1,i = 1,---, h holds, that
is, all eigenvalues of exosystem matrix S, locate outside the
unit circle in the z-plane.

Assumption 5: For all A € o(S,),

rank (Ai Ei)\l g’l) =n+p (14)
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FIGURE 2. Control scheme of bipartite output formation.

Lemma 3 ([16]): Condition (14) is also called the trans-
mission zero condition in the cooperative output regulation
problem. If Assumption 5 holds, then the output regulation
equations

XiSy = AiXi + BiU;
0= CX; + DU — C, (15)

have unique solution pair (X;, U;).

Remark 2: Assumptions 2 and 3 provide the stabilisable
and detectable conditions for the closed-loop system, respec-
tively. Note that the matrix S, is a block diagonal matrix
with elements S, and I, so part of eigenvalues of S, are the
same as the eigenvalues of S, and others are 1. Therefore,
Assumption 4 can make sure that all eigenvalues of S, locate
outside the unit circle. Assumption 5 guarantees that the
output regulation equations have unique solution pairs by
Lemma 3.

A. STATE FEEDBACK FORMATION CONTROLLER DESIGN
In many practical applications, the information of exosystem
is not available to all followers. Thus, a distributed exosystem
observer is embedded in the control architecture. Based on the
state feedback, the bipartite formation control law is designed
as follows:

ui(t) = Kyixi(t) + Koini(t) + K3;8;(r)

ni(t + 1) = S;ni(t) — wiFHE ()

&) = X |ay| (i) — sgn(ay)ni(1) (16)
jeN;

+8i(ni(t) — dir (1))

where Kj; € R™*% K, € R™*" and K3; € R™ are the
gain matrices. 7;(t) € R”" is the reference signal observation
of exosystem. w; is the constant coupling observer gain. F €
R"™P and H € RP*" are the observer gain matrices. g; and d;
are the elements of matrices G and D.

The following lemmas need to be utilized in the conver-
gence analysis for the distributed exosystem observer.

Lemma 4 ([21]): If Q is a real positive symmetric matrix,
then it can be decomposed into Q = Q;04, where Qy =
Qg > 0 is also a real symmetric matrix.
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Lemma 5: For the detectable matrix pair (S, H), select the
gain as

F =S.PiH (HP\HT + R))™! (17)

where P = PIT > 0and R = RIT > 0.If s € Cis located in
the following stability region

|s_1|2<—Q_1$VQ }, (18)
d s&<d

then all the eigenvalues of S, — sFH, s € C are Schur, where
Q4 =0l > 0and Wy = S,PTH(HPTH + R)"'HP,ST.

Proof: If there exists the detectable matrix pair (S,, H),
then the Schur stability of matrix S, — sFH,s € C can
be guaranteed. By [30], the following standard discrete-time
ARE

@:[SE(C

SPiS] —P1 — Wy + Q=0 (19)

has a positive symmetric definite matrix solution Py = PIT >
0, where Qs = QT > 0. By using the Lyapunov stability
theorem, if

E = (S —sFH)P\(S, —sFH)* =P, <0,  (20)

then the matrix S, — sFH is Schur. Let s =Re(s)+Im(s)j and
F as ( 17), then one has
E = (S, — sFH)P(S, — sFH)* — P
= 5,P1ST — (Re(s) + Im(s)j)FHP,S!
— (Re(s) — Im(s)j)S, P HTFT
+ (Re*(s) + Im?(s))FHP HT FT — P,
=S, P1ST — (Re(s) + Im(s)))S,P1HT (HP{HT 4+ R;)~!
. HP;ST — (Re(s) — Im(s)))S,PiHT (HP1HT + R))~!
- HP1ST + (Re?(s) + Im%(5))S,P1HT (HP1HT + Ry)™!
-HPHT(HP\H" + R)~'HP,ST — P,
=S,P1SI —2Re(s)S,P1HT (HP\HT + Ry)"'HPS!
+ (Re(s) + Im*(s))S, P\ H' (HP\H" + R))™"
-(HP{H" + Ry — R\)(HP\H" + R\)"'HP|S] — P
< 8,P1ST — P — (Re?(s) + Im%(s) — 2Re(s))
.S, PHT(HP{HT + R))"'HP;ST — (Re*(s) + Im>(s))
-Ri(HP\HT + R))"'HPST
< 8,P1ST — Py + (s|*> — 2Re(s))
.S, P\HT(HP{HT + R)"'HPST
=STP\S, —P—S,P1H  (HP{HT +R))"'HP,ST
+ (s> — 2Re(s) + 1S, P1HT (HP\HT + R)"'HP, ST
< —Os+lIs — 11> W, 1)

