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ABSTRACT To ensure the stable and safe operations, this paper presents a modeling framework of dynamic
risk monitoring for chemical processes. Multi-source process data are firstly denoised by the Wavelet
Transform (WT). The Spearman’s rank correlation coefficient (SRCC) of these data is calculated based on
an appropriate time step and time window. An optimal correlation threshold is further applied to transform
the SRCC matrix into an adjacency matrix. Accordingly, the model of complex networks (CNs) can be
established for characterizing massive, disordered, and nonlinear process data. Network structure entropy
is particularly introduced to transform process data into a single time series of relative risk. To illustrate its
validity, a diesel hydrofining unit and Tennessee Eastman Process (TEP) are selected as test cases. Results
show that the proposed modeling framework can effectively and reasonably monitor the risks of chemical
processes in real time.

INDEX TERMS Chemical process, risk monitoring, complex network (CN), Spearman’s rank correlation
coefficient (SRCC), network structure entropy.

I. INTRODUCTION
In recent years, the transformation and upgrading have
been vigorously promoted for global chemical industries [1].
A trend of refining and chemical integration has become
increasingly prominent to enrich product structure, enhance
added value, reduce energy consumption, and save produc-
tion cost. A great number of giant chemical parks are grad-
ually established in the Gulf of Mexico (US), the Gulf of
Tokyo (Japan), and the Jurong Island (Singapore). As an
example of the Gulf of Mexico, the capacities of refining and
ethylene are 460 million tons / year and 27 million tons / year,
accounting for 52% and 95% of the total production capacity
in the US, respectively [2].With a deep integration of refining
and chemical industries, production units are becoming more
and more large, production processes are becoming more and
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more integrated, as well as production systems are becoming
more and more intensive. Thousands of monitoring points
need to be set up to collect process data (e.g., temperature,
pressure, flow, and liquid level) over the whole operation
of chemical units [3]. For example, there are more than
1000 monitoring points in a catalytic cracking unit with the
production capacity of 1million tons / year so the process data
counts in one day will be up to 860 million [4]. As a result,
the distributed control system (DCS), supervisory control and
data acquisition (SCADA), advanced control system (APC),
industrial TV, or other monitoring systems had to display
and store these massive, disordered, and nonlinear process
data [5].

Risk monitoring is a common technique used to accu-
rately and quickly master the operating condition of chem-
ical processes. It can provide alarm information of high-
probability or high-consequence incidents caused by process
deviations. Generally, there are five different kinds of risk
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monitoring methods. ① The risk monitoring method based on
analytical model refers to converting the process model into
state space form and comparing it with the actual operating
status. If a residual is generated and its size exceeds the
set threshold, the process risk can be monitored [6]. For
example, Prof. J Rawlings’s Group applied the state stabil-
ity of stochastic input to verify the feasibility of nonlinear
stochastic model of predictive control systems in process
monitoring [7]. Although the analytical model-based meth-
ods are widely used and relatively mature, they require a
large amount of prior knowledge and a large amount of work
to obtain abnormal data and establish risk monitoring mod-
els [8], [9]. ② The risk monitoring method based on mathe-
matical statistics refers to extracting important characteristic
information of data and constructing statistical indicators to
measure data attributes. This kind of method can distinguish
and monitor abnormal conditions in chemical processes [10].
For example, Schaeffer and Braatz’s Group developed and
designed a software for multi-source data analysis of chem-
ical processes based on principal component analysis and
partial least squares [11]. González and Zavala’s Group pre-
sented a new paradigm in Bayesian optimization for the
analysis and monitoring of chemical process data, which
allowed Bayesian optimization to effectively use composite
functions [12]. Although the mathematical statistics-based
methods can be combined with other optimization algorithms
to achieve process risk monitoring by annotating data, they
only consider the non-causality of the data and have certain
application limitations [13]. ③ The risk monitoring method
based on signal processing refers to spectrally transforming
vibration or leakage signals and extracting risk characteristics
in the frequency domain [14]. However, this kind of method
is only suitable for risk monitoring and diagnosis of moving
equipment in the chemical processes, and does not have the
ability to monitor an entire process [15]. ④ The risk monitor-
ingmethod based on process knowledge refers to establishing
topology networks of chemical processes from the perspec-
tive of mechanism, and inputting data matrix to monitor the
processes [16]. For example, Castaldello et al. input process
data into a topological network and used optimization algo-
rithms to mine optimal process paths, which could provide a
basis for process risk monitoring [17]. However, this kind of
method requires a large amount of prior knowledge, and has
a limited application scope. ⑤ The risk monitoring method
based on artificial intelligence refers to using the powerful
nonlinear fitting ability of neural networks to extract data
features to realize risk monitoring in chemical processes [18].
For example, Jiang and Yan proposed a regularized deep
correlated representation method incorporating deep belief
networks and canonical correlation analysis for nonlinear
process monitoring [19]. However, the artificial intelligence-
based methods require a large amount of labeled data, which
is very complicated [20]. Although transfer learning can solve
the data annotation problem of artificial intelligence algo-
rithms to some extent, the engineering application has yet to
be verified [21].

In fact, multi-source process data are coupled with each
other. The process data are inevitably changed due to a
unit failure or an external disturbance during the chemical
processes. When a failure or disturbance occurs, chemical
process risks will propagate through the material flow and
information flow paths [22]. As similar as a domino effect,
upstream parameter changes will propagate to the down-
stream in accordance with a causal relationship. Hence it is
important to accurately deal with correlation rules hidden in
multi-source process data, which will be conducive to quickly
analyze the root causes of process risk and cut off its propa-
gation paths [23]. However, those existing methods are not
competent to efficiently deal with multi-source process data
and reasonably express the correlation between them, which
will easily result in serious data redundancy and information
loss.

