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ABSTRACT Deep learning (DL) has demonstrated remarkable achievements in various fields. Nevertheless,
DL models encounter significant challenges in detecting and defending against adversarial samples (AEs).
These AEs are meticulously crafted by adversaries, introducing imperceptible perturbations to clean data to
deceive DL models. Consequently, AEs pose potential risks to DL applications. In this paper, we propose an
effective framework for enhancing the robustness of DL models against adversarial attacks. The framework
leverages convolutional neural networks (CNNs) for feature learning, Deep Neural Networks (DNNs) with
softmax for classification, and a defense mechanism to identify and exclude AEs. Evasion attacks are
employed to create AEs to evade and mislead the classifier by generating malicious samples during the
test phase of DL models i.e., CNN and DNN, using the Fast Gradient Sign Method (FGSM), Basic Iterative
Method (BIM), Projected Gradient Descent (PGD), and Square Attack (SA). A protection layer is developed
as a detection mechanism placed before the DNN classifier to identify and exclude AEs. The detection
mechanism incorporates a machine learning model, which includes one of the following: Fuzzy ARTMAP,
Random Forest, K-Nearest Neighbors, XGBoost, or Gradient Boosting Machine. Extensive evaluations are
conducted on theMNIST, CIFAR-10, SVHN, and Fashion-MNIST data sets to assess the effectiveness of the
proposed framework. The experimental results indicate the framework’s ability to effectively and accurately
detect AEs generated by four popular attacking methods, highlighting the potential of our developed
framework in enhancing its robustness against AEs.

INDEX TERMS Deep learning, adversarial examples, security, adversarial attacks, adversarial examples
detection.

I. INTRODUCTION
Deep learning (DL) models have shown great success in a
wide range of applications, such as image classification [1]
and segmentation [2], malware detection [3], [4], object
detection and tracking [5], fault detection [6], speech recog-
nition [7], and complex network analysis [8], [9]. The high
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accuracy performance of DL models is attributed to their
continuous development, availability of data, and increase
in computational power. However, the use of DL models
in these tasks has been challenged by adversaries that aim
to compromise the model’s accuracy [10]. Recent studies
have shown that DL models are vulnerable to adversarial
attacks, where an attack can manipulate input data in a way
that misleads the model’s output [11]. Adversarial attacks
have become a major concern in the field of DL, as they
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can compromise the security and reliability of these mod-
els, especially in safety-critical applications such as medical
diagnosis or self-driving cars [11], [12]. These attacks fall
into two broad categories [13]: poisoning and evasion attacks.
Poisoning attacks aim to contaminate the training data, while
evasion attacks aim to generate adversarial examples (AEs)
by carefully crafting small perturbations to input data during
the model’s inference phase to mislead its predictions.

The widespread adoption of DL for its impressive perfor-
mance and complex system modeling has drawn attention to
its vulnerability to misleading inputs. To address this, several
adversarial attack detection methods have emerged, utilizing
AE detection methods to identify potential attacks before
they occur [11], [16], [17], [18], [19], [20] For example,
support vector machines (SVMs) with radial basis function
kernels were employed to identify AEs. Feature squeez-
ing [18] reduces the search space for adversarial detection by
merging feature vectors, thereby making Deep Neural Net-
work (DNN) model more robust and resistant to adversarial
attacks. These methods have demonstrated effectiveness in
detecting AEs; however, they are limited to specific attack
types and can be vulnerable to carefully crafted perturbations.
Uncertainty-basedmethods have also emerged as a promising
approach to adversarial attack detection. Bayesian uncer-
tainty in dropout neural networks [26], DNNs with kernel
density and deep gaussian processes [19], minimum uncer-
tainty metrics [20], and selective and feature-based adversar-
ial detection [12] are notable examples of uncertainty-based
methods. These methods rely on the assumption that AEs
exhibit a higher degree of uncertainty as compared to normal
data. While these methods have shown promising results,
they still face challenges such as inaccuracies, high computa-
tional overhead, and difficulties in detecting AEs that blend
seamlessly with normal data.

Other AE detection methods include steganalysis-based
techniques [28], convolutional neural network (CNN)-based
approaches with feature regularization, histogram-based
feature creation, and residual image reinforcement [29],
a data augmentation technique-strengthened binary detec-
tor network [30], the feature autoencoder detector frame-
work leveraging feature knowledge [31], and a softmax
distribution-based method for detecting misclassified and
out-of-distribution examples [32]. However, existing detec-
tors lack robustness, efficiency, and effectiveness when facing
new or unknown attacks [11], [15]. Additionally, defenses
and detectors remain susceptible to meticulously crafted
adversarial perturbations, which render them ineffective as
robust detectors [11]. For practical security situations, it is
crucial for detectors to have strong generalization and robust-
ness capabilities. This paper addresses these challenges by
introducing an effective and robust DL framework, incorpo-
rating a defense layer into the DL models. This integrated
approach aims to detect adversarial examples and exclude
them, thereby preventing misleading effects on DL models.

In this paper, we aim to develop an effective and practi-
cal DL framework for improving the robustness of learning

models against adversarial attacks. The developed framework
employs a CNN for feature learning, a defense mechanism
to identify and exclude AEs, and a DNN with deep fully
connected layers and softmax for the classification task.
AEs are created by the adversaries using the Fast Gra-
dient Sign Method (FGSM) [21], Basic Iterative Method
(BIM) [22], Projected Gradient Descent (PGD) [23], and
Square Attack (SA) [24] to evade the system through the
adjustment of malicious samples during the test phase of
DL models i.e., CNN and DNN. The proposed framework
consists of a protection layer before the DNN classifier
detects and excludes AEs. Specifically, the protection layer
in the framework uses several machine learning (ML) models
as a detection/defense model to identify AEs in the input
data. These ML models include Fuzzy ARTMAP (FAMD),
Artificial Neural Network (ANND), Random Forest (RFD),
K-Nearest Neighbors (KNND), XGBoost (XGBD), and Gra-
dient BoostingMachine (GBMD). The developed framework
exhibits potential for application in a wide range of contexts,
utilizing the defender within the protection layer approach.
This approach offers several advantages, including efficiency,
scalability (being applicable tomultiple attacks, data sets, and
models), effectiveness (capable of detecting various adver-
sarial attacks), and robustness (by ensuring that the proposed
framework can withstand attacks and maintain high detection
accuracy, even when the input data are intentionally manipu-
lated or perturbed).

The main contributions of this paper can be summarized as
follows:

• Devise a DL-based framework utilizing a Protection
Layer approach to detect AEs. The CNN is used for
feature learning, while the DNN is employed for classi-
fication. Evasion attacks are employed to create AEs to
evade and mislead the classifier by adjusting malicious
samples during the test phase using FGSM, BIM, PGD,
and SA attacks.

• Employ Fuzzy ARTMAP and five ML models (i.e.,
RFD, ANND, KNND, XGBD, and GBMD) in the pro-
tection layer as a detection mechanism to identify and
exclude AEs.

• Evaluate the proposed framework using popular data
sets (MNIST, CIFAR-10, SVHN, and Fashion-MNIST)
and demonstrate that it can effectively detect a wide
range of adversarial attacks.

The remaining sections of the paper are organized as fol-
lows: Section II presents the related work. The methodology
is described in Section III. Results and discussions are pre-
sented in Section IV. Conclusions and suggestions for further
work are presented in Section V.

