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Abstract—Autonomous X-ray baggage security screen-
ing has shown significant strides recently, proving itself a
viable solution to the flaws in manual screening, thanks
to advancements in deep learning. However, these data-
hungry techniques feed on extensively annotated data in-
volving strenuous labor, impeding their advances in bag-
gage screening. Consequently, we present a context-aware
transformer for weakly supervised localization to relieve
the annotation burden and provide visual interpretability
that aids screeners in threat recognition and researchers in
identifying the pitfalls of existing systems. The proposed
approach can generalize and localize different types of
contraband with only cost-effective binary labels without
explicit training on item detection. Context extraction block,
integrated into the dual-token framework, generates threat-
aware context maps, while the token scoring block focuses
on minimizing partial activations. Experimental results sur-
pass state of the art (SOTA) methods in terms of classifica-
tion and localization accuracies. Furthermore, we analyze
failures to determine current vulnerabilities and provide
new insights for future research.

Index Terms—Aviation, machine learning, threat identifi-
cation, threat localization, X-ray baggage security.

I. INTRODUCTION

THE rapidly growing global air passenger traffic (esti-
mated to exceed eight billion in 2037 [1]) exacerbates the
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challenges of aviation security in coping with the evolving
risks posed by ingeniously concealed security threats while
maintaining faster passenger throughput. As a deterrent, au-
thorities worldwide have reinforced their security measures, in
which baggage screening plays an inevitable role in identifying
concealed contraband from X-ray scans [2]. However, baggage
monitoring is heavily reliant on human expertise, where scans
are scrutinized by security personnel to expose illegal items from
densely stacked baggage imagery. Hence, the current procedure
is not only error-prone but also necessitates constant vigilance
to identify the contraband within mere seconds amidst occlusion
from high-density objects, overlapping contours, uneven scales,
and high inter-class variability [3].

Automated X-ray baggage threat identification systems have
been proposed as a viable solution to overcome these pitfalls.
Researchers have pursued numerous methods to accomplish the
goal, and recent breakthroughs in computer vision aided by deep
learning have yielded promising results [4]. Furthermore, in
light of suboptimal performance by contemporary detection and
segmentation models [5], recent research works in the domain
have leveraged low-level edge cues and contour representations
of baggage scans [6] to cope with the poor contrast, lack of
texture, and occlusion in X-ray imagery [3]. Despite tremendous
advances, these data-hungry schemes rely on excessive amounts
of well-annotated training data that are expensive to procure.
Studies report that dense annotation of security threat instances
is laborious and demands skilled operators (taking over 3 min
for a single scan) [7], [8].

Within the broader computer vision community, weakly su-
pervised localization has been widely embraced to relieve the
burden by exploring cost-effective weak supervisory signals in
the form of image labels rather than demanding instance-level
bounding boxes and dense pixel labels [9], [14]. In simpler
terms, weakly supervised object localization (WSOL) aims to
localize an object of interest using only image-level labels during
training that merely confirm the presence of the object category.
Furthermore, WSOL provides visual interpretability, which is
crucial for safety-critical applications, such as baggage security
screening, where both performance and explainability are vital.
Visual reasoning aids security personnel in locating the threats
in the scans effectively. Also, it enables the interpretation of de-
cisions made by the systems, which are crucial for trust-building
and deployment [15]. Moreover, it helps minimize potential bias
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Fig. 1. Visualization of baggage threat localization. The first row dis-
plays the output from different blocks of the proposed approach. (a)
Context map extracted from CEB. (b) Map overlaid on the input scan, (c)
smoothed context map, and (d) final threat localization map. The bottom
row compares the results with five different approaches, Grad-CAM [9],
Ablation CAM [10], adversarial complementary learning (ACoL) [11],
TS-CAM [12], and SCM [13].

in training and allows the researchers to identify the pitfalls of
the system and develop more robust frameworks.