At end of the 20th century, Watts and Strogatz [24] as well
as Barabasi and Albert [25] published papers in Nature and
Science associated with the complex networks (CNs), respec-
tively. They found that all the CNs had a common topological
statistical property – small-world effect. It was the first time to
introduce the idea of physical statistics into the graph theory.
Nature Physics focused on the CNs once again in 2012 and
Barabási clearly pointed out that ‘‘Data-based mathematical
models of complex systems are offering a fresh perspective,
rapidly developing into a new discipline: network science’’
[26]. Generally, the CNs are abstracted from complex systems
in the real world. Scientific research shows that different
kinds of objects can be transformed into nodes without shape
and size [27]. If there are correlations within these objects,
the corresponding nodes will be connected by lines, which are
regarded as edges. Hence the CNs are competent to truly rep-
resent the characteristics of complex systems. In addition, the
CNs have topological characteristics. The nodes which are
independent of sizes, shapes, and positions only represent the
studied objects. Similarly, the edges which are independent of
their lengths, widths, and shapes only represent whether there
are correlations between nodes or not. Nowadays, the CNs are
becoming a research hotspot over the whole academic circles.
They have been widely applied in many fields, such as power
engineering [28], [29], transportation engineering [30], [31],
and infrastructure engineering [32], [33], and so on.

Therefore, this paper aims to present a modeling frame-
work of dynamic risk monitoring based on the CNs. Dur-
ing the whole period of chemical processes, the CNs can
be applied to accurately describe the coupling characteristic
of multi-source process data, as well as reasonably reveal
the interaction relationship of energy, material, and informa-
tion. This paper only focuses on multi-source process data
from an aspect of time dimension, so the chemical processes
are abstracted as undirected unweighted networks (UUNs)
and the monitoring points are defined as network nodes.
As shown below, there are two major technological contri-
butions in this study.

First, how to establish a network model? The correlation
coefficient is a common method in the modeling of CNs.
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It can be used to verify whether there are correlations between
multi-source process data or not. Particularly, this method
not only avoids an artificial division, but also reduces human
errors resulted from a large amount of process data. Fur-
thermore, three typical correlation coefficients are generally
applied in the existing studies – Partial correlation coeffi-
cient (ParCC) [34], Pearson correlation coefficient (PeaCC)
[35], and Spearman’s rank correlation coefficient (SRCC)
[36]. The ParCC is mainly used to analyze the influence
relationship between multiple variables. Because chemical
process data is less affected by noise, the overall trend of
the data is relatively stable under normal conditions. There
is no need to use the ParCC in this paper, which can easily
cause computational burden. The PeaCC measures the linear
relationship between pairs of variables. Chemical process
data has strong nonlinear characteristics, so the PeaCC is not
applicable. The SRCC is often regarded as a nonparametric
measure of rank correlation due to statistical dependence
of ranking between two variables. It robustly captures the
outliers and nonlinear relationships, and measures monotonic
dependence relationship between two variables. Compared
with the ParCC and PeaCC, the SRCC can solve nonlinear
problems and have a wider application [37], [38]. The SRCC
is integrated into CNs to reasonably express and efficiently
deal with the nonlinear correlations of multi-source process
data in the chemical processes. However, there is no unified
standard for the selection of threshold interval, resulting in the
effectiveness of correlation rules only depends on the expert
experience; this paper will discuss it in detail.

Second, how to monitor the process risk? Existing studies
show that the network structure entropy and its growth rate
can effectively reveal network evolution rules and structure
change characteristics under different time windows [39].
As a measure of disorder, the network structure entropy can
make full use of global information of network nodes, thus
it is transformed into influencing factor to reflect the trend
of risk evolution. In this paper, network structure entropy
is introduced to transform multi-source process data into a
single time series of relative risk, which greatly reduce data
dimension and accurately monitor dynamic risk during the
chemical processes. However, the selection of time window
of process data becomes a key problem to be solved due to the
multi-dimensional, nonlinear, and dynamic characteristics;
this paper will provide a solution.

The rest of the paper is organized as follows. Section II
introduces a brief description of basic theories. Section III
details a modeling framework of dynamic risk monitoring
for chemical processes using these theories. Two case studies
of a diesel hydrofining unit and Tennessee Eastman Process
(TEP) are selected in Section IV. Finally, conclusions are
made in Section V.

II. PRELIMINARIES
A. WAVELET TRANSFORM (WT)
The WT is a local transform between the time (or space) and
frequency [40]. As expressed in Eq. (1), a non-orthogonal

wavelet functionψ (t) is used to develop stretching and trans-
lation operations to extract information from a signal f (t),
and the wavelet basis function ψa,τ (t) is a cluster function
generated by the stretching and translation of wavelet func-
tion.

WT (a, τ ) =
1

√
a

∫
∞

−∞

f (t)× ψ

(
t − τ

a

)
ψa,τ (t) =

1
√
a
ψ

(
t − τ

a

)
(1)

where a and τ represent the frequency factor and time factor,
which control the stretching and translation of wavelet func-
tion, respectively.

The basic idea of WT is to use wavelet basis function to
represent a signal (i.e. data). There are five typical functions,
including Haar (haar), Daubechies (dbN), Biorthogonal (bior
Nr.Nd), Symlets (sym N), and Dmeyer (demy). Particularly,
the index of signal-to-noise ratio SNR is selected to evaluate
the applicability of different wavelet basis functions (see
Eq. (2)). The higher the signal-to-noise ratio, the better the
denoising effect is.

Psignal =
1
n

n∑
i=1

X2
0

Pnoise =
1
n

n∑
j=1

(
X̃ − X0

)2
SNR = 10 × lg

(
Psignal
Pnoise

)
(2)

where Psignal and Pnoise represent the energies of signal and
noise, respectively; n represents the signal length; X0 and X̃
represent the original signals and denoised signals, respec-
tively.