II. RELATED WORK
Detection-based defense emerges as a prevalent approach
to distinguishing between normal and AEs [16]. A method
called Deep Neural Rejection (DNR) [25] was developed for
detecting AEs. Specifically, DNR utilized SVMs with radial
basis function (RBF) kernels to reject samples that exhibited
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feature representations indicative of AEs in various network
layers. The classification process of DNR involved reject-
ing samples if the maximum score was below a predefined
rejection threshold θ . In [26], the Local Intrinsic Dimen-
sionality (LID) technique was employed for AEs detection.
LID calculated the distance distribution of an input sample
to its neighbours to evaluate the region’s space-filling capa-
bility surrounding that sample. In [17], an Adaptive Noise
Reduction (ANR) method was developed for detecting adver-
sarial images. It considered the perturbations in images as a
form of noise, and introduced two classic image processing
techniques, namely scalar quantization and smoothing spatial
filters, to mitigate their impact. The image entropy was used
as a metric to implement ANR for different images. AEs
were detected by comparing classification result of a given
sample with its denoised version. Similarly, a method called
Feature Squeezing (FS) [18] was proposed to enhance the
robustness of a DNNmodel in detecting AEs. FS reduced the
search space available to an adversary by merging samples
corresponding to diverse feature vectors in the original space
into a single sample.

In [26], defenders utilized model confidence on AEs by
leveraging Bayesian uncertainty estimates, which were avail-
able in dropout neural networks, to distinguish AEs from
their normal and noisy counterparts. The uncertainty values
were employed as features to construct a binary classifier
for detection purposes. Typically, uncertainty was measured
by introducing randomness to the model using a dropout
technique. Recently, a new ensemble AE detector named
Selective and Feature-based Adversarial Detection (SFAD)
was developed in [12] based on the model’s uncertainty
and confidence. SFAD was an unsupervised detector that
could detect AEs without having prior knowledge of AEs.
In [27], the Attack on Frequency (AOF) method was intro-
duced to enhance the transferability of 3D point cloud attacks.
By focusing on the low-frequency component, it improved
the transferability of adversarial samples for 3D point clouds,
as well as enhanced the robustness of 3D point cloud
classifiers.

Liu et al. [28] proposed the TIKI-TAKA framework to
assess the robustness of DL-based Network Intrusion Detec-
tion Systems (NIDS) against adversarial manipulations. The
framework incorporated three defense mechanisms: model
voting ensembling, ensembling adversarial training, and
query detection, which were aimed at increasing resistance
to attacks employing evasion techniques. In [19], two fea-
tures were introduced in DNNs for detecting AEs. Firstly,
the DNNs performed kernel density estimation in the input
space of the last layer. Secondly, uncertainty estimation was
carried out through a deepGaussian process of dropout DNNs
to detect AEs that were in low-confidence regions of the
input. Sheikholeslami et al. [20] introduced a randomized
method to detect perturbations by employing the Minimum
Uncertainty Metrics (MUM). The method involved sampling
hidden nodes randomly layer by layer in a pre-trained DNN

model during its inference stage to compute the overall
uncertainty of network output by using Bayesian approach.
Sampling probabilities were updated by minimizing uncer-
taintymeasures layer by layer to identifyAEs.MUMdetected
AEs based on an idea that the distance of adversarial pertur-
bation from the manifold of natural-data manifold could lead
the DNN to estimate a high overall network uncertainty that
exceeded that of clean data. These studies [19], [20], [28],
underscore the potential of various approaches for detecting
AEs, includingDL and novel techniques likeMUM.AsNIDS
continue to evolve, incorporating such diverse defenses will
be crucial in ensuring robust and reliable network security.

A method based on steganalysis (i.e., technology for
detecting steganography) was developed to detect AEs [29].
Steganalysis features were enhanced by estimating probabil-
ity of modifications caused by adversarial attacks. In [30],
three methods were proposed based on CNNs to detect possi-
ble AEs. The first method involved regularizing the feature
vector, the second method utilized histograms to create a
feature vector, which was then used as the input to an SVM
classifier; and the third method was based on the residual
image, where the residual image was used to reinforce cer-
tain parts of the input pattern for AEs detection. The best
aspects of the three methods were combined to develop a
more robust approach to detecting AEs. In [31], a binary
detector network was developed based on intermediate fea-
ture representations to distinguish AEs from the original data.
Dynamic Adversary Training (DAT) was used to strengthen
the detector by training the classifier with AEs. In [32],
a Feature Autoencoder Detector (FAD) defense framework
was developed for detecting AEs. FAD leveraged feature
knowledge in the detection process. In [33], a method based
on the utilization of probabilities from softmax distributions
was developed to detect misclassified and out-of-distribution
examples. It was observed that accurately classified examples
exhibited a higher maximum softmax probability in compar-
ison with misclassified examples and those that fall outside
the distribution. Goswami et al. [34] developed a frame-
work to assess the robustness of face recognition engines
based on DL. This framework was capable of detecting and
mitigating adversarial attacks. The detection and mitigation
processes were conducted in a scenario that mimicked real-
world conditions, involving cross-database and cross-attack
scenarios.

Despite the significant progress made in the field of AEs
detection, there still exist research gaps that need to be
addressed. Most of the existing detectors lack robustness
when facing new or unknown attacks. Additionally, defenses
and detectors remain susceptible to meticulously crafted
adversarial perturbations, which render them ineffective as
robust detectors [11]. Therefore, to address these limitations
and develop more resilient defenses and detectors in the field
of AEs detection, this paper presents a robust framework
with DL models based on a protection layer as a detection
mechanism to identify and exclude AEs.
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III. METHODOLOGY
In this section, we explain our proposed framework, denoted
as AEs Detection-based Protection Layer in DL models
(AEDPL-DL), which is illustrated in Fig. 2. In this study,
the term ‘‘DNN classifier’’ refers to a fully connected DNN
with softmax for classification. The data samples are initially
divided into training and test sets. The default CNN and
a DNN classifier in AEDPL-DL are trained using Clean
Examples (CEs) (Fig. 2 (a)). During the test phase, the
testing samples undergo attacks from adversary attackers
((Fig. 2 (b)). AEDPL-DL utilizes a CNN model designed
for feature learning, and is equipped with defense mech-
anisms against several types of adversarial attacks, such
as FGSM [21], BIM [22], PGD [23], and SA [24]. The
AEDPL-DL framework includes a protection layer inserted
before the classifier to detect AEs. The protection layer uses
FAMD and other ML models (RFD, KNND, XGBD, and
GBMD) to identify AEs.

In AEDPL-DL, the default CNN and DNN classifier are
trained using CEs. The CNN is explained in Section III-B,
while the DNN classifier is introduced in Section III-D.
During the test phase, the test samples are created by adver-
sary attackers to produce AEs. AEDPL-DL is designed to
primarily focus on detecting AEs in the test phase. The
protection layer in AEDPL-DL is designed to identify AEs
generated by adversarial attack algorithms and exclude them
from proceeding to the DNN classifier (Section III-C). The
key components of the AEPL-DL framework are explained
in detail in Sections III-A-D.

A. GENERATING AEs
AEs are data samples (e.g. images) that are specifically
designed to fool a DL model into misclassifying them [11].
They are generated by adding small, imperceptible perturba-
tions to the original data that can cause the model to make
incorrect predictions [11], [15].
Various adversarial attack techniques have been introduced

to generate AEs. These attack methods are designed by either
a black-box or white-box approach. The black-box meth-
ods use surrogate models to generate AEs, where attacks
lack knowledge about both the target and defense models.
Conversely, attacks in the white-box methods are made by
referring to the knowledge of both the target and defense
models [11], [13], [15].

In this work, we generate AEs of images using both
white-box and black-box attack methods. We select four
attacks, including FGSM, BIM, and PGD for white-box
attacks, and SA for black-box attacks, in order to evaluate
the robustness of the developed AEDPL-DL framework. The
attack methods are as follows:

- FGSM [21] attack is a white-box attack that adds a
small perturbation to each pixel in the input image in the
direction of the gradient of the loss function. It utilizes a
one-step gradient update algorithm to determine the per-
turbation direction, specifically the sign of the gradient
∇ for each pixel of the input image x to maximize the

loss value l of the targeted DL model. It is expressed as
follows:

x ′
= x + ϵ sign (∇x l (x, y)) , x ′

∈ [0, 1] (1)

where ϵ is a parameter controlling the perturbation of
the attack; x, x ′, andy indicate clean input, AEs of x, and
clean input label, respectively.