From Lemma 4, the positi_ve_symmetric _matrix Qs can be
decomposed into Q; = 0404, Where Qy = Qg > 0.
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Correspondingly, the inequation

—Qy+ls — 117 W,
= 0404 +Is — 11 W,
<0 (22)
is equivalent to
I+ 1s—170;'W,04 <0 (23)

by us1ng the premultiplication and postmultiplication with
Q 0y and Qd It is obvious that if (22) or (23) holds, then
E < 0 is satisfied. Therefore, by (23), we can conclude that
if

2 1
|s — 1] - (24)
Qd WA Qd
then the matrix S, —sFH is Schur stable, which accomplishes
the proof. ]

Next, we will give the main theorem of this subsection
under the distributed bipartite formation state feedback
controller (16).

Theorem 1: Under the directed signed graph G, a hetero-
geneous discrete-time linear MAS is consisting of (5) and (6),
which satisfies Assumptions 1, 2, 4 and 5. The corresponding
bipartite formation control can be achieved by using the
distributed state feedback control law (16), if the control
parameters are designed to satisfy the below two conditions:

1) The observer gain u; is designed as p; = 1/(Z,~,-+g,~). The
observer gain matrices F' and H are designed from Lemma 5,
which are associated with the discrete-time ARE (19).

2) The gain matrix Kj; is designed to make A; + BiKj;
is Schur. The gain matrices K»; and K3; are selected as
(K2i, K3i) = U — K1X;.

Proof: Define the following compact vectors

0= (. o) 0= (0. ko)
50 = (570 850) v = (Fw. - o)
ey = (0. o) w=(ul. - uf)

T
%0y = (x" @, 1" ) 25)

and following compact matrices

A =diag(Ay,--- ,Ay) B=diag(B1,---, Bn)
C:diag(Cl,--- ,CN) D:diag(Dl,-~- ,DN)

K| = diag (K11, - - , Kiv) K2 = diag (K21, -+ -, Kow)
K3 = diag (K31, -+, K3n) (26)

The closed-loop system under the bipartite formation
controller (16) can be written as

Xt 1) = Aexe(t) + BK33(1)
¢ e (GD ® FH)(1y ® r(t))
e(t) = Cexo(t) + DK36(t) — (In ® Cy)v(2)

27)
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where
A = A + BK; BK»
¢~ 0 Iy®S, —ul ®FH
= (C + DKy, DK>») (28)

Next, we will give two statements to prove the bipartite
formation result under the controller (16).

Statement 1): It should be noted that the exosystem
observer with compact form plays an essential role in the
stability of dynamics (27), which is described as follows:

Nt +1)= Uy ®S, — nL’ ® FH)n(t)
+(GD ® FH)(1y ® r(1)) (29)

To analyze the stability of system (29), define the following
error vector and its compact form

ni(t) = ni(t) — dir(1)
T
i = (A @, 7o) (30)

Under Assumption 1, any two connected followers in
directed signed graph G have only one interaction relation,
then we have ag;d;d; > 0 fori,j € V and d; € {£1}.
Therefore, one has the following equivalence relations

[ ‘aij‘ = aijsgn(aij) (31)

|aij| dj = aid;

Based on (30) and (31), the difference of 7;() can be
calculated as follows:

it + 1)
=nit+1)—dir(t + 1)
= Spnit)— wiFH( X |ag| (nir)—sgn(ag)n;(1))

JENI
+ &i(ni(t) — dir (1)) —d;S,r(1)
= S (mi(t) —dir(t)) — ik H( 2. |aij| (ni(t)—dir (1))