B. SPEARMAN’s RANK CORRELATION COEFFICIENT
(SRCC)
Scale-independent measurement is important to the study of
CNs [36]. The SRCC is a nonparametric measure of statistical
dependence to assess the monotonic relation between two
variables. Correlation analysis is a basis for establishing the
CNs. The adjacency matrix can be obtained using a SRCC
matrix and its threshold, and the connection relationship
between each node in CNs can be further determined [41].
The SRCC is valued between −1 and 1 [42]. If the value
is approximate to −1 or 1, it indicates that the correlation
between two variables is strong. If the value is approximate
to 0, it indicates that the correlation between two variables is
weak. If the value is 0, it indicates that there is no correlation
between two variables. Moreover, if the value is positive (or
negative), it indicates that two variables are positively (or
negatively) correlated.

Suppose that there are two variables X and Y . Their ele-
ment numbers are both n, and the i’th (1 ≤ i ≤ n) elements
are Xi and Yi, respectively. According to the ascending (or
descending) order, X and Y are sorted to obtain two element
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sets – x and y. The elements xi and yi are usually called as
the ranks, and used to represent the position of Xi in the X
and the position of Yi in the Y , respectively. Furthermore, the
elements of the sets x and y are correspondingly subtracted to
obtain a sorted difference set – rank difference di = xi − yi.
As expressed in Eq. (3), the SRCC can be calculated based
on rank difference di.

ρi = 1 −

6
m∑
i=1

d2i

n
(
n2 − 1

) (3)

C. COMPLEX NETWORK (CN)
The CN is a statistical physics interpretation of graph the-
ory [43]. It aims at describing and understanding the relation-
ships between the elements of a complex system. Formally,
a CN can be represented as a graph, where the entities in
a complex system are abstracted as nodes and the relation-
ships between entities are abstracted as connections [44],
[45]. As shown below, this paper provides a basic review of
important concepts in CNs [27].

1) NETWORK
Generally, a network can be abstracted into G = (V ,E),
which is composed of a node set V and an edge set E . eij
represents the edge between two nodes i and j. According to
the nodes and edges, the CNs can be divided into four types –
the undirected unweighted networks (UUNs), the directed
unweighted networks (DUNs), the undirected weighted net-
works (UWNs), and the directedweighted networks (DWNs).
This paper only focuses on the UUNs, where the adjacent
nodes have the same relationships (eij = eji) and the edges
have no weights.

2) ADJACENCY MATRIX
The adjacency matrix is a common expression applied to
describe a network in computer. If the adjacency matrix
A =

(
aij

)
N×N is a square matrix of order N , then an

UUN G with N nodes can be defined using aij. In an adja-
cency matrix, the element ‘‘1’’ indicates that the nodes in
its row and column have strong correlation, and there is
an edge between the corresponding nodes; the element ‘‘0’’
indicates that the nodes in its row and column have weak
correlation, and there is no edge between the corresponding
nodes.

3) DEGREE
The degree is one of the most simple and important concepts
used to describe a single node. In the UUNs, the degree ki
of node i is defined as the number of edges which directly
connect with this node. The average degree k can be further
defined as the arithmetic mean of degrees over all nodes (see
Eq. (4)).

k =
1
N

N∑
i=1

ki =
1
N

N∑
i,j=1

aij (4)

4) PATH LENGTH
The path length is often applied to reflect the whole charac-
teristics of CNs. In the UUNs, the path length d (i, j) between
node i and node j is defined as the number of edges along the
shortest path connecting these two nodes. The average path
length L can be further defined as the arithmetic mean of path
lengths between any node i and any node j (see Eq. (5)).

L =
1

1
2N (N − 1)

N∑
i≥j

d (i, j) (5)

5) CLUSTERING COEFFICIENT
The clustering coefficient is a quantitative description for
clustering degree of nodes used to reflect the partial char-
acteristics of CNs. In the UUNs, the clustering coefficient
Ci of node i is defined as the ratio between the number ei
of edges that actually exist between these ki nodes and the
total possible number ki (ki − 1)

/
2. The average clustering

coefficient C can be further defined as the arithmetic mean
of clustering coefficients over all nodes (see Eq. (6)).

C =
1
N

N∑
i=1

Ci =
1
N

N∑
i=1

2ei
ki (ki − 1)

(6)

6) NETWORK STRUCTURE ENTROPY
In the information theory, the Shannon entropy – as ameasure
of uncertainty in random events – can not only measure
the chaos or disorder of system state, but also contains a
large amount of system intrinsic information [46]. The def-
inition of network structural entropy is based on the Shannon
information entropy, which can be used to quantify the net-
work’s topological structure complexity [47], [48]. Particu-
larly, it considers the number of nodes in the CNs and their
relationships, and abstracts the rich information contained
in the CNs into specific numerical values [49]. Therefore,
network structure entropy can be applied to analyze the dis-
order degree in chemical processes, and characterize its risk
evolution characteristics and trends. There are three major
definitions as follows.

As expressed in Eq. (7), the degree distribution entropy
E is defined using the difference of the nodes in a network
structure.

E = −

N∑
i=1

p (ki) log p (ki) (7)

where p (ki) represents the probability distribution of the
degree of node i.

As expressed in Eq. (8), the Wu structure entropy E is
also defined using the difference of the nodes in a network
structure.

Ii =
ki
N∑
i=1

ki

E =

N∑
i=1

Ii ln Ii (8)
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where Ii represents the difference of node i.
As expressed in Eq. (9), the Cai structure entropy E not

only considers the difference of the nodes in a network struc-
ture, but also integrates the connection difference over these
nodes.

Si = (1 − p (ki))N

Di = ki (1 − p (ki))N

Ii = αSi + βDi

E = −

N∑
i=1

Ii
N∑
i=1

Ii

log
Ii
N∑
i=1

Ii

(9)

where Si represents the difference of node i; Di represents
the connection difference of node i; Ii represents the compre-
hensive difference of node i; the coefficients α and β should
meet the formula α + β = 1 and can be usually valued as
α + β = 0.5.

