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Abstract—Our goal with this survey is to provide an overview
of the state of the art deep learning methods for face generation
and editing using StyleGAN. The survey covers the evolution of
StyleGAN, from PGGAN to StyleGAN3, and explores relevant
topics such as suitable metrics for training, different latent rep-
resentations, GAN inversion to latent spaces of StyleGAN, face
image editing, cross-domain face stylization, face restoration, and
even Deepfake applications. We aim to provide an entry point into
the field for readers that have basic knowledge about the field of
deep learning and are looking for an accessible introduction and
overview.

Index Terms—Deep learning, deepfakes, face generation, face
restoration, GAN, GAN inversion, latent space, StyleGAN.

I. INTRODUCTION

HUMANS have always been fascinated with faces. It is
how we recognize people, it is the main feature we watch

out for when interacting with other people. This is reflected in
the fact that we have a specialized region in our brain solely
dedicated to the detection of face patterns and their subtle
changes [14], [15].

There are almost 8 billion people alive today and yet we can
discern all of them by their face. Attempting to delineate the great
diversity of faces, [16] proposes 26 facial features as relevant
for the description of faces (including many shape and size
features, along with features for color and texture). Providing
just three value levels for each of these features already results
in 326 > 2.5 · 1012 unique faces, which is approximately 300
times greater than the current global population. Thus, there is
still a vast space for unique identification of individuals using
facial features.
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Our goal with this survey is to provide an overview of the state
of the art deep learning technologies for face generation and
editing. We particularly focus on GAN-based architectures that
have culminated in the StyleGAN approaches. These methods
enable the generation of high-quality facial images and provide
versatile tools for semantics editing while preserving the image’s
photographic quality. The StyleGAN architecture merits the at-
tention of a broader readership because it provides an ecosystem
for a variety of applications and is used as the basis for a large
number of research works. For a condensed visual synopsis, see
Fig. 1 and Section I-B.

A. Survey Overview

The plan of the paper is as follows: Section I-B attempts to give
an impression of the richness of applications of StyleGAN-based
image processing methods. Section II will explain Generative
Adversarial Networks (GANs), delving specifically into the
StyleGAN architectures for the generation of face images. Train-
ing such architectures needs suitable metrics that capture image
similarity at different levels, which will be the topic of Section
III. Section IV will discuss the different latent representations
that form the basis of the controllable image editing. Section
V focuses on finding the latent representation of a given image.
This prepares the ground for the methods reviewed in Section VI
to edit face images, and in Section VII for cross domain face
stylization. In Section VIII we look at some major approaches
connected with face restoration and producing deepfakes in
Section IX. In Section X we provide a concise overview of alter-
natives to StyleGAN for face generation and editing methods.
The last Section XI concludes with a short summary and outlook.

B. Synopsis of StyleGAN Applications

Synthetic Face Generation: The StyleGAN [1], [17] ar-
chitecture can generate faces which do not exist (see Fig.
1(a)). Applications of StyleGAN include the generation of
unique pieces of art, including NFT collections [2], [18] (see
Fig. 1(b)). There have been even some StyleGAN-based tech-
niques developed to generate a child’s facial image using
parental face images as input [19] [20], [21]. Style mixing tech-
nique [22] allows creation of facial images that share features of
several source images (see Fig. 1(c)) by combining StyleGAN
internal representations of source images (see Fig. 3 and Section
VII).
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Fig. 1. Synopsis of StyleGAN Applications. (a) Faces generated using Style-
GAN2 [1]. (b) NFT collection [2] generated using StyleGAN2 [1] trained on
MetFaces dataset [3]. (c) Style mixing (see Fig. 3). (d) From left to right:
the source image, smile removed, gender changed [1]. (e) Image editing with
StyleCLIP [4] using text prompts. Upper row: original images, lower row:
edited images using text prompts – Emma Stone (left), Mohawk Style (right).
(f) Seamless image-crossover [5]. Left: sources image, right: resulting image.
(g) Blind face restoration [6]. Left: degraded image, right: enhanced image.
(h) Identity preserving face restoration and in-painting [7] [8]. (i) and (j)
Transferring faces into other domains while preserving the identity. Left: real
image, right: cartoon like output [9] [10]. (k) Control semantic parameters,
such as face pose using StyleGAN component. Left: source image, right: pose
changed [11]. (l) Deepfake generation [12]. (m) Automated 3D avatar generation
using StyleGAN component. From left to right: source image, avatar, face
model [13].