JEN;
—|a;| (sgnlai)n;(t)—dir(1)) + gi(ni(t) —dir (1))
= Sr(ni(f)—dir(f))—MiFH(_z |aij| (ni()—dir (1))

JEN;
— |aj| senai) (1) —djr (1)) + gi(ni(t)—dir (1))
= Srﬁi(t)
— wiFH( z |aij| (Gii(t) —sgn(ay)7;()) + gifii(1)) (32)

JjeN;
and the compact form of dynamics (32) is
it +1) =y ® S, — nLs ® FH)ij(t) (33)
Introduce the following compact vector
(0 = @1 @, @) =TT i) (34)

where T € RM*N is the nonsingular matrix satisfying

T_l(,uﬁ_s)T = Js. We can further have the dynamics as
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follows:
A+ 1) =T ' @)Uy ®S, — nLy ® FHXT & I)ii(7)
=y ®S, — T ' (uLy)T ® FH)(t)
=(UnN®S,—J; @ FH)1(t) (35)

Obviously, the systems (35) and (33) have the same
asymptotic stability. Moreover, if the following matrix

Iv® S, —J;®FH (36)

is Schur, then the stability of (35) can be guaranteed. Due
to (36) has an upper triangular structure, we can find that if
the eigenvalues of matrices

S, —piFH,i=1,--- ,N 37
are Schur, then the matrix (36) is also Schur, where ¢;, i =
1,---, N are the eigenvalues of uL;. By Lemma 2, ¢;, i =
1, .-+, N will locate in the following unions of N discs

N —_ —_
U {seC:|s— pilli +g)| < pili} (38)
i=1

If the observer gain u; = 1 /(Zii + gi), then (38) can be
rewritten as

N lii ]

seC:ls—1| <= 39
iL:JlH | |_lii+gi 39
By introducing the gain pu;, we can find that all the
eigenvalues of wLg can locate in the unit circle. From
Lemma 5, the matrix S, — ¢;FH is Schur if ¢; locates in the
stability region (18) when H is selected such that (S, H) is
Schur and F is designed based upon the discrete-time ARE
( 19). Therefore, if o(S,) C W holds, then the matrices
Sy —@iFH and Iy ® S, —J;® FH are both Schur. Accordingly,
the systems (33) and (35) are Schur stable, which also shows
that

lim 7;(t) = lim (n;(t) —dir(t)) =0, i=1,--- ,N (40)
t—00 t—>00

and the distributed observer can realize the bipartite tracking
for the exosystem.

Statement 2): The stability of system (27) can be
transformed into that of the closed-loop system composing
of error vectors. Let

Xi() = x;(t) — Xpvi(t) 41)

where X; is related with the regulator equations (15). Then the
compact vector of (41) is

T
0 = (.- &) “2)
Define the following compact vector
T
SOR CIONHO)

T
= (H o, oo ko) @)
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and following compact matrices
X = dlag(X17 tt 7XN)
K3 = diag (K21, K31), - -+, (Kon, K3n)) (44)

Then the system (27) can be rewritten as the following error
system

Xe(t + 1) = Acxc(t) + Bev(t) 45)
e(t) = Cexe(t) + Dev(t)
where
B — ( —X(Uy ®Sy)+ (A + BK1)X + BK»3 )
T 0
D.=(C+DK)X +DKy; — Iy ® C, (46)

If (K»;, K3;) = U; — K1;X; in condition 2) holds, then the
regulator equations (15) are rewritten as

X;Sy = (A; + BiK1)X; + Bi(Ky;, K3;)
0= (Ci + DiK1)X; + Di(Ky;, K3)) — C,  (47)

Thus, if the first-line equation of (47) is satisfied, then B, = 0
and it can be found that the stability of dynamics x.(z) only
depends on the A, which has the block upper triangular form.
Since there exists the gain matrices Ki; so that A; + B;Kj; is
Schur under Assumption 2, the diagonal block elements of A,
are Schur. One can conclude that

lim %) = lim (y(t) — Xovi(1) =0, i=1,--- ,N (48)
r—>00 — o0

On the other hand, if the second-line equation of (47) is
satisfied, then D. = 0 and we can further obtain