7) SMALL-WORLD EFFECT
The small-world effect is a typical characteristic used to
describe the connectivity of CNs. Newman defined the small-
world effect in the following way: ‘‘the fact that most pairs of
vertices in most networks seem to be connected by a short
path through the network’’ [50]. Budrikis coined that CNs
sharing high average clustering coefficient and short average
path length were one type of network displaying the small-
world effect [51]. Particularly, the CNs can be considered as
interpolating between one version of an ordered network and
one version of a random network [25], [52]. Eq. (10) can be
used to judge whether a CN has small-world effect or not.

Cord ≈
k
N

Lran ≈
ln k
lnN

Cord
Cran

>
Lord
Lran

(10)

where Cord and Lord represent the average clustering coeffi-
cient and average path length of an ordered network (namely
the established CN), respectively; Cran and Lran represent the
average clustering coefficient and average path length of the
corresponding random network, respectively; N represents
the number of all nodes in this random network; k represents
the degree of this random network.

In addition, this paper defines a small-world index S using
Eq. (11). A CN is provided with the small-world effect when
S is greater than 1.

S =
Cord
Cran

/
Lord
Lran

> 1 (11)

III. PROCEDURES
As shown in Fig. 1, a detailed modeling framework of
dynamic risk monitoring is presented for chemical processes.

There are six main stages in this framework. First, multi-
source process data should be collected from chemical pro-
cesses in real time, such as temperature, pressure, flow, liquid
level, and so on; then these dynamic data should be further
processed and denoised based on the WT. Second, appropri-
ate time step and time window must be selected for the mod-
elling of CNs; specifically, the standard deviation of network
structure entropy and average small-world index are applied
to determine time window in this paper. Third, non-linear
correlation analyses should be developed according to the
SRCC; then correlation coefficient matrix can be established
for these process data. Forth, the optimal correlation threshold
must be determined in accordance with the following two
principles – no isolated nodes and maximizing small-world
indexes; then this threshold can be applied to transform cor-
relation coefficient matrix into adjacency matrix; and then
the CNs can be established and the small-world effect should
be verified accordingly. Fifth, three typical network structure
entropies should be calculated; specifically, the standard devi-
ation is used to determine the optimal one in this paper. Sixth,
network structure entropy should be normalized to transform
the above-mentioned process data into a single time series
of relative risk; as a result, dynamic risk monitoring and
assessment can be effectively and reasonably realized over
the whole period of chemical processes.

A. DATA PREPROCESSING BASED ON WT
During the chemical processes, different kinds of vari-
ables (e.g., temperature, pressure, flow, and liquid level)
are collected by sensors at the regular intervals; then they
are converted into the electrical signals and transmitted to
dynamic monitoring terminals or data storage devices (e.g.,
DCS, SCADA, APC, and Industrial TV). However, there
is inevitably noise attributed by many factors, such as the
aging of equipment, human errors, external disturbance, mea-
surement errors of instrument or sensor, and so on [53],
[54] and [55]. The noise has adverse effects on the algorithm
(or model) to extract valuable information and deal with
subsequent data. Therefore, it is important to filter the noise
information contained in multi-source process data, which
will be conductive to increase the signal-to-noise ratio and
maximize the value of data.

First, multi-source process data should be decomposed by
wavelet basis functions. Using Eq. (1), the optimal wavelet
basis function is selected as that has the highest signal-to-
noise ratio. Second, an appropriate wavelet threshold should
be determined for the high-frequency coefficients after the
decomposition. If the threshold is too small, a large amount
of noise information will be retained, resulting in the unsuc-
cessful denoising. On the contrary, if the threshold is too
large, part of real information will be lost, resulting in the
data distortion. Third, data reconstruction should be devel-
oped based on the low-frequency coefficients (after wavelet
decomposition) and the high-frequency coefficients (after
threshold quantization). Fourth, data normalization should be
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FIGURE 1. The modeling framework of dynamic risk monitoring.

applied to convert the value of process data into an interval
between 0 and 1 (see Eq. (12)).

X ′
=

X̃ − Xmin

Xmax − Xmin
(12)

where X ′ represents the normalized process data; Xmin and
Xmax represent the minimum and maximum values of process
data, respectively.

B. SELECTION OF TIME STEP AND TIME WINDOW
It is necessary to select appropriate time step and time win-
dow during the modelling of CNs. The selection of time step
directly affects the performance of the proposed modeling
framework in this paper. In accordance with chemical process
data – a time series of data, themeaning of time step 1 refers to
the length of a set of data, and the length of each set of data is
related to its sampling time. When the time step is less than 1,
it is easy to cause local optimality, reduce the generalization
ability of the modeling framework, and increase the com-
puting power [56]. As the time step increases, the modeling
parameters may also jump too much on the loss function,
causing the optimization process to be out of control and
the modeling framework to be failed with convergence [57].
Hence this paper sets the time step as 1. Based on the time
step of 1, a CN can be established when every group of data
is postponed. In addition, this paper defines several groups
of process data required to establish a CN as a cluster, and
further defines the number of data groups in a cluster as

time window. As expressed in Eqs. (13) - (14), the standard
deviation of network structure entropy σE and average small-
world index S are used to evaluate the applicability of time
window, respectively.

σE =

√∑ (
Ei − E

)2
n

(13)

S =

∑
Si
n

(14)

where Ei represents the network structure entropy corre-
sponding to the i’th cluster data; Ē represents the average
network structure entropy; n represents the number of estab-
lished CNs; Si represents the small-world index correspond-
ing to the i’th cluster data.