Editing Facial Features: While preserving a high image qual-
ity [23], the StyleGAN architecture [1], [24] allows to alter many
features like age, hair, smile, etc. (see Fig. 1(d) and more details
in Section VI for details) [25]. The StyleGAN architecture
can be used as a component for text-driven editing of images.
StyleCLIP [4], [26] offers a manipulation of facial features using
text prompts alone (see Fig. 1 (3) and Section VI-B1). The Im-
age2StyleGAN++ framework [5] provides application examples
of image editing using scribbles, inpainting, or crossover (see
Fig. 1(f)).

Facial Image Recovery: StyleGAN has been demonstrated to
be able to restore face images with regard to degradation such
as low resolution, noise, colorization of old photos, and even
missing parts (see Section VIII). For example, GFP-GAN [6]
or other works [27], [28] uses a pretrained StyleGAN2 [1] as a
component of the face restoration architecture (see Fig. 1(g)).
However using such general facial priors for restoration of
images can end up in identity loss of faces. MyStyle [7] tackles
the problem of target identity, while recovering lost information
(see Section VIII-C and Fig. 1(h))

Stylization of Faces: Transferring face images in another
domain such as sketches [29], [30], [31], [32] [33] or cartooniza-
tion [34], [35], [36] while preserving the person identity is a big
challenge. The goal of stylization approaches is to satisfy both
identity preservation and perceptual features of a certain style
(see Fig. 1(i) and 1(j) for example applications and Section VII
for technical details).

Deepfake generation can be summed up as a face-swapping
operation that is not being recognizable by human viewers (see
Fig. (1l)). Deepfakes are used by artists, social media platforms,
in film, game, fashion, and entertainment industry [37], [38],
[39], [40]. Refer to Section IX for a comprehensive exploration
of how StyleGAN functionality can be harnessed for deepfake
applications: face reenactment [41], [42], swapping [12], and
transfer [43].

3D Facial Avatar Generation by transferring a 2D human
face image to a 3D avatar, while preserving identity [13] (see
Fig. 1(m)). Such 3D avatars can be useful e.g., in gaming, real
time video filters, etc.

Hands-on Applications and Mobile Networks: Face genera-
tion and editing technologies are popular for social networks,
messengers, mobile and photo apps. In many cases, privacy
issues motivate the localization of processing from cloud servers
to mobile devices. Mobile architecture networks [44] are con-
strained to being fast while consuming only little memory on
the order of a few megabytes (MB) instead of several gigabytes.
Running architectures that include the StyleGAN model can be
computationally demanding. Thus, in many cases the StyleGAN
architecture can be used to generate datasets of paired examples
for supervised learning of a number of mobile encoder-decoder
networks (1-10 MB), one per each discrete editing feature like
adding glasses, smile, makeup, etc [45], [46].

C. Training Datasets

The majority of the approaches discussed in this survey
used the following datasets for training: Flickr-Faces-HQ
(FFHQ) [17], CelebFaces Attributes Dataset (CelebA) [47], and
CelebA-HQ [48].

FFHQ is a dataset of 70,000 high-quality PNG images at
1024×1024 resolution, featuring diverse human faces with vari-
ation in age, ethnicity, and accessories such as eyeglasses and
hats. Originally designed for GAN benchmarking, the images
were obtained from Flickr and were automatically aligned and
cropped using dlib [49], inheriting the website’s biases.

CelebA is a face attributes dataset containing over 200,000
celebrity images at178× 218 resolution, each annotated with 40
attributes. The images have diverse backgrounds and poses and
come with rich annotation, including 10,177 identities, 202,599
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Fig. 2. (a) StyleGAN grows progressively while training, (b) StyleGAN2 does
not but uses output skips and residual connections. Images from [48], [1].

face images, 40 binary attribute annotations, and 5 landmark
locations (eyes, nose, mouth) per image. CelebA-HQ is a high
quality version of CelebA dataset with 30,000 images at 1024×
1024 resolution.

II. STYLEGAN ARCHITECTURES FOR GENERATION OF FACES

A. Generative Adversarial Networks

To generate images of faces, Generative Adversarial Net-
works (GANs) [50] have proven to be a highly suitable architec-
ture. A GAN offers a way to learn a mapping that transforms a
known, usually simple (e.g., Gaussian) distribution into a more
complex target distribution that represents a given domain of
patterns, for example, images of human faces. This mapping
or generative model can be learned using a sufficiently large
training set of samples from the desired target distribution. Once
the model has been learned, new samples can be generated by
simply feeding the model with random inputs from the simple
distribution that was used during training.