- BIM [22] is the iterative version of FGSM that adds
multiple small perturbations to the input image over
several iterations. It applies FGSM attack k times, which
is defined as follows:

x ′

i+1 = x ′
i + αsign (∇x l (x, y)) ,

x ′

0 = x, x ′

i+1 =∈ [0, 1] , i = 0 to k (2)

where α is the parameter to control the iteration of step
size and it is between 0 and ϵ, and k is the FGSM times.

- PGD [23] is an iterative white-box attack similar to that
of BIM, but with random noise added to the perturbation
in each iteration. The perturbation is initialized with∥∥x ′

− x
∥∥ < ϵ.

- SA [24] is a black-box attack that utilizes a quadratic
model to determine the optimal perturbation for the
input image. SA randomly selects ϵ-bounded localized
squares at different positions to generate perturbations
that satisfy the optimization problem. This process can
be achieved using a random search strategy at each
iteration of the algorithm. SA is expressed as follows:

min
x1ϵ[0,1]

l
(
f
(
x

′
)

, y
)

, ∥δ∥ ≤ ϵ, l
(
f
(
x

′
)

, y
)

= fy
(
x

′
)

− maxk ̸=yfc
(
x

′
)

.fy
(
x

′
)

(3)

where fc
(
x ′
)
and fy

(
x ′
)
refer to the prediction probabil-

ity of x ′ for c and y classes, respectively.
- DeepFool (DF) [35] is a simple and accurate method
to fool deep neural networks. It is based on an iterative
linearization of the classifier to generate minimal pertur-
bations that are sufficient to change classification labels.

B. FEATURE LEARNING-BASED CNN
The CNN is often utilized for image and video recognition
tasks. It plays a crucial role in feature extraction from images,
which aids a classifier in object recognition and classification.
In this research, the CNN is employed to extract features from
clear images and AEs. The feature extraction process takes
place in two main layers of the CNN, namely convolutional
and pooling layers.

The convolutional layer is responsible for performing con-
volution operation, which applies a set of learnable filters
(also known as kernels or weights) on the input image or
feature map. The output from the convolution operation is
a new feature map that represents the presence of various
features in the input image. The convolution operation is
computed using the following equation:

Y (i, j) =

K∑
k=1

L∑
l=1

X (i+ k, j+ l) .W (k, l) + b (4)
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FIGURE 1. The objective of AEs is to mislead and fool DL models.

FIGURE 2. Outline of the proposed AEDPL-DL.

where X is the input image or feature map; Y is the output
feature map; W is the set of learnable filters or kernels; b is
the bias term; and, K and L are the dimension of the filters

Following the convolutional layers, the pooling layers in
the CNN use a downsampling operation to decrease the
spatial resolution of the feature maps. The most common
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downsampling technique is the max-pooling operation,
which identifies the maximum value in each local region of
the input feature map. This operation is expressed mathemat-
ically as follows:

Y (i, j) = max
k,l

X (sk + i, sl + j) (5)

where X is the input feature map; Y is the output feature map;
and, sis the size of the pooling region.

After extracting features from an image, a flattening pro-
cess is performed to re-arrange the pooled feature map into
a single column. This creates a vector as the input for subse-
quent processing stage. In this work, the flattened data are
forwarded to the protection layer, which is responsible for
filtering out the AEs and allowing only CEs to proceed to
the classification phase.

C. PROTECTION LAYER FOR AEs DETECTION
In AEDPL-DL, we devise a protection layer to incorporate a
defender model designed to identify AEs generated by adver-
sarial attack algorithms and exclude them from proceeding to
the final classification phase. The protection layer is included
in the test phase of AEDPL-DL, and is posited between
the CNN and DNN classifier. The defender recognizes that
AEs possess distinct features that are different from clean
inputs [36]. Therefore, a defender leverages this advantage
to construct a robust detector, enabling the identification and
exclusion of AEs.

The protection layer functions as an intermediary between
the CNN and DNN classifier. Its primary objective is to
enhance the DL models, e.g. the capability of CNN and DNN
classifier to detect AEs and prevent their influence on the final
classification decision. By integrating the protection layer,
only CEs are allowed to transfer to the final classification
decision for further processing. To achieve this, the protection
layer employs various defender models, including FAMD,
and different ML models such as ANND, RFD, KNND,
XGBD, and GBMD. The protection layer consists of one
of these ML models at a time, which is the best one with
high performance. The AEDPL-DL framework assesses the
ML detectors and chooses the model yielding superior AE
detection capabilities.

An ANND detector is a classifier that uses interconnected
layers of artificial neurons to classify the input data into
different categories, including AEs and CEs. It applies a
rectified linear unit (ReLU) function to the weighted sum
of the input X , enabling it to learn complex patterns. The
classifier output is determined by adjusting weights W and
biases b in f (Wx + b) during training, in order to minimize
the difference between its predictions and the target label, Y .
The RFD detector is an ensemble learning model that com-

bines multiple decision trees to make accurate prediction or
classification outcomes. Each tree in the forest is constructed
using a random subset of the data and a random subset of the
features. The final prediction is obtained by aggregating the
predictions of individual trees.

The KNND detector is an ML algorithm used for classifi-
cation and regression tasks. It determines the class or value of
a data sample by considering its K nearest neighbors in the
training data set. It relies on a distance metric to reflect the
label similarity, e.g. Minkowski distance, which is computed
as follows:

D =

[
K∑
i=1

∣∣xi − x ′
i

∣∣p]p (6)

where p represents the order of the norm
GBMD and XGBD are used also as detectors in the pro-

tection layer. They are gradient boosting algorithms that
iteratively combine several weak learners to create a strong
predictive model. XGBD adds further optimization, such as
regularization and gradient tree boosting, to enhance perfor-
mance and control model complexity.

FAMD is a neural network that combines fuzzy logic
and the adaptive resonance theory (ART) model for pattern
recognition and classification tasks. It dynamically creates
and updates recognition categories based on the input patterns
using the fuzzy ART principles for mapping input samples to
output classes, performing incremental learning in dynamic
environments.

ANND, RFD, KNND, GBMD,XGBD, and FAMDmodels
enable the protection layer to learn and identify patterns
indicative of AEs. By leveraging the capabilities of these
models, the protection layer can effectively differentiate
between clean and adversarial inputs based on specific char-
acteristics or features present in the data. These ML models
are used individually rather than in combination.

By successfully identifying and excluding AEs, the protec-
tion layer ensures that the subsequent classification process
operates on reliable and trustworthy data. This significantly
improves the overall robustness and accuracy of AEDPL-DL,
making it resilient against AEs.

D. DNN-SOFTMAX CLASSIFIER
In this phase, the data samples received from the preceding
layer are processed for a classification task using a fully
connected DNN with a softmax activation function, f (z)i =
ezi
C∑
j
ezj
. The objective is to combine the features into addi-

tional attributes, enhancing the predictive capabilities for data
classification. The softmax function is a generalized version
of the logistic function. It ensures that the predicted class
probabilities pi sum up to 1, which is closely associated with
the cross-entropy function. Applying the softmax function
helps evaluate the model reliability by utilizing the Cross
Entropy Function as a loss function. The aim is to optimize
the performance of the DNN byminimizing the cross-entropy
loss (LCE ) as follows:

LCE = − log

(
esp∑C
j e

sj

)
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= −

C∑
i

ti log
(
f (z)i

)
, f (z)i

=
ezi∑C
j e

zj
(7)

where ti is the truth label, C is the number of classes, z is the
output from DNN, and f (z)i is the softmax probability for
the ith class. Algorithm 1 depicts the steps of the developed
AEDPL-DL framework.