Standard deviations can quantitatively describe the data
distribution and dispersion. The chemical process is stable
under normal conditions, and the corresponding network
structure entropy also fluctuates within a stable range [58],
[59]. When a unit failure or an external disturbance occurs,
the network structure entropies will change significantly and
can be monitored as risk points. The greater the network
structure entropy value, the higher the risk situation of chem-
ical process is. Therefore, this paper selects the smallest stan-
dard deviation from the degree distribution entropy,Wu struc-
ture entropy, and Cai structure entropy to characterize the risk
situation in CNs. In summary, the smaller the standard devi-
ation of network structure entropy, the better the sampling
effect is. Moreover, small-world indexes can quantitatively
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describe the data relationship. The greater the small-world
index, the closer the data relationship is and the better the
sampling effect is. Particularly, two evaluation indexes – σE
and S should be normalized to obtain an optimal time win-
dow. This paper sets the time window as that has the smallest
σE on the condition that S is greater than 1.

C. CALCULATION OF SRCC
Non-linear correlation analyses should be developed for the
above-mentioned process data. In this paper, the SRCC of
multi-source process data can be firstly calculated using
Eq. (3). Then the correlation coefficient matrix can be fur-
ther established. Lastly, this paper introduces the heat map
and grey-scale map to verify whether these process data are
correlated or not.

D. ESTABLISHMENT OF CN
A correlation threshold should be determined to transform the
correlation coefficient matrix into a Boolean matrix for the
establishment of CNs. In this paper, the Boolean matrix with
only 0 and 1 is regarded as an adjacency matrix. Note that all
nodes will be adjacent to each other if the correlation coef-
ficient matrix is directly applied to establish a CN; clearly,
this supposition is not conducive to extracting the statistical
characteristics of CNs, or even causes meaningless results.
In sum, the correlation coefficient matrix need be modified
to reduce redundant information. This paper defines that there
will be strong correlation in the SRCC if its absolute value is
greater than or equal to the correlation threshold; the SRCC
can be transformed into 1 in this case, indicating that the
corresponding nodes are connected. Similarly, this paper also
defines that there will be weak correlation in the SRCC if
its absolute value is less than the correlation threshold; the
SRCC can be transformed into 0 in this case, indicating that
the corresponding nodes are not connected. As shown below,
there are two major principles in the selection of correlation
threshold.

First, there are no isolated nodes in the CNs. The node
degree decreases with increasing correlation threshold due to
increasing isolated node number. This paper defines that the
isolated node refers to a node without any adjacency nodes;
namely the node degree is 0. If there are isolated nodes (also
called as blind spots) in the CNs, some critical information
related to chemical process risks will be lost. In addition,
too many isolated nodes will cause the CNs to lose their
rationality, which is not expected [60]. During the calculation
process of correlation threshold, the elements with 1 on the
diagonal of correlation coefficient matrix should be firstly
eliminated; then the absolute values of SRCC should be also
computed; lastly, the maximum values of corresponding ele-
ments in each row should be further calculated. Note that the
correlation coefficient matrix is a symmetric matrix, so a sum
of elements in each row is equivalent to a sum of elements
in each column. In addition, the node degree associated with
each cluster of multi-source process data will be not 0 and

there will be adjacency node on the condition that the cor-
relation threshold is less than the maximum value of SRCC.
As expressed in Eq. (15), the correlation threshold r ′ can be
selected according to a minimax criterion.

r ′
= min

(
max

(
ri,j

))
(15)

where ri,j represents the correlation coefficient between two
elements i and j.

Second, the small-world indexes of CNs are maximized
on the premise of the first principle. Even if some nodes or
connections are destroyed, information can still spread in the
CNs charactered by small-world effect, showing good robust-
ness [45], [61]. Therefore, the CNs established in this paper is
expected to have small-world effect to improve the robustness
of the proposed modeling framework. This paper applies the
enumeration method, where the correlation threshold is grad-
ually reduced using the step of 0.01. The correlation threshold
associated with the maximal small-world index is optimal.
Note that if the SRCC is less than 0.05, the correlation is
regarded as weak in this paper. Therefore, the minimum value
of correlation threshold is defined as 0.05.

In accordance with these two principles, the optimal corre-
lation threshold can be determined for multi-source process
data. This threshold is further applied to transform correlation
coefficient matrix into adjacency matrix. Accordingly, the
establishment of CNs and the verification of small-world
effect can be developed.

E. CALCULATION OF NETWORK STRUCTURE ENTROPY
Three different types of network structure entropy – the
degree distribution entropy, the Wu structure entropy, and the
Cai structure entropy can be calculated using Eqs. (7) - (9),
respectively. The standard deviation of network structure
entropy σE (see Eq. (13)) is taken as an index to select the
appropriate type in this paper. The smaller the standard devi-
ation of network structure entropy, the better the reflecting
effect of network evolution is.

F. ASSESSMENT OF RELATIVE RISK
In this paper, the CNs established in different time periods
can be regarded as risk dynamic evolutions over the chemical
processes. Hence network structure entropies under differ-
ent time windows are standardized by Max-Min dispersion
and transformed as relative risks corresponding to the CNs.
In similar to normalization processing, the relative risks can
unify network structure entropies of different conditions into
0-1. Accordingly, the robustness and generalization capabil-
ities of the proposed modeling framework can be improved.
As expressed in Eq. (16), the normalization of network struc-
ture entropy E can be applied to transform multi-source
process data into a single time series of relative risk R; as
a result, dynamic risk monitoring and assessment can be
realized during the chemical processes.

R =
E − Emin

Emax − Emin
(16)
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where Emin and Emax represent the minimum and maximum
values in the network structure entropy sequence, respec-
tively.