B. Progressive Growing GANs (PGGAN)

While vanilla GANs are able to generate images of reasonable
quality, they suffer from limited controllability and unstable
training [51]. To overcome these problems, Karras et al. [48]
introduced a training strategy in which the neural network
progressively grows more layers during training (see Fig. 2(a)).
With layers at increasing depth, image resolution increases as
well. Starting with low-resolution images of 4× 4 up to a
resolution of 1024× 1024, firstly coarse structures and later fine
details are learned. This makes training more stable, because it
splits the task into simpler sub-tasks. Additionally, the training
time benefits from this approach, because most of the iterations
are done at lower resolutions and thus in a network with a smaller
number of layers.

C. Stylegan

StyleGAN [17] adapts the progressive training strategy from
the PGGAN [48] and the generator architecture is re-designed
motivated by the style transfer ideas [22]. As a result, it offers a
high degree of flexibility to mix image styles at different levels
of its generator architecture.

StyleGAN no longer passes the random sample z (often
referred to as latent code for being “decoded” by the generator)
directly into the generator’s input layer. Instead, StyleGAN

starts generating images from a learned constant (4× 4× 512),
and the latent code z ∈ Z is fed into the network along a
different route (see Fig. 4). First, z ∈ Z is mapped through a
deep network of fully connected layers into an intermediate
latent space w ∈ W . The benefit of this Z to W transformation
is that the intermediate space W does not need to follow the
Gaussian distribution of the training data (however, Z does).
Thus, latent space W can be disentangled which is a desirable
property because it means that features in the generated images
can be controlled independently of each other, and this is one of
the most important features of StyleGAN, as it opens up great
scope for working with images in latent space. Subsequently,
for each generator layer separately, w ∈ W is converted using
affine transformation (fully connected layer without activation
function) into a vector of style parameters that are used to shift
and scale the activity pattern in the feature maps of the respective
convolutional layer. This affine transformation of feature maps
is called an adaptive instance normalization (AdaIN) [22].

This layer-wise feeding of style parameters w ∈ W allows
style-mixing by feeding code parameters wA and wB of two
sources A and B respectively into different layer subsets of
the StyleGAN generator (see Fig. 3). If a code is injected into
early layers it affects rough features (e.g., shape of a face) while
injection into later layers correspond to finer details (e.g., skin
color), so latent codes enable modifications at different gran-
ularities. Finally, to provide stochastic detail that would have
to be learned otherwise, pixel-wise noise is injected after each
convolution. This allows the network locally stochastic placing
of fine structure, such as pores, hairs, or freckles. All these
architectural innovations allow it to outperform the previous
ProgressiveGAN.

D. StyleGAN2

StyleGAN was a major breakthrough towards the generation
of high-resolution face images that looked very natural. Yet,
the generated images tended to contain minor, but systematic
artifacts, such as blobs or droplets. A careful analysis of this
phenomenon enabled the development of an updated version,
StyleGAN2 [1].

Its key change was a simplification and reorganization of
the layer normalization, which in the original StyleGAN was
recognized as destroying information in the relative activation
strengths of the different feature maps within a layer. This was
avoided by replacing the former AdaIN operations [22] by a
direct rescaling of the convolutional weights, again based on
the the style parameter output associated with w ∈ W , followed
by a normalization by the standard deviation over the scaled
weights. Additionally, the noise and bias now became added
outside the style block and removed from the initially learned
constant input.

Another problem was that in the images created by Style-
GAN some details like eye or teeth orientation seemed to be
either stuck in place or jumping between positions instead of
moving smoothly. This was attributed to the generator needing
to produce output images at each resolution, which forces it to
generate maximal frequency details. To overcome this problem,
StyleGAN2 no longer trains models using progressive growing,
but sums the output from different resolutions together and
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Fig. 3. Style mixing in StyleGAN [17]. Top panel shows examples of style
mixing, bottom panel illustrates the style mixing pipeline in StyleGAN - latent
representations of two images can be used in different levels of the generator.

utilizes skip connections (see Fig. 2(b)). The size of the model
itself was also increased through the number of feature maps in
the layers responsible for the highest resolutions.