E. TIME COMPLEXITY ANALYSIS
This section provides an overview of the time complexity
analysis for AEDPL-DL, encompassing three distinct phases:
feature extraction, protection layer, and DNN classifier.

The feature extraction phase involves two main tasks:
convolution and max pooling. For a filter of size k , the dot
product’s cost is O

(
k.d2

)
, where d denotes the dimension.

Since the filter is applied over the input n−k+1 times, where
n represents the length of the input or the number of input
nodes, the final time complexity of a convolutional layer is
O(k.n.d2). Meanwhile, the time complexity of a max pooling
layer is O(n). Consequently, the maximum time complexity
in this phase is O(k.n.d2).
In the protection layer, various algorithms, including

ANND, RFD, KNND, XGBD, GBMD, or FAMD, are
employed to detect Adverse Events (AEs). The time com-
plexity of ANND is O(n.d), RFD is O(n2.d .t), KNND is
O(n.d), XGBD isO(n.d .t), GBMD isO(n.d .t), and FAMD is
O(n.d .c), where n is the number of data points, d is the num-
ber of features, t is the number of trees, and c is the number
of codebooks in FAM. The maximum time complexity in this
phase is (n2.d .t).
Moving to the DNN classifier, it requires a deep fully

connected layer, where the input row vector undergoes
multiplication with the weight matrix. Consequently, its com-
putational cost is O(n.d .l), where n is the number of input
features, l is the number of layers, and d is the number of
output features. In summary, the comprehensive time com-
plexity of AEDPL-DL is O(

(
k.n.d2

) (
n2.d .t

)
(n.d .l)).

IV. IMPLEMENTATION AND RESULTS
This section presents a set of experiments to validate the per-
formance of AEDPL-DL. The obtained results are analyzed
and discussed in detail.

A. DATASETS
MNIST [37] is a data set for recognizing handwritten dig-
its ranging from 0 to 9. It consists of 70,000 grayscale
images/samples, with 60,000 for training and 10,000 for test.
CIFAR-10 [38] is an image data set commonly used in com-
puter vision applications. The images are in the RGB format,
and have a resolution of 32 × 32 pixels. The data samples
cover images from ten different classes: airplanes, cars, birds,
cats, deer, dogs, frogs, horses, ships, and trucks. A total of

60,000 images are available, with 50,000 used for training
and 10,000 for test.

The SVHN dataset [39], derived from Google Street View
images of house numbers, includes 600,000 32 × 32-pixel
images. These are initially of varying dimensions, but are
cropped to match bounding boxes of individual digits and
converted to grayscale. There are 531,131 extra digits, with
73,257 for training and 26,032 for testing.

Fashion-MNIST dataset [40], introduced by Zalando,
originates from Europe’s largest online fashion platform.
It includes 70,000 products, each is represented as a 28 ×

28 pixel grayscale image, and is categorized into 10 distinct
classes.

B. EXPERIMENTAL SETTING
Two machines have been used to analyze and verify the
distributed computing and parallel implementation of
AEDPL-DL. The processors are Intel Core-i7, and the operat-
ing system is Ubuntu 20.04. Onemachine has 8 GBRAMand
the other has 4 GB. The Python Ray Library [41] is utilized
to implement parallelization.

In AEDPL-DL,1 the CNN and DNN classifier models
were trained with 100 iterations, a batch size of 256, and
a learning rate of 0.001. The data set was split into a
4:1 training-test ratio, and the experiment was repeated for
ten times to compute the average results, each time ran-
domly shifting the data between the training and testing sets.
In AEDPL-DL, both CNN and DNN models were trained
using CEs. During the test phase, the test samples were
subject to attacks from adversary attackers to generate AEs.
As a result, the test samples contained CEs, AEs, and both
clean and adversarial samples (CEs_AEs). As an example,
the number of CEs from MNIST was 10,000. These CEs
were subject to attacks, producing 10,000 AEs. A total of
20,000 mixture samples (i.e., CEs_AEs) were available. The
same process was applied to the CIFAR-10, SVHN and
MNIST_Fashion data sets. CIFAR-10 resulted in 10,000 CEs,
10,000 AEs, and 20,000 CEs_AEs samples, SVHN resulted
26,032 CEs, 26,032 AEs, and 52,064 CEs_AEs samples,
whileMNIST_Fashion resulted 10,000 CEs, 10,000AEs, and
20,000 CEs_AEs samples, respectively.

Four metrics are adopted for performance evaluation and
comparison, i.e., accuracy, precision, recall, and F1-score.
These metrics are computed based on True Positive Rate
(TPR), False Positive Rate (FPR), True Negative Rate (TNR),
and False Negative Rate (FNR), as follows:

Accuracy =
TPR+ TNR

TPR+ TNR+ FPR+ FNR
(8)

Precision =
TPR

TPR+ FPR
(9)

Recall =
TPR

TPR+ FNR
(10)

1https://github.com/MNAl-Andoli/AEDPL-DL/tree/main
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Algorithm 1 AEDPL-DL
Input: Data samples, i.e., clean examples.
Output: Detection of each AEs and DL classification for CEs.
1: Divide the data samples into training and testing sets
2: a) Training process
3: Train CNN and DNN classifier on training sets (i.e., clean inputs, Fig. 2(a))
4: b) Performing adversarial attacks on testing set (CEs): (Section III-A)
5: for i = 1 to size(CEs):
6: Generate AEs using one of {FGSM, BIM, PGD, SA, and DF} attacks.
7: end for
8: c) Testing Phase (Fig. 2(b))
9: - Feature Extraction: (Section III-B)
10: Foreach (i in AEs and CEs): do
11: Perform convolution operation
12: Conduct max-pooling
13: end for
14: Combine features extracted from AEs and CEs, and forward them to the protection layer
15: - Protection Layer
16: Select a detector from {ANND, RFD, KNND, XGBD, GBMD, or FAMD}. (Section III-C)
17: Train the detector to work as a classifier for AEs and CEs
18: Detect unseen AEs and exclude them
19: Allow CEs to pass through the protection layer.
20: - DNN classifier
21: Design DNN classifier with softmax (Section III-D).
22: Define and calculate loss function
23: Train the DNN classifier with CEs
24: Predict the labels
25: Return the excluded AEs and the predicted labels of CEs.

F1 − score = 2.
Recall × Precision
Recall + Precision

. (11)

The area under the receiver operating characteristic curve
(AUC) [42], which is constructed using FPR and TPR, is also
computed.

C. RESULTS AND DISCUSSION
In this section, the results of AEDPL-DL are analyzed and
discussed using four benchmark data sets, namely MNIST,
CIFAR-10, SVHN, and Fashion-MNIST.

1) MNIST
a: AEDPL-DL PERFORMANCE
AEDPL-DL has been evaluated in detecting AEs generated
using four attack methods: FGSM, BIM, PGD, and SA. In the
test phase, three versions of testing samples are used: CEs,
AEs, and CEs_AEs. Notably, in AEDPL-DL, the CEs_AEs
samples are utilized with a protection layer-based defense
mechanism. This mechanism aims to identify AEs and pre-
vent them from passing to the final classification phase.
In other words, the samples of CEs and AEs are passed to
AEDPL-DL. The features of CEs and AEs are then extracted
by the CNN and sent to a protection layer-based defense
mechanism. Next, the CEs and AEs are mixed and split into a
4:1 training-test ratio. After training theMLmodel in the pro-
tection layer, it is evaluated using the test set. In this set, only

CEs are passed to the DNN classifier to perform the final clas-
sification. Based on this setup, we conduct two performance
evaluations. First, we evaluate the overall performance of
AEDPL-DL in Section IV-C.1.A, which is related to the final
classification with the DNN classifier. Secondly, we evaluate
the performance of the detector in Section IV-C.1.B, which
assesses the effectiveness of the protection layer. This section
also includes analyzing the ratio of CEs being blocked and the
ratio of CEs passing to the DNN classifier

Table 1 summarizes the AEDPL-DL results with dif-
ferent attacks on CEs, indicating high accuracy, precision,
recall, and F1-score. However, when dealing with AEs,
the AEDPL-DL performance drops significantly, revealing
its vulnerability to adversarial attacks. The AEDPL-DL
performance with CEs_AEs shows a better performance,
as compared with that from using AEs alone, but is lower
than that of using CEs alone. On the other hand, the AEDPL-
DL framework, when integrated with an auxiliary ML model
within the protection layer (that works as a detector), exhibits
a notable improvement in performance. Several ML models
(ANND, RFD, KNND, XGBD, GBMD, and FAMD) are
employed as detectors in the defense mechanism, resulting
in enhanced performance against attacks.