However, the widely favored approaches in weakly supervised
learning, being predominantly based on convolutional neural
nets (CNN), are constrained to localized regions and fail to
capture spatially distant contexts [9]. On the other hand, visual
transformers [16], [17] have gained popularity due to their ability
to learn global features by exploiting long-range dependencies
between semantic concepts. Recently, Gao et al. [12] proposed
token semantic coupled attention map (TS-CAM), a pioneering
work in WSOL using transformers, in which they attempt to
leverage semantic maps from patch tokens for localizing the
object of interest. However, the focus is often restricted to a few
semantically dense regions, as observed in Fig. 1.

Notwithstanding these advances, WSOL has not yet been
widely explored in baggage security threat recognition. This is
mainly attributed to the additional challenges for WSOL in this
domain.

1) Occlusion: Threat items might be fully or partially oc-
cluded by high-density objects rendering them indistin-
guishable.

2) Heavily cluttered background: Precise localization of
prohibited items from cluttered and compactly packed
baggage scans is challenging due to noisy activation
maps.

3) Limited priors: The unpredictability of baggage contents
restricts the availability of prior knowledge for effective
localization of threats (unlike in natural images where
food is more likely to be associated with plate and not
sky).

Toward this goal, we investigate weakly supervised threat
localization using transformers by leveraging their ability to
model long-range spatial interactions in effectively localizing
concealed prohibited items from baggage scans. Furthermore,
studies have shown that transformers favor shape over texture
(unlike CNNs) and are more robust against occlusion [18]. Con-
sequently, qualifying as an ideal candidate for baggage threat
localization from X-ray imagery (since they are texture-less).

Transformers have demonstrated undeniable dominance in
several areas [19], thanks to their multiheaded attention that

Fig. 2. Visualization of attention maps (and corresponding maps over-
laid on the original image) from randomly chosen heads of the trans-
former to demonstrate that different heads focus on different semantic
regions. Column (a) emphasizes the knives, while Column (c) empha-
sizes the benign areas. In column (b), attention is on the baggage’s
knife-like metal bands. Please zoom in for better visualization.

enables them to focus on multiple semantic areas (as shown in
Fig. 2). However, the attention is not targeted class-wise [12]. In
other words, linking specific attention heads to specific semantic
categories or regions is challenging [12], [20]. Furthermore,
it is to be noted that in transformers, the class token captures
the semantic relationships between different classes and the
background, thus learning both category-specific and generic
features. The single-class token architecture can, thus, lead to
noisy activations, especially in densely stacked baggage scans
where overlapping threats and normal objects share similar
semantics. Hence, it is essential to redesign the architecture to
encode the threat-specific semantics that will enable the effective
localization of illegal items in baggage scans. Furthermore,
transformer attention focuses on global semantic-rich regions
[as seen in Fig. 2(a), where it focuses on the knife blade regions
rather than the entire threat object] and fails to capture local
structures and boundaries, resulting in partial activation. To ad-
dress these limitations, we propose a context-aware transformer
(CAT) with dual-token architecture that can generalize well to
different types of contraband and localize them from only binary
image labels (threat versus normal) by capturing the object-level
context of threat items within baggage. The dual-class tokens
(threat and normal class tokens) enable the model to learn
class-specific interactions with the input patches, thus modeling
the global semantics of the concealed threats from the baggage
scans. Moreover, we have employed a class-specific training
strategy to ensure that the class tokens learn specific semantics
(explained in Section III). Furthermore, we have integrated a
context map extraction block (CEB) to obtain the object-level
semantics of the threat items and a token scoring block (TSB)
to expose local features and other relevant occluded regions.

The contributions can be summarized as follows.
1) The first attempt in weakly supervised baggage security

threat localization from cost-effective binary image labels
(merely confirming the presence of contraband) without
explicit training on item detection.

2) The proposed dual-token CAT can generalize well to dif-
ferent types of contraband by capturing their object-level
semantics.

3) Experimental results on two challenging public X-ray
security screening datasets demonstrate that the proposed
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Fig. 3. Overview of the proposed CAT that employs learnable dual-class tokens to localize concealed contraband from only binary labels (threat
versus normal). CEB captures the global semantics of the prohibited items by leveraging the semantic similarities between the threat-specific class
token CT and the patch tokens. After refining, the context map is passed to TSB to expose other relevant occluded regions.

approach surpasses state of the art (SOTA) methods in
terms of classification and localization accuracies.