Furthermore, a new regularization loss was introduced to
control the perceptual path length (PPL), which quantifies the
smoothness of the mapping from a latent space to the output
image by measuring average LPIPS (see Section III-C) between
generated images under small perturbations in latent space.

E. StyleGAN3

While StyleGAN2 abolished the above artifacts and further
increased image quality by a number of measures, a remaining
problem was that, when making an animation footage for a
specific person by manipulating its latent representation, for
example rotating head or adding smile, fine details, for example
hair texture, appeared to be stuck to specific image coordinates
instead of properly co-moving with the object surfaces to which
they were attached. This problem is demonstrated on the ani-
mation footages that can be found here [52]. It turned out that
StyleGAN2 had a strong propensity to fix a feature to image
coordinates whenever any information about such coordinates
was available to the network.

Major sources of such information turned out to be image
borders and aliasing patterns from discretization on a pixel grid.
The first problem was solved by sufficient zero padding around
the image in the generator [53]. The discretization problem was

solved by reformulating all operations for a continuous image ,
which then could be used as an equivalent representation. Cor-
rect maintenance of this equivalence required a careful enclosing
of the application of the non-linearity between upsampling and
downsampling operations designed to filter away any spectral
out-of-band contents otherwise introduced by the non-linearity.
Further changes introduced in the StyleGAN3 architecture [24]
included an optimized reduction of the number of layers and
simplifications, including retracting some regularizations that
were introduced in StyleGAN2 but incompatible with a strict
enforcement of translation invariance.

Transitional and rotational equivariance is achieved by replac-
ing the learned 4× 4× 512 constant used in StyleGAN2 with
randomly generated and information-wise equivalent Fourier
features with dimensionality 36× 36× 1024 as the first layer.
To prevent leakage of absolute image coordinates into the inter-
nal representations, a fixed-size margin around the target canvas,
that is cropped after each layer, is introduced to replace the
previously used padding. StyleGAN3 also uses lower cutoff
frequencies for filters during up-sampling and downsampling
operations to eliminate aliasing artifacts. In addition, rotational
equivariance is achieved by replacing 3× 3 convolutions with
1× 1 convolutions, and replacing Cartesian downsampling fil-
ters with radially symmetric ones for all layers except the last
two.

III. MEASURING SIMILARITY OF FACES

This chapter delves into several loss functions that are
applicable in evaluating the generated images and addresses the
challenge of computational measures for human perception of
facial images.

A. Adversarial Loss

Adversarial loss is fundamental to constructing generative
adversarial models [50]. The generator network G learns to
create samples from a given distribution, and the discriminator
network D learns to determine if a sample is from the real data
distribution or not. Given an image G(z) generated from z in
a known distribution pZ , and D(x) being the probability of x
being drawn from the given data distribution pdata, the training
objective of D is to discriminate real images from generated
ones. In other words, it needs to maximize D(x) when x is
sampled from pdata. However, when x = G(z) is produced by
the generator, the generator wants D(G(z)) to be maximized
instead.

Switching to log(1−D(G(z)) reverses the optimization di-
rection for both D and G, allowing to express the adversarial
training ofD andG as the optimization of a two-player minimax
game with value function V (G,D) [50]:

min
G

max
D

V (G,D) = Ex∼pdata(x) [logD(x)]

+ Ez∼pz(z) [log(1−D(G(z)))] (1)

Although the minimax loss is commonly used to train GANs,
it can lead to instability in the training process. To address this,
other loss functions have been proposed, such as the Wasserstein
GAN loss [54], Hinge loss [55], and non-saturating loss [50],
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Fig. 4. Architectures of StyleGAN generators: (a) StyleGAN [17], (b) StyleGAN2 [1], (c) StyleGAN3 [24].

which have been shown to improve the stability of GANs training
in various scenarios.

B. L2 Loss

The L2 loss measures pixel-wise similarity between two im-
ages x and x̂. It is defined as L2(x, x̂) =

∑
i (xi − x̂i)

2. While
this is a fairly simple way to compute the similarity between
two images, it suffers from the drawback that such pixel-wise
comparison is insensitive to the local context of image points.
This can make the L2 distance very different from human image
similarity judgements [56]. For example, for an image with a
white horizontal line on a black background. If we shift the
horizontal line just by one pixel down, the L2 distance will be
large, but the two images might be indistinguishable to a human.