Table 1(a) presents the evaluation of AEDPL-DL under the
FGSM attack. To clarify the meaning of each term used and
provide a better understanding of the AEDPL-DL evaluation
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TABLE 1. The performance of AEDPL-DL using various detecting models (ANND, RFD, KNND, XGBD, GBMD, FAMD) in the protection layer against four
attacks on the MNIST data set (CEs, AES, and CEs_AEs) with eps ϵ= 0.30.

under different conditions and defense mechanisms, the fol-
lowing explanation is provided:

- CEs: AEDPL-DL performance when CEs data are used.
- AEs: AEDPL-DL performance when AEs data are used
without a protection layer.

- ANND: AEDPL-DL performance when both CEs and
AEs are checked by an ANN model as a detector in
the protection layer. Similar explanations are provided
for other detection/defense models, e.g. RFD, KNND,
XGBD, GBMD, or FAMD.

- (-): AEDPL-DL performance without protection layer
and detectors.

The results from Table 1(a) indicate significantly higher
accuracy, precision, recall, and F1-score for AEDPL-DL as
compared with those without a protection layer against AEs.
It is evident that AEDPL-DL incorporating a protection layer
based on RFD, ANND, and KNND achieve accuracy levels
comparable with those of CEs, with 98.62%, 97.34%, and
97.56%, respectively. This stands in contrast to the accuracy
values of 36.04% and 67.6% for AEs and CEs_AEs, respec-
tively. Note that the protection layer incorporating FAMD
yields a slightly lower performance in detecting AEs, as com-
pared with those from other ML models.

Table 1(b) shows the performance of AEDPL-DL under the
BIM attack. Comparing with the performance of the default
scenario without a protection layer using CEs_AEs, AEDPL-
DL encounters a drastic drop in performance with AEs. These
results imply that the DL models, i.e., the CNN and DNN
classifier, are susceptible to the BIM attack. However, when
AEDPL-DL incorporates auxiliary ML models in the protec-
tion layer, the performance improves significantly, as shown
in Table 1(b). ANND, RFD, and KNND demonstrate higher
scores in all metrics. For example, ANND achieves an accu-
racy rate of 97.76%, while RFD and KNND achieve accuracy
rates of 97.61% and 92.23% respectively. On the other hand,
XGBD andGBMD show slightly lower results, with accuracy
values of 89.58% and 79.63% respectively. FAMD, similar

to the findings with FGSM attacks, exhibits a relatively low
performance as compared with those from other ML models,
achieving an accuracy score of 74.95%.

Using the PGD attack (Table 1(c)), the performance of
AEDPL-DL without the protection layer using CEs achieves
accuracy, precision, recall, and F1-score of 99.25. However,
the performance significantly drops on AEs generated with
PGD, with an accuracy of 0.61%, precision of 0.64%, recall
of 0.61%, and F1-score of 0.6%. The AEDPL-DL framework
demonstrates a significant improvement in performance. For
example, AEDPL-DL using ANND as a defense model in
the protection layer achieves an accuracy of 97.91%, while
RFD, KNND and FAMDyield 96.74%, 92.48%, and 73.88%,
respectively. Under the SA attack (Table 1(d)), the perfor-
mance drops on AEs generated by SA, with an accuracy of
53.3%. AEDPL-DL incorporating RFD achieves an accu-
racy of 99.06%, and with ANND, KNND and FAMD yield
98.84%, 98.08%, and 86.93%, respectively. These results
indicate that AEDPL-DL enhances the robustness of DL
models against adversarial attacks by incorporating an aux-
iliary ML model in the protection layer, thereby improving
the overall performance.

b: DETECTORS PERFORMANCE IN THE PROTECTION LAYER
In this section, the results by employing different detectors in
the protection layer are analyzed. The performance is mea-
sured based on their ability to identify AEs and prevent the
progression into the classification phase of AEDPL-DL. For
instance, a detection rate of 90% indicates that the detector
successfully detects and excludes 90% of AEs.

Table 2 presents the performance of different detectors
employed in the protection layer, as evaluated using the
MNIST data set under four attacks (FGSM, BIM, PGD,
and SA with an epsilon (eps ϵ) value of 0.30). Table 2(a)
illustrates the accuracy, precision, recall, and F1-score values
achieved by each detector with the FGSM attack. It is evident
that ANND attains the highest accuracy rate of 94.32%. RFD
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TABLE 2. The performance (detection rates) of various detector models in protection layer against four attacks (a-d) using the MNIST data set with
eps ϵ= 0.30.

and KNND also demonstrate a competitive performance,
with accuracy values of 93.92% and 93.12% respectively.
On the other hand, XGBD exhibits a lower performance as
compared with those of ANND, RFD, and KNND. In addi-
tion, GBMD and FAMD display even lower scores, with
81.6% and 74.1%, respectively. Table 2(b) showcases the
detector performance against the BIM attack. Clearly, ANND
outperforms other detector models by achieving the highest
accuracy rate of 94.98%. RFD and KNND also perform well,
achieving 92.85% and 92.8%, respectively. XGBD shows a
slightly lower performance of 89.68%, while GBMD and
FAMD exhibit lower scores overall, with 80.65% and 76.3%,
respectively.

Table 2(c) presents the results against the PGD attack,
ANND, RFD, and KNND report high accuracy scores of
94.88%, 93.28%, and 93.18%, respectively. XGBD demon-
strates a slightly lower performance of 87.95%. GBMD and
FAMD depict inferior results of 76.7% and 73.8%, respec-
tively. Table 2(d) shows the results against the SA attacks,
with ANND achieving the highest accuracy rate of 98.02%.
It is followed by RFD and KNND at 98% and 97.72%,
respectively. The results of XGBD,GBMD, and FAMDunder
SA attack are lower than those results of ANND, RFD and
KNND.

In summary, ANND, RFD, and KNND demonstrate strong
and consistent performance against all attacks. These mod-
els consistently yield high accuracy, precision, recall, and
F1-score values. XGBD, GBMD and FAMD exhibit lower
performances than those of ANND and KNN. These find-
ings emphasize the robustness of ANND, RFD, and KNND
models in detecting AEs against four attacks in the proposed
AEDPL-DL framework.

c: PERFORMANCE OF AEDPL-DL AND DETECTORS UNDER
VARYING EPSILON SETTINGS
The choice of epsilon (eps ϵ) in FGSM, PGD, BIM, and
SA attacks has a significant impact on the magnitude of

perturbations applied to the input images (CEs) and, con-
sequently, on the effectiveness of generating AEs. It also
affects the detector performance in detecting AEs. Therefore,
this experimental study aims to evaluate the AEDPL-DL
performance with different epsilon (eps ϵ) settings under four
types of attack.