4) Furthermore, we have provided a detailed analysis of the
failure patterns to identify the vulnerabilities of current
approaches and offer new insights for future research.

II. RELATED WORKS

A. X-Ray Baggage Threat Recognition

Advances in deep learning have shown promise in baggage
threat classification [21], detection [2], and segmentation [6].
While transfer learning approaches [5] attempt to improve
performance, novel approaches address issues, such as class
imbalance [4] and occlusion [2]. Object detection models [5],
attention mechanisms [22], and contour cues [2], [6] have also
been employed to enhance the results. Chouai et al. [23] used
adversarial autoencoders to identify prohibited items in X-ray
scans. Wei et al. [24] studied multiscale intermediate features
for threat detection. Bhowmik et al. [25] proposed a combined
segmentation-classification pipeline to identify occluded illegal
items.

B. Weakly Supervised Object Localization

Class activation maps (CAMs) [26] and gradient-based ap-
proaches like Grad-CAM [9] have been widely embraced but
struggle to highlight entire or integral object parts. Methods like
adversarial erasing [11] have been explored to address these
limitations. Nevertheless, CNN-based approaches are limited by
localized interactions and fail to expand the activations beyond
discriminative regions [12], as opposed to the global cues learned
by vision transformers [16], [17]. The seminal work by Gao
et al. [12] infused transformers with CAMs to highlight relevant
object areas. Bai et al. [13] further improved TS-CAM results

by dynamic integration of semantic relations. WSOL in baggage
threat identification has received limited attention, with Miao
et al. [4] being the only study that employed WSOL to analyze
the robustness of their framework.

III. PROPOSED METHODOLOGY

This section introduces the proposed architecture of the CAT,
illustrated in Fig. 3. Also, it gives a detailed description of CEB
and TSB used for threat localization, as well as the implemented
training strategy.

A. Overview of CAT

Consider a datasetD = {(x1, y1), . . . , (xM , yM )} comprised
of normal and abnormal (i.e., containing threat items) baggage
scans, where yi ∈ [0, 1] denotes the binary image labels. A sam-
ple image x of resolution W ×H is split into K patches, with
K = N ×N ,N = W/s, and s denoting the patch height/width.
The patches xpn

∈ Rs×s×3, n = 1, 2, . . . ,K are then trans-
formed into patch embeddings, xn ∈ RK×D, where D indicates
the embedding dimension andF() represents the projection onto
embedding subspace in (1). Class tokens xCL ∈ R2×D are then
affixed to the patch embeddings, where xCL = [xCT

;xCB
]) as

shown in (1). Here, it is important to highlight the dual-token ar-
chitecture of the proposed framework as opposed to the standard
design. The tokens xCT

and xCB
capture the semantic elements

corresponding to the threat and benign (normal) baggage items
distinctively, which can be leveraged to learn the global context
of concealed contraband. After that, the tokens are updated
with positional embeddings xpos ∈ R(2+K)×D to yield the input
tokens xin ∈ R(2+K)×D, as in (1)

xin = [xCT
;xCB

;F(xP1);F(xP2); · · · F(xPK
)]⊕ xpos (1)

= [CT ;CB ;P1;P2; · · ·PK ] . (2)
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Fig. 4. Detailed schematics of CEB. Please zoom in for better visual-
ization.

These tokens are fed through S stacked transformer blocks,
each comprising multiheaded attention [16] and multilayer per-
ceptron layers. As the training progresses, the threat-specific
class token CT [as shown in (2)] learns semantic interactions
specific to the prohibited items, which can be leveraged to obtain
the global context of the concealed contraband, as detailed in
subsequent sections.