C. LPIPS Loss

It is believed that CNN features provide a more abstract
representation of an image. Consequently, the distances in this
representation space more accurately capture the distinctions
that matter in distinguishing images from one another, while
being less susceptible to low-level perturbations that are un-
related to the image’s content [57]. Thus, one approach is to
transform images into a CNN feature space where point-wise
distances more accurately reflect human similarity judgments,
and then use the L2 measure there. This is the underlying idea
of the Learned Perceptual Image Patch Similarity (LPIPS) [58]
measure, using CNNs trained for visual recognition tasks such as
VGG [59] or AlexNet [60] to transform the images. The resulting
activations in CNN layers represent increasingly abstract image
features, allowing the similarity measure between an image pair
x, x̂ as a weighted sum of L2 distances between the correspond-
ing feature map activations yl, ŷl with shape (Hl,Wl, Cl) in the
CNN layers l (see (2)). The weighting coefficients, represented
by cl, are used to scale the activations channelwise and fine-tune
the metric to match human similarity judgments as closely as
possible, in addition to the DNN training. The LPIPS metric
thus takes the form:

d(x, x̂) =
∑

l

1

HlWl

∑

h,w

‖cl � (ylhw − ŷlhw)‖22 (2)

D. Identity Preservation Loss

The losses mentioned earlier measure the overall dissimilar-
ity between two images. However, even a minor variation in
facial characteristics can lead to individuals being perceived as
visually distinct (see Fig. 8 upper row vs. lower row). This,
in turn, prompts the need for similarity measures designed to
cater specifically to facial recognition, fine-tuned to accurately
determine whether two faces correspond to the same person or
not, while disregarding extraneous factors like facial position or
expression.

To achieve this, models have been trained to enforce higher
embedding similarity for intra-class face samples and larger em-
bedding distances for cross-class samples, resulting in suitable
identity preservation loss functions. The ArcFace model [61]
is a prominent example of such a model, designed specifically
for face recognition tasks. The embeddings of the same face
produced by this model will be close to each other, but far from
the embeddings of other faces. The loss for comparing two faces
using this model is computed asLid = 1− 〈R(x), R(y)〉, where
R is the ArcFace model which produces embeddings, x, y are
the face images and 〈·, ·〉 is the cosine similarity.

E. Fréchet Inception Distance FID

The Fréchet Inception Distance (FID) [62] is a commonly
used metric for evaluating how well the distribution of images
generated by a generator matches the distribution of images
used in training. FID involves embedding each image from
the two distributions into a 2048-dimensional vector using In-
ceptionV3 [63], and then comparing the two distributions of
embedding vectors using Wasserstein-2 distance.

The FID approach is similar to LPIPS (see Section III-C),
because it compares higher-level features rather than RGB pixel
information, both of which approximate relevant features within
the human visual system. A low FID score is a good indicator
that the generator is producing images that are similar to the
training images.

FID is mostly used for measuring generator performance,
not as a loss function, because it is computationally expensive.
It requires a large number of images to compute covariance
between all pairs of images, and passing gradients through
InceptionV3 for every image. However, computing FID once to
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Fig. 5. Latent spaces in StyleGAN. Image from [65].

measure the perceptual quality of generated images by a trained
generator is feasible and widely used.

IV. LATENT SPACES OF STYLEGAN

In the original GAN architectures, the latent code was found
to be highly entangled and difficult to use for controlling the
output image features [64].

The first key idea of StyleGAN architectures [1], [17], [24] is
to introduces more than one innate latent space (Z,W,S; see
Fig. 5), thereby allowing to learn intermediate latent representa-
tions with properties better tailored to the semantic structure of
the image space (see Fig. 6). Moreover, to increase the expressive
power of StyleGAN, it is common to work with extensions
of these spaces (Z+,W+; see Fig. 5). Here, we review the
commonly used spaces and describe the differences between
them.

The second key idea in StyleGAN architectures [1], [17],
[24] is to inject latent codes into every layer of the generator
pipeline, not just at the beginning. This allows StyleGANs to
offer very flexible control modulation of the activities passing
through their respective layers of the generation of images at
different resolutions (see Fig. 4(a)–(c)).

A. Z and Z+ Spaces

In the StyleGAN architectures, 512-dimensional samples
from an isotropic normal distribution with unit variance and zero
mean provide the random inputs z ∈ Z at the root of the entire
generation pipeline.Z+ space implies sequential mapping of 18
z ∈ Z vectors into 18 corresponding w ∈ W vectors (relevant
for StyleGAN and StyleGAN2 architectures with 18 layers).