When the epsilon value is small, such as 0.05, it restricts
the magnitude of perturbation applied to each pixel, resulting
in a smaller change to the original image. In other words,
with a small epsilon value, such as 0.05, perturbations are
limited, causing minimal changes to the original image.
Although some adversarial samples bypass the protection
layer, the DNN classifier still performs well. This is because
the changes to the image are so small that the DNN con-
siders them normal and clean. As a result, the feature space
remains within or close to the boundaries of the training
data, allowing the DNN classifier to effectively handle all
samples, as depicted in Fig. 3 (a to d). On the other hand,
as the epsilon value increases, the performance of the DNN
model decreases significantly with AEs and CEs-AEs using
the FGSM, BIM, PGD, and SA attacks. For the BIM, PGD,
and SA attacks, the performance of DNNwith AEs decreases
significantly when epsilon exceeds 0.15. This is because a
larger epsilon value allowsmore substantial perturbation to be
applied to each pixel, resulting in a larger change to the image.
For larger epsilon values, the generated AEs significantly
deceive the DNN without protection layer, as adversaries
have more freedom to manipulate the data samples.

Despite escalating epsilon values used by attacks, the
AEDPL-DL frameworkmaintains a robust performance. This
is accomplished through the integration of auxiliary ML
models as detectors within the protection layer, enabling the
detection and exclusion of AEs. Specifically, AEDPL-DL
leverages ANND, RFD, KNND and XGBD to achieve per-
formance levels that are closely aligned to those observed on
CEs. AEDPL-DL remains unaffected by increasing epsilon
values, although GBMD and FAMD models depict a slight
performance reduction.
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FIGURE 3. The performance of AEDPL-DL on the MNIST data set using various protection layer models against adversarial attacks with epsilon
(eps ϵ) values ranging from 0.05 to 0.5.

The performance of six detectors within the protection
layer against four attacks (FGSM, BIM, PGD, and SA) is
summarized in Fig. 4. These attacks are assessed using var-
ious epsilon values. The results indicate that the detectors
generally performwell across different epsilon values, except
for a slight reduction in performance when dealing with
a very small epsilon setting (e.g., 0.05). This reduction is
owing to the minimal perturbation in AEs, which makes them
more difficult to detect. However, with a small epsilon value,
the performance of detectors still remains good. ANND and
RFD demonstrate the highest performance in detecting AEs,
exhibiting their robustness across various epsilon values.
KNND and XGBD also perform well, albeit with slightly
lower accuracy rates as compared with those of ANND and
RFD. On the other hand, FAMD and GBMD exhibit a poor
performance in detecting AEs, yielding lower accuracy rates
as compared with those from other detectors. However, DNN
models experience only small fooling rates when confronting
AEs generated using small epsilon values, as illustrated in
Fig. 3.

2) CIFAR-10
a: AEDPL-DL PERFORMANCE
AEDPL-DL is evaluated against AEs generated using four
attack methods of FGSM, BIM, PGD, and SA on the
CIFAR-10 data set. The results are presented in Table 3.

Table 3(a) presents the AEDPL-DL performance using
CEs against FGSM attacks. The model demonstrates a good

performance on clean data. However, when exposed to AEs
generated by adversarial attacks, the model performance sig-
nificantly drops, revealing its vulnerability to such attacks.
The performance of AEDPL-DL with CEs_AEs, exhibits
relatively a better performance as compared with that of AEs
alone, but a significant decrease as compared with that of
CEs alone. On the other hand, AEDPL-DLwith detectors and
defender models within the protection layer demonstrates a
notable improvement in performance. For example, AEDPL-
DL coupled with RFD and ANND achieve results close to
those of CEs, with accuracy values of 84.31% and 83.61%,
respectively. This is in contrast to the accuracy values of AEs
and CEs_AEs, which are 10.8% and 47.24%, respectively.
While AEDPL-DL with KNND XGBD, and GBMD also
report good performances, their accuracy values are slightly
lower than those using ANND and RFD. However, incor-
porating FAMD as a defense mechanism in the protection
layer of AEDPL-DL yields slightly a lower performance,
as compared with those from other ML models

Table 3(b) presents the performance of AEDPL-DL against
the BIM attack. AEDPL-DL with ANND achieves a high
accuracy rate of 85.26%, while RFD, KNND and XGBD
achieve accuracy rates of 85.14%, 85.1%, and 85.14% respec-
tively. AEDPL-DL with GBMD shows a slightly lower
performance with an accuracy score of 84.87%, while with
FAMD exhibits an even lower performance with an accuracy
rate of 70.73%. Similarly, a significant performance drop
is observed on AEs generated by the PGD attack, result-
ing in an accuracy rate of 2.4% in Table 3(c). However,
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FIGURE 4. The accuracy of various detectors using four adversarial attacks with epsilon (eps ϵ) values ranging from 0.05 to 0.5,
on the MNIST data set.

TABLE 3. The performance of AEDPL-DL using various detecting models (ANND, RFD KNND, XGBD, GBMD, FAMD) in the protection layer against four
attacks on the CIFAR-10 data set (CEs, AES, and CEs_AEs) with eps = 0.30.

integrating ANND, RFD, KNND XGBD, and GBMD into
AEDPL-DL yields higher accuracy rates, reaching up to
84.68%, while AEDPL-DL with FAMD achieves a lower
accuracy rate of 73.69%. Furthermore, when evaluating the
SA attack (Table 3(d)), the performance decreases, result-
ing in an accuracy of 3.41%. AEDPL-DL based on ANND,
RFD, KNND and XGBD achieves accuracy rates of 83.9%,
84.81%, 83.35%, and 82.74% respectively, while GBMD and
FAMD yield lower accuracy rates of 76.48% and 69.54%
respectively. These results highlight the effectiveness of
AEDPL-DL along with detectors based on auxiliary ML
models in enhancing performance against the PGD, BIM, and
SA attacks, leading to an improvement on AEs detection.

b: DETECTORS PERFORMANCE IN THE PROTECTION LAYER
The results of different detectors in the protection layer
against FGSM, BIM, PGD, and SA attacks on the CIFAR-10

data set with an epsilon (eps) value of 0.30 are presented
in Table 4. It is evident that all detectors in the protection
layer perform well, with ANND achieving the highest accu-
racy rate of 98.6%. This is followed by KNND, RFD, and
XGBD with accuracy scores of 97.9%, 97.68%, and 97.3%
respectively. While GBMD and FAMD also demonstrate a
good performance, their accuracy scores are lower as com-
pared with those of other models, at 93.22% and 82.22%
respectively. Similarly, Table 4(b) presents the performance
of various detectors in the protection layer against the BIM
attack. The results reveal that the ANND and RFD models
achieve a perfect performance with 100% accuracy, preci-
sion, recall, and F1-score. The KNND and XGBD models
also perform exceptionally well, with accuracy above 99.9%.
GBMD demonstrates a high performance at around 99.62%.
In contrast, FAMD is less effective with an accuracy rate
of 88.62%.
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TABLE 4. The performance of various detectors in the protection layer against four attacks (a-d) using the CIFAR-10 data set with eps ϵ= 0.30.

Table 4(c) presents the performance against the PGD
attack, where RFD achieves perfect accuracy. ANND,KNND
XGBD, and GBMD perform well, achieving approximately
99% across all metrics. FAMD shows a lower performance
with scores around 87.88%. For the SA attack (Table 4 (d)),
the RFD model performs the best with an accuracy rate
of 96.48%. ANND and XGBD models achieve a similar
high performance with scores of 96.28%. GBMD attains an
accuracy rate of 92.85%. However, FAMD shows a lower
performance with an accuracy rate of 82.85%. Overall, the
ANND and RFD models stand out as highly effective in
detecting AEs and protection against the various attacks,
while the FAMDmodel exhibits the least effectiveness among
the evaluated models.

c: PERFORMANCE OF AEDPL-DL AND DETECTORS UNDER
VARYING EPSILON SETTINGS
The AEDPL-DL framework is evaluated using different
epsilon settings to simulate attacks on the CIFAR-10 data
set. Fig. 5 depicts the impact of varying epsilon values (rang-
ing from 0.05 to 0.5) on the AEDPL-DL performance with
four attacks. It can be observed that there are no significant
changes in performance as epsilon values increase. However,
a slight decrease in performance is noticed on AEs-CEs
within the epsilon range from 0.05 to 0.15, along with an
improvement in the performance of AEDPL-DLwith ANND,
RFD, KNND XGBD, GBMD, and FAMD within the same
range. AEDPL-DL performance remains consistent under
FGSM, BIM, and PGD attacks (Figs. 5(a-c)). Meanwhile,
when examining the SA attack (Fig. 5(d)), it is observed that
the performance depicts a slight reduction within the epsilon
range of 0.05 to 0.15, but maintains a consistent level of
performance within the epsilon range of 0.15 to 0.5. Notably,
the changes become negligible when increasing epsilon from
0.15 to 0.5 with all attacks.