IV. CASE STUDIES
A. APPLICATION OF DIESEL HYDROFINING UNIT
1) BACKGROUND
Generally, the diesel hydrofining unit is used to remove sul-
fur, nitrogen, oxygen, aromatics, and other components con-
tained in crude oil, which can improve product performance
and reduce environmental pollution. However, this unit is
always in the high-temperature and high-pressure conditions.
In China, the diesel hydrofining is included into the first
hazardous chemical processes under strict state supervision,
and the transported materials belong to A in the hazardous
chemical classification. An application of diesel hydrofining
unit is developed to verify the effectiveness of the proposed
modeling framework in this paper.

FIGURE 2. The PFD of a diesel hydrofining unit in one oil refinery.

As shown in Fig. 2, a diesel hydrofining unit of oil refinery
mainly contains the reaction system and fractionation system.
A total of 34 key devices (see Table 1) and 37 process
variables (see Table 2) are involved in this unit.

2) PROCEDURES
a: DATA PREPROCESSING BASED ON WT
The first 2000 groups of process data associated with Tag
17 in this diesel hydrofining unit are selected as an example
to compare the denoising effect of different wavelet basis
functions. As shown in Fig. 3, this paper supposes the wavelet
basis functions as Haar, bior3.1, sym2, dmey, db8, db16,
db32, and db36, respectively. Here, the wavelet threshold is
presupposed as 0.6.

The signal-to-noise ratio of every wavelet basis function
can be computed (see Table 3). It is clear that the signal-
to-noise ratio of db32 is the highest, and the corresponding
wavelet curve is the most smoothing. Therefore, this paper
selects the db32 as wavelet basis function because it has the
best denoising effect.

On the basis of wavelet basis function – db32, the wavelet
thresholds are supposed as 0.2, 0.4, 0.6, and 0.8 to compare
the denoising effect, respectively. As shown in Fig. 4, the
wavelet curve fluctuates greatly and the denoising effect is
not obvious when wavelet threshold is 0.2 or 0.4; mean-
while, the wavelet curve is relatively flat when wavelet

TABLE 1. The key devices of a diesel hydrofining unit in one oil refinery.

threshold is 0.6 or 0.8. Moreover, it can be calculated that
the signal-to-noise ratio 53.183 corresponding to wavelet
threshold 0.6 is greater than 52.717 corresponding to wavelet
threshold 0.8. Hence the wavelet threshold is set as 0.6 in this
paper.

Note that the original process data may have invalid values.
For example, all data are 0 at a certain time. Accordingly,
the invalid values should be eliminated before process data
denoising.

b: SELECTION OF TIME STEP AND TIME WINDOW
The time step is taken as 1 for this on-site diesel hydrofining
unit. Accordingly, 50 CNs are established by selecting dif-
ferent time windows, including 50, 100, 150, 200, 250, and
300. Two indexes – standard deviation of network structure
entropy and average small-world index are used to compare
the applicability of time windows (see Table 4). The standard
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TABLE 2. The process variables of a diesel hydrofining unit in one oil
refinery.

TABLE 3. A comparison of the signal-to-noise ratio results from different
wavelet basis functions.

deviation of network structure entropy is the smallest when
time window is 100; meanwhile, the average small-world
index is the largest when time window is 50. According to
a comprehensive comparison of these two indexes, the time
window is finally selected as 100. In other words, the sam-
pling effect is the best when each cluster contains 100 groups
of process data.

FIGURE 3. A comparison of the denoising results from different wavelet
basis functions.

TABLE 4. A comparison of the CN modelling results from different time
windows.

c: CALCULATION OF SRCC
The first 100 groups of data of 37 process variables are
particularly applied after denoising by wavelet transform.
Results from the SRCC are shown in Appendix A.
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FIGURE 4. A comparison of the denoising results from different wavelet
thresholds.

A SRCC matrix can be visually converted into heat map
and gray-scale map, as shown in Fig. 5. The diagonal data
from top left to bottom right are 1, so the above-mentioned
process data are positively correlated with themselves. More-
over, other coefficients take the diagonal as symmetry axis
and show a symmetrical distribution law.

FIGURE 5. The correlation analyses based on heat map and grey-scale
map.

d: ESTABLISHMENT OF CN
A correlation threshold should be determined to transform the
SRCCmatrix into adjacencymatrix. In this paper, the correla-
tion thresholds are set as 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
and 0.9 respectively. Accordingly, 10 CNs can be established
(see Fig. 6) and the statistical network characteristics can be
also computed (see Table 5).

All the established complex networks contain 37 nodes,
which represent 37 process variables. Particularly, the iso-
lated nodes begin to appear when correlation threshold is
greater than or equal to 0.5. The larger the correlation thresh-
old is, the more the number of isolated nodes is. In other
words, the number of isolated nodes is positively corre-
lated with correlation threshold. Moreover, the maximum

FIGURE 6. A comparison of the CN modelling results from different
correlation thresholds.

correlation coefficients between 37 process variables are also
computed to analyze isolated nodes (see Table 6). The mini-
mum value between these maximum correlation coefficients
is 0.490 – corresponding to Tag 3. Hence there will be no
isolated nodes in the CNs as long as the correlation threshold
is less than 0.490.

According to the above-mentioned results, the range
of correlation threshold is 0.05∼0.48. The corresponding
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TABLE 5. A comparison of the statistical characteristic results from
different CNs.

TABLE 6. The maximum correlation coefficient associated with every
process variable.

small-world index can be further computed (see Table 7).
When the correlation thresholds are 0.38 and 0.39, the small-
world indexes are both the largest – 1.110. The correct values
within four decimal places are 1.1098 and 1.1104, respec-
tively. According to the content described in II C, the larger
the small world index, the more reasonable the established
CNs are. Therefore, the correlation threshold is selected as
0.39.

Based on the correlation threshold of 0.39, the adjacency
matrix is calculated and its black-and-white diagram is also
drawn. As shown in Fig. 7(a), white parts indicate that the
two nodes are associated with each other. A CN can be finally
established (see Fig. 7(b)). This network model is verified to
meet the requirement of small-world effect.