B. W Space

Latent codes from Z are transformed to latent codes in the
512-dimensional W space of StyleGAN through the mapping
network (see Fig. 5). This transformation, which must be learned
during training, allows to distort the simple Z-distribution into
a distribution W of the same dimensionality of style parame-
ters. In this W space meaningful editing operations on images
can become realizable by simple axis-parallel movements of
a point [17]. The eight fully connected mapping layers of the
StyleGAN’s mapping network can provide the adaptivity to
unfold the disc-shaped Z space into a space W whose shape
is much closer to the required feature distribution (Fig. 6(c),
right). Fig. 6 illustrates a (toy) situation where the feature
distribution of to-be-generated images excludes a combination
of two features, leading to a distribution where one quadrant of
all possible combinations is absent (Fig. 6(a), left). To create

Fig. 6. W space (c) demonstrates semantic axes that facilitate and generalize
editing operations on different faces. To illustrate, consider the facial-beard axis
within the W space; when we select a point in W representing a face and shift
it along the facial-beard axis, the result is the appearance of facial beard on
that face. In contrast, the Z space (b) exhibits distinct facial-beard curves for
different faces, making it less suitable for semantic editing operations across
various faces. Additionally, it is important to consider that in the training dataset
(a) there are examples of both male and female faces without beards, but the
majority of faces with beards are male. See Section IV-B. Image from [17].

such a distribution from the disc-shaped input distribution Z
(Fig. 6(b), middle) requires a very non-linear mapping.

C. W+ Space

Usually, a 512-dimensional vector w ∈ W is used 18 times
as the style input to 18 layers of the StyleGAN2 generator. This
suggests that each of these 18 can be individually modified for
fine-tuning of a generated image. This extends latent space into
18 copies of W (d = 18× 512) and is denoted by W+ (see
Fig. 5). This larger space is able to provide a different latent
code for each layer of the StyleGAN generator (e.g., 18 for a
StyleGAN2 generator with a 1024×1024 output resolution).

Since the StyleGAN architecture is trained using W space,
images sampled from W+ do not necessarily have realistic
perceptual quality. This can allow to generate entirely novel
patterns that are still face-like (e.g. “aliens”). However, it may
also lead to patterns with useless structure or level of quality. As
the distribution of W cannot be explicitly modeled, keeping the
latent code in within a range that corresponds to semantically
and quality-wise useful patterns is a challenging task. To learn
more about trade-offs between W and W+ spaces see Section
V-B3.

D. S Space

In a further step of StyleGAN processing, the latent code
w ∈ W of an image is further transformed to s ∈ S vectors
for each layer of the StyleGAN generators [66]. The details of
these transformations differ slightly between the versions, but a
shared commonality is a mapping to a parameter vector of style
parameters S that parametrizes a set of affine transformations
(one for each layer) that either normalize the activity pattern in a
layer (in the case of StyleGAN), or that directly define a two-step
scaling of the weights of a layer (mod/demod operations of
StyleGAN2 and StyleGAN3). While the activity normalization
in StyleGAN requires a specification of two parameters (bias
and scaling) for each feature map, StyleGAN2/3 get by with a
mere scaling (single parameter) for the feature map scalings in
the mapping layers. For the sake of brevity, we focus on the case
of StyleGAN2 [1] in the following discussion, which is very
representative of the major ideas behind the style mapping.
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At the style input of every layer of the StyleGAN2 generator
is an independent single-layer perceptron denoted by A (affine
transformation). This network maps w ∈ W vector into a new
vector s ∈ S vector that provides for each of the layer’s weight
kernel a separate scalar scaling parameter. The size of the vector
s ∈ S equals the number of channels in all layers of the Style-
GAN2 generator. For example, in StyleGAN2 dim(W) = 512
and dim(S) = 9088 [66]. This modulated kernel is then applied
to the layer L− 1 of the StyleGAN2 generator to produce the
activation of the channel in the layer L of StyleGAN2. In [66]
Wu et al. proposed to name this latent space of coefficients s
StyleSpace S . Analysis from Wu et al. indicates, that the S
space is more semantically disentangled than previous latent
spaces of StyleGAN2. The usecases of S space for face editing
is described in Sections VI-A3 and VI-A4.