The findings suggest that the CIFAR-10 data set is sig-
nificantly impacted by the attacks, especially with small

perturbations (e.g., epsilon = 0.05). This indicates that DL
models are more susceptible to attacks when using the
CIFAR-10 data set, as compared with that of the MNIST
dataset, which is likely owing to the higher complexity of
CIFAR-10. The results emphasize the importance of robust
defense mechanisms to protect DNN models against adver-
sarial attacks in complex data sets like CIFAR-10. However,
AEDPL-DL demonstrates a robust performance against var-
ious attacks with different epsilon settings. As shown in
Fig. 5 (a to d), the performance of AEDPL-DL with all
detectors within the protection layer exhibits a high perfor-
mance, closely approaching the performance on CEs. This
achievement is attributed to the integration of auxiliary ML
models in the protection layer, enabling the detection and
exclusion of AEs.

Fig. 6 illustrates the performance of various detectors
against four attacks (FGSM, BIM, PGD, and SA) with vary-
ing epsilon values. In general, the detectors demonstrate
a high performance with small epsilon values (e.g., 0.05).
Notably, ANND, RFD, KNND andXGBD exhibit the highest
performance, while FAMD exhibits relatively lower effec-
tiveness in AEs detection.

3) AUC OF AEDPL-DL
The AUC metric is utilized to further evaluate the
AEDPL-DL framework. This metric provides an overall
assessment of a detector’s performance, and is an evaluation
measure widely applicable to various classification problems.

Table 5 presents the AUC results of AEDPL-DL with the
protection layer based on various detector models on two
data sets: (a) MNIST and (b) CIFAR-10. The AUC values
indicate the ability of AEDPL-DL to differentiate between
AEs and CEs while maintaining high performance on CEs.
Referring to the MNIST data set, AEDPL-DL with RFD
and ANND achieves an outstanding performance across all
attack types, yielding AUC scores above 98% for FGSM,
BIM, PGD, and SA attacks. This indicates that RFD and
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FIGURE 5. The performance of AEDPL-DL on the CIFAR-10 data set using various protection layer models against adversarial attacks with
epsilon (eps ϵ) setting ranging from 0.05 to 0.5.

FIGURE 6. The accuracy of various detectors using four adversarial attacks with epsilon (eps ϵ) values ranging from 0.05 to 0.5,
on the CIFAR-10 data set.

ANND are highly effective in detecting and filtering out
AEs. Similarly, when using the CIFAR-10 data set, AEDPL-
DL with ANND and RFD model performs well, achieving
AUC scores above 84% for all attack types. However, the
performance on CIFAR-10 is slightly lower than those for
MNIST, suggesting that the higher complexity and variabil-
ity in CIFAR-10 present greater challenges for adversarial

detection. AEDPL-DL with ANND, KNND, and XGBD also
demonstrate relatively strong performances, while those with
GBMD and FAMD exhibit lower scores.

Overall, the results highlight the potential of AEDPL-DL
to enhance the robustness of DL models against AEs. The
incorporation of a protection layer based on detector models
prior to the classifier aids in identifying and filtering out
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TABLE 5. AUC measures for AEDPL-DL with protection layer based on detector of various models on (a) MNIST and (b) CIFAR-10 data sets (CEs, AEs, and
CEs_AEs) with FGSM, BIM, PGD, and SA attacks.

adversarial inputs, thereby maintaining the high performance
of the DL model on CEs. However, additional research and
validation are required to optimize the selection and config-
uration of the protection layer models for different types of
attacks.

4) COMPARISON WITH EXISTING MODELS
Table 6 provides a summary of DL models against AEs for
AEDPL-DL and 13 existing methods in the literature, namely
BU [19], FS [18], DNR [25], LID [26], ANR [17], FAD [32],
EPM [29], SFAD [12], Regularization [30], Uncertainty [19],
DAT [31], MUM [20] and DNR [25] against FGSM, PGD,
and BIM attacks. The performance metrics include accuracy
and AUC. The results from AEDPL-DL are selected accord-
ing to the best performance of ML in the protection layer, i.e.
ANND, RFD, and KNND.

By referring to the MNIST results in Table 6, AEDPL-DL
achieves the highest accuracy scores, i.e., 98.62% for FGSM
attacks and 97.91% for PGD attacks, as well as achieves
high AUC of 99.24% for FGSM attacks and 98.72% for
PGD attacks. AEDPL-DL exhibits a superior performance
in detecting AEs created by these attacks as compared with
those from other methods. FS also demonstrates high accu-
racy, with 97.96% for FGSM attacks and 97.19% for PGD
attacks. On the other hand, DNR and EPM exhibit vulnerabil-
ity to PGD attacks, achieving lower accuracy rates of 59.21%
and 71.5%, respectively. SFAD performs well against FGSM
attacks with an accuracy rate of 98.61%, but its accuracy
drops considerably to 81.0% when facing PGD attacks.

AEDPL-DL also stands out with the highest accuracy rates
among the compared methods of 84.31% for FGSM attacks
and 84.68% for PGD attacks on the CIFAR-10 data set.
FS achieves low accuracy rates of 32.5% for FGSM attacks
and 4.2% for PGD attacks, while DNR achieves 30.23% for
FGSM attacks and 18.23% for PGD attacks. ANR obtains
promising accuracy rates of 83.2% for FGSM attacks, but its
accuracy drops to 59.2% for PGD attacks. These values high-
light the varying performance levels and vulnerabilities of the
compared methods, further emphasizing the effectiveness of
AEDPL-DL in detecting AEs.

The AUC scores are also compared with those of Uncer-
tainty [19], DAT [31], MUM [20], and DNR [25] methods,
as presented in Table 6. AEDPL-DL yields high AUC val-
ues, achieving 99.24% for FGSM attacks, 98.72% for PGD
attacks, and 98.93% for BIM attacks on the MNIST data set.
When handling the CIFAR-10 data set, AEDPL-DL main-
tains high AUC values of 84.36% for FGSM attacks, 84.58%
for PGD attacks, and 84.59% for BIM attacks. The Uncer-
tainty method also exhibits notable AUC values, particularly
with 90.57% for FGSM attacks and 82.06% for BIM attacks
on the MNIST data set. These values indicate its effective-
ness in detecting AEs, especially against BIM attacks. While
the other compared methods demonstrate varying levels of
performance, AEDPL-DL consistently outperforms them,
highlighting its robustness as a defense mechanism.

Overall, AEDPL-DL surpasses existing DL methods in
addressing AE issues pertaining to various attacks on the
MNIST and CIFAR-10 data sets. These findings highlight
its potential as a highly effective defense mechanism against
adversarial attacks. The high performance of AEDPL-DL
as compared with those from other methods confirms its
robustness and superiority in AEs detection.