B. Context Map Extraction Block

The proposed CEB is tasked with extracting the global se-
mantics of the concealed prohibited items within the baggage
imagery to generate the threat-aware context map. CEB exploits
the long-range dependencies learned by the self-attention blocks
within the transformer encoder toward this goal. Specifically,
as the tokens xin propagate through the transformer encoder,
it is split into queries Q, keys K, and values V using linear
layers [16], where Q,K, V ∈ R(2+K)×Dk and Dk = D/k (k
representing the number of attention heads). Inside the multi-
head attention layer, the conventional dot-product attention tech-
nique [16] [as in (3)] is used to compute the attention between
Q and K by each of the heads, which is used as weights in
combining the input tokens. Assuming Ql and Kl represent the
query and key features from the lth encoder layer, we aggregate
the token-wise attentions ÂT denoted in (4), which are then
averaged over the k heads to obtain Al

T ∈ R(2+K)×(2+K), as
illustrated in Fig. 4. Al

T yielded from multiple encoder layers
are stacked to yield the global token-wise similarity map ATG

,
and then summed across the encoder layers to generate AT ∈
R(2+K)×(2+K). In this study, we have leveraged the attention
maps derived from the last L encoder blocks to obtain a better
localization performance. The optimal value of L has been
determined experimentally (see Section V)

Attention(Q,K, V ) = softmax

(
QKT

√
Dk

)
V (3)

ÂT = softmax

(
QKT

√
Dk

)
. (4)

AT encapsulates the pair-wise attention between the input
tokens and can be leveraged to learn the interactions between
the threat-specific class token and patch tokens. From the
orange-tinged squares, which represent the attention between
class tokens and patch tokens, we can derive the threat-relevant
context map ACT

[shown in Fig. 1(a)], by leveraging the at-
tention corresponding to the class token CT . ACT

∈ R1×N×N

captures the global context of the threat items by reshaping
the attention between CT and the patch tokens (P1, P2 · · ·PK),
as shown in Fig. 4, and is used for localizing the concealed

Fig. 5. Detailed schematics of Patch TSB. Please zoom in for better
visualization.

threats. Additionally, Fig. 4 also depictsACB
, which captures the

attention between CB and the patch tokens that focus primarily
on the benign areas. The context map ACT

is later refined by
exploiting the patch-wise attention learned by the self-attention
layers within the encoder. This is a simple approach to smooth
the context map over the adjacent local areas based on their
semantic affinities. Assuming Ql and Kl represent the query
and key features from the lth encoder layer, we aggregate the
patch-wise attentions excluding the class tokens, which are
averaged over the k heads to yieldAl

p ∈ RK×K . The patch-wise
attentions Al

p are then summed across the S encoder blocks
to yield a consolidated attention map Ap, which is used for
smoothing the context map ACT

using matrix multiplication.
ACT

is flattened prior to the multiplication as denoted by the
reshape operator ΔK×1 in (5). Afterward, it is reshaped into
a 2-D tensor (denoted by ΔN×N ), yielding the refined context
map ACT ref

ACT ref = ΔN×N
[
Ap ·ΔK×1 (ACT

)
]
. (5)

Furthermore, it can be observed from the qualitative results (see
Fig. 7) that the refined context maps have better continuity than
raw context maps ACT

.

C. Patch TSB

The proposed patch TSB [illustrated in Fig. 5] is responsible
for exposing additional pertinent and occluded threat object
regions by employing a perturbation technique. TSB expertly
adapts Score-CAM [27] for vision transformers and helps to
reveal other salient parts while preserving the context captured
by the CEB. Score-CAM was proposed to localize objects by
grasping the relevance of the feature maps in CNNs. However,
in transformers, Score-CAM often highlights irrelevant back-
ground regions and semantically similar benign regions, leading
to noisy localization, as detailed in Section V.

Consider the patch tokens {P1, P2, . . . , PK} at the output
of the encoder block, excluding the class tokens {CT , CB}.
The patch tokens are reshaped and transposed into a fea-
ture tensor PF ∈ RN×N×D, where each feature map P d

F , d ∈
{1, 2, . . . , D} emphasizes distinct semantic elements. The
smoothed context map ACT ref obtained from CEB is then added
to PF to suppress the activation of background elements and
other benign items. Thus yielding PFT

∈ RN×N×D, which is
then upsampled to the size of the original inputx and normalized
[as shown in (7)]

PFT
= ACT ref ⊕ PF (6)
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ˆPFT
=

PFT
− min(PFT

)

max(PFT
)− min(PFT

)
. (7)