In addition, 50 complex networks can be established for
this diesel hydrofining unit (note that the time step and time
window are set as 1 and 100, respectively). All these networks
are provided with the small-world effect.

e: CALCULATION OF NETWORK STRUCTURE ENTROPY
In this paper, three different network structure entropies –
degree distribution entropy, Wu structure entropy, and Cai

TABLE 7. A comparison of the small-world index results from different
correlation thresholds.

FIGURE 7. The adjacency matrix and CN associated with optimal
correlation threshold.

structure entropy are computed respectively. As shown in
Fig. 8, the Wu structure entropy (WSE) and Cai structure
entropy (CSE) almost coincide with each other, whose curves
are gentle with small fluctuation up and down. However, the
curve of degree distribution entropy (DDE) fluctuates vio-
lently up and down. The on-site operating conditions are sta-
ble and entropy values change little when collecting process
data, so the degree distribution entropy is not applicable here.
Due to the simplification of calculation, the Wu structure
entropy is selected.

f: ASSESSMENT OF RELATIVE RISK
Based on t the Wu structure entropy, the relative risk value
can be calculated and its graph can be also drawn, as shown
in Fig. 9.

3) DISCUSSIONS
The diesel hydrofining unit involves 37 process variables and
13146 groups of effective data. The WT is applied for data
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FIGURE 8. A comparison of different network structure entropies. (Note:
The x-axis represents the number of CNs; namely, a CN corresponds to a
time step).

FIGURE 9. The graph of relative risk.

denoising, and each group of data is normalized to [0 1].
Based on the time step – 1 and time window – 100, each
cluster of data is sliced out one by one, and there is a total
of 13047 clusters. Accordingly, a SRCC matrix can be estab-
lished for this diesel hydrofining process (see Appendix B).

The process variables are positively correlated with them-
selves. This paper selects 10 groups with the largest absolute
value of average correlation coefficient (see Table 8). For
example, Tag 2 represents the differential pressure of FI1001,
and Tag 32 represents the refined diesel flow. The greater
the raw material flow – namely the greater the differential
pressure of FI1001, the greater the product output – namely
the greater the refined diesel flow. Therefore, Tag 2 and
Tag 32 are positively and strongly correlated. For another
example, Tag 7 represents the outlet temperature of F1001,
and Tag 13 represents the inlet temperature of R1001. The
diesel is heated by the F1001 and transferred into the R1001.
Therefore, Tag 7 and Tag 13 are positively and strongly
correlated. Similarly, other process variables also have strong
correlations.

The process variables with weak correlations are mainly
concentrated in Tag 19, Tag 24, and Tag 37 during the
actual calculation. An analysis from the original data shows
that there is small fluctuation between these three variables,
so they are generally in a constant and weakly correlated with
others. In other words, an appropriate correlation threshold is
conductive to eliminate weak correlations when establishing
the CNs. Accordingly, the number of adjacent nodes is the
least, so there is no impact on the calculation results of
statistical network characteristics.

TABLE 8. 10 groups of process variables with the strongest correlation in
a diesel hydrofining unit.

In this case, the maximum, minimum, and average corre-
lation threshold of 13047 cluster data are 0.953, 0.050, and
0.445, respectively. The reasons are explained as follows.
On one hand, the sampling time lasts for a long time, and
the amount of process data is very huge. There may be
large fluctuations or even process faults. On the other hand,
when selecting the largest small-world index, the smaller the
correlation threshold is, the more edges are connected, and
the evident the small-world effect is. Therefore, the minimum
correlation threshold is taken as the lower limit of 0.05 in this
paper, which is verified to be reasonable.

Based on the correlation threshold, the SRCC matrix is
transformed into an adjacency matrix, which can be used to
establish 13047 CNs in this paper. It is verified that all these
CNs meet the requirements of small-world effect. Finally,
the relative risk is solved and its graph is drawn for the
diesel hydrofining process, as shown in Fig. 10. Based on the
relative risk in Fig. 10, the risk level can be further divided
to identify high-risk points in this diesel hydrofining unit,
which is conductive to formulate reasonable and effective risk
reduction measures for achieving accurate capture and timely
pre-control of process risks. In addition, Figure 10 extracts
the characteristics of multi-source process data and converts
them into a single time series of relative risk in this diesel
hydrofining unit, which can help on-site operators reduce
works burden and manage the risk weaknesses of the entire
unit promptly and efficiently.

B. SIMULATION OF TENNESSEE EASTMAN PROCESS
1) BACKGROUND
Tennessee Eastman Process (TEP) is a set of chemical simula-
tion platform developed by the Eastman Chemical Company
in the US [62]. It is generally applied to simulate the operat-
ing conditions of on-site chemical enterprises. The TEP can
generate process data with time-varying, coupling, and non-
linear characteristics, especially covering process faults [63].
In this paper, an application of TEP is developed to verify the
reasonability of the proposedmodeling framework. As shown
in Fig. 11, the TEP is composed of five key devices – reactor,
condenser, compressor, separator, and stripper, as well as a
series of instrument pipelines.
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FIGURE 10. The graph of relative risk in a diesel hydrofining unit.

Gaseous materials (A, C, D, and E) and inert gas (B) are
used as reactants to generate the products (G and H) and the
by-products (F). Based on the Simulink 1.3.3, the TEP can
cover 6 operation modes (see Table 9), and the Mode 1 is par-
ticularly applied in this paper. There are 53main process vari-
ables, including 12 manipulated variables (see Appendix C)
and 41 measured variables (see Appendix D). A total of
28 abnormal conditions are involved in the TEP, including
23 known faults and 5 unknown faults (see Appendix E).

FIGURE 11. The P&ID of the TEP.

TABLE 9. 6 operation modes of the TEP.