5) ACCURACY OF AEDPL-DL WITH THE SHVN AND
FASHION-MNIST DATA SETS
We expanded our experiment to include the SHVN and
Fashion-MNIST data sets. Table 7 shows the accuracy of
AEDPL-DL with a protection layer using different detectors,
evaluated on SVHN and Fashion-MNIST against various
attacks (FGSM, BIM, PGD, SA, and DF).

a: SVHN DATA SET
Against FGSM attacks, the model achieved an accuracy
of 96.54% on CEs, yet exhibited a noticeable reduction
to 19.29% against AEs. The inclusion of the protection
layer, utilizing diverse detector models, markedly aug-
mented accuracy against AEs. Specifically, AEDPL-DL with
KNND yielded the highest accuracy score at 95.04%. This
trend persisted across DF, BIM, PGD, and SA attacks,
with AEDPL-DL featuring the protection layer consistently
enhancing the model’s performance against AEs, achieving
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TABLE 6. AEs detection accuracy and AUC of AEDPL-DL and existing methods on MNIST and CIFAR-10 datasets.

TABLE 7. Accuracy measure for AEDPL-DL with protection layer based on detector of various models on (a) SVHN and (b) Fashion-MNIST data sets (CEs,
AEs, and CEs_AEs) with FGSM, BIM, PGD, SA, and DF attacks.

accuracy rates up to 93.94%, 94.86%, 94.43%, and 95.85%,
respectively. The detector performance in the protection layer
is up to 95.87% with the RFD.

b: FASHION-MNIST DATA SET
In the case of FGSM attacks, the model exhibited an accu-
racy rate of 91.63% on clean examples, but reduced by
6.54% against adversarial examples. The protection layer,
employing various detector models, significantly enhanced
accuracy against AEs. Specifically, AEDPL-DL with ANND
achieved the highest accuracy rate at 89.53%. This trend
persisted across BIM, PGD, DF, and SA attacks, demonstrat-
ing substantial enhancements in accuracy against AEs, with
AEDPL-DL reporting accuracy scores up to 88.47%, 88.95%,
88.40%, and 90.27%, respectively. The detector performance
in the protection layer is up to 90.38% with the KNND.

In summary, the results from the SHVN and Fashion-
MNIST data sets corroborate the findings from the MNIST

and CIFAR-10 data sets, i.e., accuracy of AEDPL-DL
improves with the integration of a protection layer. This
demonstrates the robustness of our proposed method across
different data sets and against various attack types.

6) STATISTICAL SIGNIFICANCE MEASUREMENT OF
AEDPL-DL
To further confirm the effectiveness of AEDPL-DL against
AEs, we conducted a comprehensive analysis by using the
paired t-test. This test allows a statistical significance mea-
surement on the existence of a statistically difference in
performance in test results before and after implementing the
protection layer in AEDPL-DL.

Table 8 presents the computed p-values across accuracy of
MNIST and CIFAR-10, SVHN andMNIST Fashion datasets.
All p-values are lower than 0.05, indicating a rejection of
the null hypothesis. In other words, the statistical outcomes
signify that the true mean of test results differs significantly
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TABLE 8. Paired t-test as statistical significance measurement on results before and after the implementation of the protection layer in AEDPL-DL.

before and after the implementation of the protection layer
utilizing various models as detectors. These results provide
statistical evidence that AEDPL-DL enhances its effective-
ness against AEs with a statistically significance difference
in performance across various attack scenarios.

These results provide strong empirical evidence that
AEDPL-DL substantially enhances its effectiveness against
AEs with a statistically significant impact across four attack
scenarios.

7) ROBUSTNESS ANALYSIS OF AEDPL-DL FRAMEWORK
This section provides a comprehensive assessment on
resilience of the proposed AEDPL-DL framework against
AEs. The experimental results underscore its capacity to
achieve high classification accuracy across diverse data sets
(MNIST, CIFAR-10, SVHN, Fashion-MNIST) (Tables 1
to 7), closely approaching the performance on clean data CEs.
The analysis is supported by a range of evaluation metrics,
including accuracy, precision, recall, F1-score, and AUC.

Furthermore, various adversarial attacks were employed
to induce perturbations, assessing the framework’s robust-
ness. It consistently demonstrated effectiveness in withstand-
ing adversarial manipulations. Moreover, the framework’s
robustness is theoretically underpinned by the introduction
of bounded perturbations (ϵ), subject to FGSM, BIM, PGD,
and SA attacks (Figs. 3 to 6). This indicates the framework’s
ability to maintain high classification accuracy amidst adver-
sarial perturbations.

Throughout extensive experiments, AEDPL-DL consis-
tently exhibited a superior performance. It not only accurately
identified and isolated nearly all adversarial examples but
also maintained classification accuracy levels akin to those
achieved with clean data. Its robustness is primarily attributed
to the integration of a protection layer, harnessing different
ML models, such as FAMD, RFD, ANND, KNND, XGBD,
and GBMD. These components collectively bolster AEDPL-
DL’s resilience against adversarial attacks, demonstrating
its potential for real-world applications. On the other side,
regarding scalability, AEDPL-DL method demonstrates scal-
ability across different datasets with varying sizes, notably up
to 100,000 samples on the SVHN dataset.

The AEDPL-DL framework demonstrates its generaliz-
ability by achieving remarkable performance in multiple
experiments across four diverse image datasets: MNIST,
CIFAR-10, SVHN, and Fashion-MNIST. Its ability to

generalize to unseen data is further validated by a rigor-
ous evaluation strategy that involves splitting the data into
various ratios and repeating the experiments ten times with
randomized data shifts between training and testing sets.
This comprehensive approach provides strong evidence of
the model’s generalizability and strengthens confidence in its
effectiveness across different data distributions.

In summary, in light of comprehensive findings, the
proposed framework, AEDPL-DL, represents a significant
advancement in adversarial defense. Specifically, it intro-
duces a new integration of CNNs, DNNs, and a protection
layer, enabling effective detection and exclusion of adver-
sarial examples while maintaining high accuracy. Rigorous
evaluation against diverse adversarial attacks demonstrates
its useful capability in performance improvement over those
from the existing methods. Indeed, comparative analyses
confirmAEDPL-DL’s robustness in both adversarial example
detection and enhancement of DNN performance. Addition-
ally, its computational efficiency makes it a viable tool for
real-world applications.

V. CONCLUSION
In the paper, we have developed a framework for AEs
detection by utilizing a protection layer mechanism in
DL models. The proposed AEDPL-DL framework com-
prises a CNN model designed for feature learning, a DNN
classifier equipped with a defense mechanism against dif-
ferent types of adversarial attacks, such as FGSM, BIM,
PGD, and SA. The DNN classifier includes a protection
layer inserted before the classifier to detect and exclude
AEs. The protection layer uses ML (e.g. RFD, KNND
XGBD, GBMD, and FAMD) to identify AEs. Extensive
evaluation studies have been conducted using the MNIST,
CIFAR-10, SVHN, and Fashion-MNIST data sets to assess
the effectiveness of the proposed framework. AEDPL-DL has
achieved average classification accuracy rates up to 99.06%,
85.26%, 95.87%, and 90.38% on the MNIST, CIFAR-10,
SVHN, and Fashion-MNIST data sets, respectively. These
results are very close to those of the DL model applied
to clean data. The detection accuracy rates of the detectors
used in the protection layer achieve 98.02%,100%, 98.31%,
and 97.65% on MNIST, CIFAR-10, SVHN, and Fashion-
MNIST, respectively. Several attacks with various settings
have been employed and investigated against AEDPL-DL,
demonstrating its effectiveness under different scenarios.
The comparative results have indicated that AEDPL-DL is

17538 VOLUME 12, 2024



M. N. Al-Andoli et al.: Framework for Robust DL Models Against Adversarial Attacks

competitive with other state-of-the-art methods. In addition,
the results have demonstrated that AEDPL-DL enhances the
robustness of DLmodels against adversarial attacks by incor-
porating detectors as auxiliary ML models in the protection
layer, thereby improving their overall performance.

Future work will explore incorporating an additional layer
to clean AEs from adversarial attacks. Furthermore, high-
resolution data will be utilized to ensure the developed model
functions effectively with such data. Ensemble detection
techniques will be explored in the future to enhance the
transferable AEs detection performance. In addition, we plan
to enhance computational efficiency and scalability by imple-
menting parallel computing.
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