The normalized maps ˆPFT
are overlaid using element-wise

multiplication on the scan x to obtain partially masked im-
ages. By doing so, we emphasize different regions in the input
scan based on feature maps obtained from the output tokens.
The masked images are then simply forward passed through
the trained dual-token transformer model with the objective
of determining the impact of retaining only the highlighted
regions on the target score. The forward passing yields the
scores on the threat category for the partially masked images,
which are converted to weights via softmax. The weights are
subsequently used to linearly combine the respective feature
maps, thus yielding the final localization result. The localization
maps are transformed into binary masks by retaining only the
pixels that exceed a preset threshold. Then, the bounding boxes
are drawn to localize the object, as shown in [26].

D. Dual Token Training Method

The output tokens generated by the final encoder block com-
prise patch tokens and two class tokensCT andCB . Establishing
a one-to-one relationship between each class token and its cor-
responding ground truth labels is crucial. The final class tokens
CT and CB are averaged along the embedding dimension by
passing through a pooling layer to obtain the scores of the threat
and benign classes, as

y(c) =
1
D

D∑
l

CTok(c, l), c ∈ [0, 1] (8)

where CTok(c, l) is lth element of the cth token, along the D
dimension. The scores and one-hot encoded labels are used
for training the framework using binary cross entropy, thus
facilitating the model to learn distinctive semantic correlations
specific to the categories.

IV. DATASETS AND IMPLEMENTATION DETAILS

This section details the experimental settings, including a
summary of the datasets utilized and the performance evaluation
measures employed to assess the proposed approach.

A. Datasets

The proposed weakly supervised threat localization frame-
work was evaluated on two challenging X-ray baggage security
datasets: security inspection X-ray (SIXray) [4] and Compass-
XP [28]. SIXray and Compass-XP are the only public datasets
in X-ray baggage security screening that contain both positive
(threat) and normal (benign) scans.

SIXray dataset, the largest baggage security benchmark, is
a challenging dataset with extremely obscure and cluttered
baggage scans. It comprises 1 059 231 pseudocolored scans, of
which only 8929 scans include threats. The dataset includes six
classes of prohibited objects: guns, scissors, knives, wrenches,
pliers, and hammers. The dataset is also challenging in terms
of occlusion, with less than 1% marked as positive (Threat),

and has high intracategorical variations in terms of scale and
viewpoint. It is organized into three subdivisions: SIXray10,
SIXray100, and SIXray1000. We have used SIXray10 in our
experiments. Furthermore, the baggage scans are collected from
different scanners, which raises additional challenges.

Compass-XP dataset is unique with different representations
(low-energy and high-energy X-ray, density, color, grayscale,
and RGB images) for the same baggage scan and is highly
imbalanced. It is comprised of paired images, both photographic
and X-ray images. The dataset includes a total of 11 568 scans,
which includes 1643 pairs of benign images and 258 pairs of
threat images (comprising 69 types of threat objects), with very
few samples of each threat category. We used 80% of the scans
for training, per the dataset protocol.

B. Implementation

The proposed framework for weakly supervised baggage
threat localization was built using the DeiT-S backbone [17],
pretrained on ImageNet, with K = 196, s = 16, D = 384, S =
12, and six attention heads. The dual-class tokens in the proposed
architecture were initialized with the ImageNet weights of the
original class token. The input scans were resized to 224 × 224
for all experiments. Simple data augmentation techniques, hor-
izontal, and vertical flipping, were employed during training.
The training was carried out for 15 epochs with a learning rate
of 2e−5 and a batch size of 8. The framework was implemented
with PyTorch using Python 3.8 on an Intel(R) Core(TM) i7-
10700K@ 3.80 GHz processor with NVIDIA GeForce RTX
3060 Ti.

C. Evaluation Metrics

Following the prior works in the domain [11], [12], we adopt
the following metrics for evaluating the proposed approach.

1) GT-Known localization accuracy (GT-K Loc.): Localiza-
tion is counted as positive if the intersection-over-union
(IoU) between the ground truth and predicted bounding
boxes exceeds the fixed threshold of 50%.