Am ei(r) = lim (i(t) — diy, (1) = 8:(1)) =0, i=1,--- . N
(49)

On account of the statements 1) and 2), the distributed
bipartite output formation control problem via state feedback
can be achieved based on the output regulation theory. The
proof is completed. [ ]

B. OUTPUT FEEDBACK FORMATION CONTROLLER DESIGN
The state feedback controller (16) can realize the bipartite
formation by utilizing the state and estimation of exosystem.
However, the state of agent is difficult to be obtained in
practice, especially in large-scale network structure. In this
subsection, the bipartite formation control law is further
designed via output feedback by introducing the state
estimator, which has the following form

[ ui(1) = K1iki(t) + Kaimi(t) + K3:8i(1)
Xi(t + 1) = Aixi(t) + Biui(t) — yiTivi(t)

nit + 1) = Spni(t) — wiFHE(t) (50)
Ei(t) = > |ai| (ni(t) — sgn(aijm;(1))
jeN;

+gi(ni(t) — dir (1))
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where x;(t) € R" is the state estimation, y; is the constant
coupling estimator gain and I'; € R"*P is the estimator gain
matrix. y;(t) = yi(t) — yi(t) = Ci(xi(t) — x;(1)). K1i, Ko,
K3i, pi, F and H are also the control parameters, which can
be similarly designed from the distributed bipartite formation
controller (16).

The following lemma will be used in the convergence
analysis for the state estimator.

Lemma 6: For the detectable matrix pair (4;, C;), select
the gain as

T; = AP C(CiPYCi + Ry)™! (51)
where P, = P; >0and Ry = RZT > 0.If s € Cis located in

the following stability region

\i’:[se(C

s — 112 < %] (52)
Qd WsQu
then all the eigenvalues of A; —sT";C;, s € C are Schur, where
Q4 = O > 0and Wy = AP} C(CiPLCi + Ry) ™' CiPT AT
Proof: Under Assumption 2, there exists the detectable
matrix pair (A;, C;), then the Schur stability of matrix A; —

s[iCi, s € C can be guaranteed. Moreover, the following
standard discrete-time ARE

APIAT — Py — W+ 0,=0 (53)

has a posmve symmetric definite matrix solution P, = PT
0, where Qs = QT > 0. By using the Lyapunov stablhty
theorem, if

E = (A; — sTC)P2(A; — sTiCy)* — Py < 0, (54)
then the matrix A; — sT";C; is Schur. Let s =Re(s)+Im(s)j and
I'; as (51), then we have
& = (Ai — sTiC)P2(A; — sTiCi)* — Pa

< AP, AT — Py — (Re%(s) 4+ Im*(s) — 2Re(s))
- AiPS C(CiPIC] + R) T CiPLAT — (Re?(s) + Im(s))
-RUCiP2CT + Ry~ CiPoAT
< AiP,AT — P + (s]* — 2Re(s))
- APYCT(CiPLCT + Ry) ™I CiPyAT
= AT PyA;—Py— AP CT(CiP1CT +Ry) ™' CiPyAT
+ (sI* — 2Re(s) + DAP2CL(CiP2CT + Ry) ™' CiPp AT
< —Os+ls — 1> W, (55)

Obviously, by Lemma 4, QA can also be decomposed into
05 = 0404, where Qy = Qd > 0. Thus, if

I+ 1s—170;'W,04 <0 (56)

then & < 0 holds. The rest of the proof is similar with that of
lemma 5, and thus is omitted here. [ |

Theorem 2: Under the directed signed graph G, a hetero-
geneous discrete-time linear MAS is consisting of (5) and (6),
which satisfies Assumptions 1-5. The corresponding bipartite

18908

formation control can be achieved by using the distributed
output feedback control law (50), if the control parameters
are designed to satisfy the below two conditions:

1) The observer parameters are designed as Theorem 1.
The estimator gain y; is select to locate in the stability
region (52). The estimator gain matrices I' is designed
from Lemma 6, which are associated with the discrete-time
ARE (53).