2) DISCUSSIONS
The TEP data of No Fault and Fault 1 are selected to compare
the network structure entropies before the Fault 1 occurring,

when the Fault 1 occurring, and after the Fault 1 occurred,
respectively. It is used to verify the rationality of the proposed
modeling framework in this paper. Discussions are shown
as below. According to the Mode 1 of Simulink 1.3.3, three
manipulated variables – XMV(5), XMV(9), and XMV(12)
are constant, so they are not considered here. Similarly,
19 measured variables – XMEAS(23)∼XMEAS(41) show
rectangular rises or falls, and 100 groups of these data are
often unchanged during slicing, so they are also not consid-
ered. The on-site operating conditions can be simulated under
the Model 1. Specifically, a set of TEP data is collected every
one second. The simulations – two hours each time – are
developed twice in this paper. One is No Fault condition,
and the other is Fault 1 condition introduced at one hour.
In addition, excessive signal loss may occur in the denoising
process ofWT, so theWT is not carried out when studying the
TEP. For these simulated data, 7109 clusters can be extracted
by slicing step by step with a time step of 1 and a timewindow
of 100. Accordingly, 7109 CNs can be further established in
this paper.

On the No Fault condition, a discussion is shown as fol-
lows. Over the 7109 clusters of TEP data, the maximum, min-
imum, and average correlation thresholds are 0.507, 0.050,
and 0.236, respectively. It is reasonable to set a lower limit
of 0.05. In addition, 7090 CNs are provided with the small-
world effect, accounting for 99.73%. The maximum value
of small-world index is 1.692, which belongs to the 4268th
∼ 4367th group of TEP data. The minimum value of small-
world index is 0.987, which belongs to the 2237th ∼ 2336th
group of TEP data. The average value of small-world index
is 1.097, which has a small difference. Accordingly, the Wu
structure entropies of these 7109 CNs are solved. The maxi-
mum entropy is 3.434, which belongs to the 6161st ∼ 6260th
group of TEP data; The minimum entropy is 3.227, which
belongs to the 1943rd ∼ 2042nd group of TEP data; The
average entropy is 3.361, which has a small difference.

On the Fault 1 condition, a discussion is shown as follows.
Over the 7109 clusters of TEP data, the maximum, mini-
mum, and average correlation thresholds are 0.505, 0.050,
and 0.234, respectively. It is reasonable to set a lower limit
of 0.05. In addition, 7091 CNs are provided with the small-
world effect, accounting for 99.75%. The maximum value of
small-world index is 1.980, which belongs to the 3638th ∼

3737th group of TEP data. It is close to the fault time. The
minimum value of small-world index is 0.987, which belongs
to the 2237th ∼ 2336th group of TEP data. It is consistent
to the no-fault time. The average value of small-world index
is 1.094, which has a small difference. Accordingly, the
Wu structure entropies of these 7109 CNs are solved. The
maximum entropy is 3.434, which belongs to the 689th ∼

788th group of TEP data; The minimum entropy is 3.230,
which belongs to the 2132nd ∼ 2231st group of TEP data;
The average entropy is 3.363, which has a small difference.
However, it is higher than that on the No Fault condition.

Based on the above-mentioned discussions, the 2000th ∼

2200, 3600th ∼ 3800th, and 5000th ∼ 5200th groups of TEP
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FIGURE 12. A comparison of the network structure entropies.

TABLE 10. A SRCC matrix.

data are regarded as the operating conditions – before the
Fault 1 occurring, when the Fault 1 occurring, and after the
Fault 1 occurred, respectively. The Wu structure entropies
on the No Fault and Fault 1 conditions can be compared,
as shown in Fig. 12. Before the Fault 1 occurring, two
groups of entropies are almost the same. When the Fault 1

TABLE 11. A SRCC matrix for a diesel hydrofining unit.

TABLE 12. 12 manipulated variables of the TEP.

occurring, there is a small difference between two groups of
entropies, but the overall trends remain the same. After the
Fault 1 occurred, there is no relations between two groups
of entropies intuitively. It is shown that different operation
conditions have an impact on the network structure entropies.
Accordingly, the network structure entropy can reflect an
abnormal condition of TEP. The relative risk which is normal-
ized from the network structure entropy can also characterize
an abnormal condition.

Therefore, the proposed modeling framework using the
CNs is reasonable. The multi-source process data are particu-
larly integrated into a single time series of relative risk, which
can reduce the data dimension and realize the dynamic risk
monitoring of TEP.

V. CONCLUSION
This paper presents a modeling framework of dynamic risk
monitoring for chemical processes based on the CNs. TheWT
is firstly developed for denoising – filtering and eliminating
the invalid values of massive, disordered, and non-linear pro-
cess data. The SRCC is further solved to analyze the relation-
ships among these data and generate a correlation matrix. The
selections of appropriate modeling parameters are explained
in detail, such as time step, time window, correlation thresh-
old, and so on. Accordingly, the CNs of chemical processes
are established using a SRCCmatrix and its adjacencymatrix.
The network structure entropy is particularly introduced to
transform process data into a single time series of relative
risk. Two test cases are selected to illustrate the validity of the
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TABLE 13. 41 measured variables of the TEP.

proposed modeling framework. Results show that the risks
of a diesel hydrofining unit can be effectively and timely
monitored and assessed, as well as the abnormal conditions of
TEP can be reasonably and accurately monitored and traced.
In the future, the risk levels of chemical processes can be
further divided to achieve precise risk management based on
the proposed modeling framework.

APPENDIX A

See Table 10.

TABLE 14. 28 abnormal conditions of the TEP.

TABLE 15. List of Acronyms.

APPENDIX B

See Table 11.

APPENDIX C

See Table 12.
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APPENDIX D

See Table 13.

APPENDIX E

See Table 14.

APPENDIX F

See Table 15.
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