2) Top localization accuracy (Top Loc.): If correctly classi-
fied and the IoU between the ground truth and predicted
bounding boxes exceeds the fixed threshold of 50%, then
the localization is counted as positive.

3) MaxBoxAccV2: Irrespective of the classification results,
the localization accuracy is averaged across different IoU
thresholds (30%, 50%, 70%) to yield MaxBox AccV2.

4) Classification accuracy (Cls Acc): Represents the classi-
fication performance.

In addition, we have also computed localization metric (Loc)
as in [4]. Loc is considered positive if the maximal response
coincides with one of the ground truth boxes.

V. EXPERIMENTAL ANALYSIS AND RESULTS

We have compared our framework with SOTA strategies in
WSOL, as well as other relevant baggage threat localization
approaches. In addition, we present several ablative studies to
demonstrate the efficacy of the proposed architecture.
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TABLE I
COMPARATIVE ANALYSIS ON SIXRAY

TABLE II
COMPARATIVE ANALYSIS ON COMPASS-XP

A. Comparative Performance Analysis

Table I showcases the performance of the proposed CAT
against state-of-art approaches in WSOL on SIXray. Within the
context of X-ray baggage screening, CHR presented by Miao
et al. [4] is the only research work that investigated weakly super-
vised threat localization and evaluated the localization efficacy
of their framework using the Loc metric. Hence, we have also
computed the Loc metric for a fair comparison, outperforming
CHR by ∼25%, demonstrating the competence of the proposed
approach in recognizing threat objects. In addition, we have also
compared with SOTA approaches, which include gradient-based
(Grad-CAM [9]), gradient-free (Ablation CAM [10]), adversar-
ial erasing (ACoL [11]), and transformer-based (TS-CAM [12],
SCM [13]) techniques. The results for these approaches, shown
in Table I, were obtained by training them on the SIXray dataset
using the respective released codes and thus denoted by an
asterisk (*).

Overall, transformer-based methods lead the scoreboard
thanks to their ability to retain long-range semantic relations,
which is crucial in localizing the threats. The proposed approach
outperforms TS-CAM by a large margin of 6.33%, 5.53%, and
9.8% in terms of GT-K Loc, Top Loc, and MaxBoxAccV2,
respectively. Furthermore, compared with SCM, the leading
competitor, our approach leads by 1.85%, 2.3%, and 1.9% in
terms of GT-K Loc, Top Loc, and MaxBoxAccV2, respectively.
Nonetheless, SCM performs inadequately in terms of Cls Acc,
scoring only 80.6%, compared to the 96.6% accuracy achieved
by our approach.

Similarly, Table II compares the performance on Compass-
XP. The results of the SOTA methods, marked “*” in Table II,
were obtained using their respective publicly released codes and
training them on the Compass-XP dataset [28]. The proposed ap-
proach achieved remarkable performance across all metrics, out-
performing the best competitive method, SCM, by large margins
of∼29%,∼37%, and∼12% in terms of GT-K Loc, Top Loc, and
MaxBoxAccV2, respectively. The inadequate performance of
other approaches on Compass-XP is primarily attributed to their
inability to model the object-level context (as can be observed
in Fig. 6). TSCAM [12] fails to capture the object-level context,

TABLE III
COMPARATIVE ANALYSIS OF MODEL COMPLEXITY

resulting in partial activation, while SCM [13] performs better
due to its capability to capture contextual and spatially coherent
threat object regions. However, SCM yields poor classification
results, drastically lowering the Top Loc results. On the contrary,
the proposed CAT surpasses other approaches in terms of Cls
Acc by a large margin on both SIXray and Compass-XP.

Furthermore, to provide a comprehensive understanding of
the performance of our proposed framework, we compared
and contrasted the model complexity in terms of the number
of parameters, multiply accumulate operations (MACs), and
inference time. Table III shows that our approach has a relatively
lower number of parameters, and while the inference time is
slightly greater than Grad-CAM, it is important to highlight that
the localization accuracy of our proposed method significantly
outperforms all these approaches. This demonstrates that our
approach balances model complexity and localization accuracy,
offering a competitive solution for X-ray baggage threat local-
ization.