2) The gain matrices Ky;, K>; and K3; are selected as
Theorem 1.

Proof: The second-line equation of (50) is the state
estimator to obtain the information of state based upon the
neighbor information. To analyze the convergence of state
estimator, define the following error vector

7i(t) = Xi(1) — xi(1) (57)

which has the compact form as follows:

T
v = (@, T 0) (58)
Then the dynamics of ;(¢) is calculated as

t+ D) =x+1)—x(t+ 1)
= AiXi(t) + Biui(t) — yiT'iyi(t)
— (Aixi(1) + Bju;i(1))
= Ai(xi(1) — xi()) — yili(Ci(&i(t) — xi(1))
= (A; — yiliCiTi(0) (59)
whose asymptotic stability depend on the matrix A; — y;I';C;.
By the detectable condition in Assumption 2 and Lemma 6,
the matrix A; — y;[';C; is Schur if y; locates in the stability
region (52) when I'; is designed based upon the discrete-time
ARE (53). Therefore, if condition 1) in Theorem 2 holds, then

the matrices A; — y;I;C;, i = 1, - - - are Schur stable and one
can conclude that

tl_l)rgo 7i(t) = IE)IIOIO()ACi(t) —x@)=0,i=1,---,N (60)
Define
T T T T T T
Xe = (xc(t),z' (t)) y = (yl ,),N)
I' = diag (FlT(t), R F,@(t))T (61)

Next, we are ready to construct the closed-loop error system
as follows:

Xc(t + {) = AcX(t) + Bcv(t) (62)
e(t) = Cex(t) + Dev(t)
where
- (A, —BK - (B
AC_(OA—)/FC) BC_(O)
C. = (C.,— (C +DKy)) (63)

and D, is given in (46). If condition 2) in Theorem 2 holds,
t_hen the regulator equations (47) is satisfied and we have
B, = 0 and D, = 0. Therefore, the stability of x.(¢) is
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FIGURE 3. Topology of the multi-vehicle system with two connected
subgroups.

determined by the block upper triangular matrix A., which
is governed by A, and A — yI'C. The stability of A, is
illustrated in Theorem 1. The matrix A — yI"C is diagonally
composed by the Schur stable matrices A; — y;I;C,i =
1, -+, N and thus is Schur. It easily follows from Theorem 1
that the bipartite formation control is achieved under output
feedback controller ( 50) and convergence of formation
tracking error (49) is also guaranteed. [ |

IV. NUMERICAL EXAMPLES

To illustrate the effectiveness of the designed control laws
via state feedback and output feedback, a discrete-time multi-
vehicle system composed of seven vehicles is considered in
this section. The directed signed graph is shown in Figure 3,
where follower vehicles 1-3 are in one subgroup and follower
vehicles 4-6 are in another subgroup. Specially, only vehicles
1 and 4 can get information directly from leader vehicle 0.
The corresponding topological matrix s

-110000
-1-12 000
0 00100
0 01-13-1
0 00-101

The discrete-time linear dynamics of the follower vehicles
can be given as follows [23]:

x1i(t + 1) = x1;(t) + x2i(2)
x2i(t + 1) = ayixi(t) + byiui(t)
yi(t) = x1;(2)

where x1;(r) € R?, x2;(t) € R? and y;(r) € R? respectively
denote the position, the velocity and the the position output
of follower i. Let ay; = 1 + Aa; and by, = 1 + A b; with
Aai, Abi,i=1,---,6being perturbed values. Select

Aal,“.b =(0.1, —0.2,0.3,0.4, —0.3, —0.1)
A b1....6 =(0.1,0.2,0,0.3, -0.1, —0.2)
which means that the multi-vehicle system is heterogeneous.
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The leader is generated by
ri(t + 1) = ri(t) + ra(t)
ra(t + 1) = (1)
yr(t) = ri(t)

The objective is to control the follower vehicles to track the
leader and reach a desired bipartite formation. The desired
relative positions between followers and leader are given as