Fig. 6 depicts the localization maps using different techniques
on both SIXray (top five rows) and Compass-XP (bottom three
rows). We have used purple bounding boxes to highlight the
baggage threats in the input scans on the left-most column. It can
be observed that only the proposed CAT succeeds in localizing
the knife that overlays the metal band in the top row, as well as
all three threats in the second row. Similarly, all methods fail
to localize both guns in the third row. Furthermore, the last two
rows demonstrate that CAT localizes the entire object, unlike its
competitors.

B. Significance of CEB and TSB

CEB compiles the global contextual information and gener-
ates the threat-aware context map, while the TSB exposes other
relevant occluded object regions and also focuses on the local
areas, thus minimizing partial activations. Fig. 7 illustrates the
extracted global context map, smoothed context map derived
from CEB, and the final result after TSB, demonstrating the
roles of the two modules. In the top row, CEB captures the
two guns and the knife but fails to identify the second occluded
knife, which is localized by TSB. Similarly, in the bottom row,
TSB exposes the complete threat objects, which were partially
localized by CEB.

Furthermore, to analyze the relevance of CEB and TSB, we
have assessed the performance of the framework both quan-
titatively and qualitatively by excluding each of the modules.
Table IV reports the GT-K Loc and Top Loc accuracies with CEB
and TSB alone on both SIXray and Compass XP. It may be noted
that using CEB alone can yield comparative performance, being
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Fig. 6. Visualization of baggage threat localization using different methods on SIXray [4] and Compass-XP datasets [28].

TABLE IV
COMPARATIVE ANALYSIS OF THE SIGNIFICANCE OF CEB AND TSB IN THE

PROPOSED METHOD

able to capture relevant threat semantics. However, it sometimes
fails to localize occluded threats and entire threat objects, as
shown in Fig. 8. There are five threats in the top row, and without
TSB, CEB misses the second gun (shown in purple) due to its

unique orientation. In the second row, CEB fails to capture the
second occluded knife (shown with a purple bounding box)
without TSB. On the other hand, using TSB alone increases
the background noise, highlighting semantically comparable
regions. However, incorporating both modules together yields
a better result, as illustrated in Fig. 8.

C. Optimal Number of Encoder Blocks

As detailed in Section III-B, CEB leverages the attention
between the class tokens and patch embeddings from the last
L encoder blocks to generate the threat-aware context map. For
determining the optimal number of encoder blocks, we have
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Fig. 7. Visualization of localization maps at different stages of the
proposed approach. (a) Baggage scans. (b) Threat-aware context maps,
(c) Overlaid context map on the input scan. (d) Smoothed context map
from CEB, and (e) Final threat localization map after TSB.

Fig. 8. Qualitative analysis to study the significance of CEB and TSB.
Input scans are shown in first column, while raw context maps are shown
in next column. Third column shows the refined context maps obtained
from CEB. Fourth column shows the output with only TSB. Proposed
framework output (with CEB and TSB) is in last column.

Fig. 9. Localization performance analysis by varying the number of
encoder layers.

stacked and summed the attention from multiple higher order
transformer encoder blocks and assessed the variation in perfor-
mance. Fig. 9 analyzes the performance using the topL encoders
and shows that the localization accuracy slightly increases and
then drops as more encoder layers are added, indicating that
lower order encoder blocks learn generalized representations
and amplify the background activations. We have used the top

TABLE V
COMPARATIVE ANALYSIS OF CLASS SCORE PREDICTION STRATEGIES ON

PERFORMANCE

Fig. 10. (Left) Sample scans with effective threat localization despite
lower IoU values. Please zoom in. (Right) Comparative analysis of Miss
rate (missed threats).

two layers in our experiments based on the results on SIXray
and Compass-XP.

D. Class Score Prediction Strategies

Furthermore, we assessed the effect of different strategies in
converting the class tokens to class scores on both datasets using
Cls Acc, F1 score, and GT-K Loc. Table V reveals that GT-K
Loc accuracy significantly improves when we utilize average
pooling as opposed to linear projection through a multilayer
perceptron, with an improvement of 2.2% and 5.8% on SIXray
and Compass-XP, respectively. Furthermore, adding a dense
layer to the model increases complexity in terms of model
parameters, reaffirming our initial design rationale.

VI. DISCUSSIONS AND FUTURE DIRECTIONS

Despite the overall notable performance of the proposed
CAT, Table I shows comparatively lesser quantitative results on
SIXray than Compass-Xp (Table II). Visual analysis showed that
it was due to the activation of semantically related background
pixels in highly cluttered imagery in SIXray [4]. Sample scans in
Fig. 10 (left) demonstrate effective threat localization but yield
IoU below 50%, impacting localization performance. The pro-
posed method highlights the sharp knife-like implement along
with the scissors in the top row and also localizes the scissors in
the bottom row. In contrast, SCM, the next leading competitor,
fails and classifies the scans as Normal. However, the activation
of the background lowers the IoU, yielding zero localization.
Furthermore, it may be noted that within the context of baggage
security screening, identifying concealed threats is more crucial
than determining object boundaries precisely.

Furthermore, for a detailed analysis of the missed
threat instances, we computed the miss rate, given as
Number of missed threat instances
Total number of baggage threats

. The proposed approach

yields the lowest miss rate of 0.073% among its best competitors,
as shown in Fig. 10 (right).

We also investigate the failed localization (missed threats)
cases to aid future research studies in baggage screening. Sample
scans where the threats were not localized are presented in
Fig. 11, along with results from other methods for comparison.
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Fig. 11. Failed cases (threats were missed). Please zoom in.

All the methods missed one of the pliers in the top row, while
they failed to locate the gun from the heavily cluttered scan
in the bottom row. Detailed analysis revealed that the missed
threats were often very small and heavily occluded. For instance,
the ratio of the threat object area to the total scan area for the
samples in Fig. 11 was 0.38% and 0.73%. A recent study [29]
has also compared several detection models and ascertained that
false negatives tend to occupy a smaller area and are quite
challenging. Our analysis shows that transformers are better
suited for detecting small baggage threats due to the limitations
of downsampling and pooling in vanilla networks [30]. Further
transformers are better capable of leveraging the shape informa-
tion from texture-less X-ray scans. The integration of the context
extraction block (CEB) and Patch TSB within our proposed
framework further enhances the model’s context-awareness,
contributing to the model’s ability to focus on critical areas
within the scan, aiding in the localization of threats while effec-
tively handling occlusion. In addition, other studies have also
quantified the substantial performance improvement attained by
transformers [29]. Furthermore, boosting feature resolution and
multiscale-aware training strategies can enhance the efficacy of
baggage threat detection performance.

VII. CONCLUSION

In this work, we propose CAT for localizing X-ray baggage
threats using only binary image labels, without explicit training
on threat detection. The proposed framework can generalize well
to different types of contraband by capturing the object-level
semantics of the threat items. The integrated CEB generates
threat-aware context maps, while the patch TSB exposes other
relevant occluded threat objects. The experimental results on
two challenging public datasets demonstrate the efficacy of the
proposed approach. Furthermore, a detailed analysis of failure
patterns is provided to identify the vulnerabilities of current
approaches, aiming to provide new insights for future research
in the domain.

In conclusion, our research represents a significant advance-
ment in the field of X-ray baggage security screening, particu-
larly in real-world settings where the emergence of new security
threats necessitates the labor-intensive task of annotating thou-
sands of samples of these threats to train robust frameworks,
straining security operations and impeding the ability to effec-
tively address evolving threats. Our work presents a promising
alternative by leveraging cost-effective weak supervisory image
labels, thereby reducing the burden of dense annotations. This
enables faster response and adaptability to new threat categories
in a rapidly changing security landscape. Furthermore, trans-
parency and interpretability provided by our approach contribute

to trust-building and the seamless deployment of security sys-
tems. Furthermore, the proposed framework offers the potential
to be applied to various domains beyond X-ray baggage security
screening. For instance, in fields such as industrial defect local-
ization, where annotating data is time-consuming and laborious,
the CAT framework can effectively leverage weak labels to
pinpoint abnormalities. This demonstrates the scalability and
broader applicability of our approach, making it a valuable tool
in multiple safety-critical and industrially significant domains.
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