=0, D7, 8 =(=05,-1.5", 55=(1,-DT
84 =0,D7, 85 =(=1,-17, 86 = (2,0

which indicates that the follower vehicles of two antagonistic
subgroups can finally severally form two classes of triangles
to cover the homodromous/inverse trajectories of leader.
Thus, the system matrix S, of exosystem is written as
1100
g = S0 _ 10100
V71 O0L|T]0010
0001
(1) Bipartite formation controller (16) via state feedback
The observer parameters are designed as
w1 =1/2,u2 =1, u3 =1/2,
e =1,us=1/3, ug =1,
= (2.0195;0.5459) , H = (0.5, 0.1)

The control gain matrices for the state feedback con-
troller (24) are chosen as

(—0.6169 0 —1.5909 0 )
Ky = 0

—06169 0  —1.5909
ko (08483 0 23125

12 0 —0.8483 0 —23125
ke (05220 0 —12692

3= 0 —0.5220 ~1. 2692
K (04847 0 —13929

14 = 0 —0.4847 —1. 3929
Ko — (709694 0 —22143

5= 0  —0.9694 -2. 2143
K — (707540 0 —16111

16 = 0  —0.7540 —1. 6111
o _ (06169 0 15000 0

2= 0 0.6169 0 1.5000

o (08483 0 20625 0

2= 0 0.8483 2.0625

e (05220 0 12692

B = 0 0.5220 1. 2692

n — (04847 0 11786 0

%= 0 0.4847 1.1786

Ko — (09694 0 23571 0

3= 0 09694 0 2.3571

o — (07540 0 18333 0

26 = 0 07540 0 1.8333
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FIGURE 4. Bipartite formation trajectories under distributed

controller (16).
o — (06169 0 K 0.8483 0
3= 0 0.6169 ) "% 0 0.8483 )"

Ko (05220 0 o (04847 0
3= 0 0.5220) "%~ 0 04847 )"

Ko — (09694 0 Ko — (07540 0
3= 0 0.9694 ) 736~ 0 0.7540

(2) Bipartite formation controller (50) via output feedback
Let constant coupling estimator gain y;..6 = 1. The
estimator gain matrices are designed as

oo (12100 0 04108 0
= 0 1.2100 0.4108

05518 0
0.5518

1.3100

1. 3100

5

1.1100 02898 0

0 1. 1100 0.2898
8

('
=
(1 4100 07128 0
=

0 1 4100 07128)

1.0100 0. 1888 0
0 1 0100 0.1888

(09100 0 01078
6= 0 09100 0

0.1078)

The numerical results under state feedback and output
feedback are shown in Figures. 4-7. Figures 4 and 6
respectively depict the bipartite formation trajectories under
distributed controllers (16) and (50), where the followers in
different subgroups can track the trajectory of exosystem and
its negative value according to the given relative positions.
Therefore, the bipartite formation composed by two groups of
triangulares is ultimately achieved under the proposed control
protocols. Figures 5 and 7 show that in both cases all bipartite
tracking errors e;(t) will approach 0 asymptotically, which
further illustrate that the proposed distributed bipartite output
formation control protocols are effective.
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FIGURE 5. Bipartite formation errors under distributed controller (16).
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FIGURE 6. Bipartite formation trajectories under distributed
controller (50).
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FIGURE 7. Bipartite formation errors under distributed controller (50).

V. CONCLUSION

This paper has presented two classes of distributed bipartite
output formation control protocols via state feedback and out-
put feedback under the directed signed topological stricture
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for heterogenous leader-following MASs. The core concept
is to transform the classical consensus control problem into
a bipartite formation control problem by considering the
output tracking errors as the exogenous signals. Specially,
the dynamical systems of followers are discrete-time and
non-identical, and the corresponding cooperative control
problems can not be easily solved by classical consensus-
based distributed control methods. Therefore, a new cooper-
ative output regulation framework associated with bipartite
formation has been obtained by introducing the distributed
exosystem observer and state estimator in our paper. The
numerical simulation results have been provided to show
the effective of the designed controllers. In the future work,
we will study the bipartite formation-containment problem of
heterogenous discrete-time MASs based upon the distributed
adaptive exosystem observer.
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