V. INVERSION TO LATENT SPACES OF STYLEGAN

This chapter will review recently developed solutions that map
an image to a suitable StyleGAN latent code. It is important to
know the latent representation of an image of a face in StyleGAN
space in order to manipulate that image or combine it with the
style of some other image of a face. Since a StyleGAN model has
several latent spaces (see Fig. 5), this task can come in different
variants, depending on the choice of the latent space for which
a representation is sought. Furthermore, we shall see that these
different choices may entail different properties, e.g. how the
image will change under manipulations of its latent code, but
also how well the inversion can be steered to faithfully capture
the important visual features of the given real image.

After a brief overview over the major groups of inversion
methods in general in Section V-A we turn in Section V-B to
the important issue of evaluating the inversion for distortion,
perceptual quality, and editability, and how to control a suitable
trade-off between these properties. Achieving an approximate
resemblance is relatively easy (see Fig. 8), but resemblance in
fine detail is very important for the perception of faces. Then, in
Section V-C, we delve into specific methods for obtaining inver-
sion encoders that can solve the inversion task: pixel2style2pixel
(pSp) [67], encoder4editing (e4e) [68] and ReStyle [69]. Fi-
nally, Section V-D describes techniques for improving inversion
quality by selective tuning of StyleGAN generator weights:
Pivotal Tuning [70] introduces optimization-based fine-tuning
of StyleGAN; MyStyle [7] extends fine-tuning to hundreds of
portrait images of a given person; HyperStyle [71] introduces
encoder based prediction of fine-tuning weights of the Style-
GAN generator.

A. Major Groups of Inversion Methods

Inversion methods can typically be divided into three major
groups of methods: gradient-based optimization of the latent
code (Section V-A1 and Fig. 7(a)), direct encoder-based map-
ping onto the latent code (Section V-A2 and Fig. 7(b)), and
fine-tuning of weights of the StyleGAN generator (Section V-A3
and Fig. 7(c) and (d)).

1) Gradient-Based Optimization of the Latent Code:
Gradient-based optimization methods (see Fig. 7(a)) [1], [5] [72]
directly optimize the latent vector using gradients from the loss
between the real image and the generated one. Such methods

Fig. 7. Inversion methods: target image x, reconstruction image ŷ, initial
inversion ∗. Typical losses are L2, LPIPS [58], ArcFace loss [61].

Fig. 8. Obama [73] and Actress [74] before (upper row) and after Inversion
(lower row). This inversion was performed using StyleGAN2-ada [3].

can find a latent representation of the original image with a
reasonable similarity (see Fig. 8). However, there still exist three
main drawbacks [5]:
� Optimizing the procedure is a time-consuming task that

usually takes several minutes on a modern GPU.
� The random initialization choice can significantly impact

the final reconstruction image.
� The found latent point in W or W+ spaces through inver-

sion optimization steps is less stable while editing of the
generated image than latent points obtained by sampling
from Z space and generating latent points in W or W+
spaces through the mapping network (fromZ toW space).
The mapping network generates points in the distribution
of the training dataset, while inversion optimization steps
can move the latent point away from the distribution of the
training dataset (see Section V-B1).

2) Encoder-Based Mapping to the Latent Code: Alterna-
tively, encoder-based methods for finding the latent code (see
Fig. 7(b)) [67], [68] train an encoder network over a large number
of samples to directly map from the RGB image space into a
latent space of StyleGAN. Once trained, the encoding can be
done in the fraction of a second needed to process through the
CNN encoder. Latent points obtained from the encoder network
are more suitable for editing [68] by moving the point in the



3564 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 5, MAY 2024

latent space, as the encoder network is trained to generate points
inside the distribution of the training dataset of StyleGAN.
However, training such an encoder is not trivial and the image
generated from the obtained latent code may lose the identity of
the original face (see Fig. 8).

Conventional image- and feature-level losses (i.e. MSE and
Perceptual losses [58], [75]) between the input image and the re-
constructed image, may not be enough to guide the training of the
encoder network. Wei et al. [76] proposed the method of training
the encoder in cooperation with an optimization-based iterator.
One more possibility for getting a better inversion quality is to
compute the loss based on SSIM [77], Identity loss [61] and
LPIPS [58]) to train an encoder that maps RGB into W space.
An additional option is encoding into the W+ latent space that
provides finer control over the generator, utilizing regularization
methods while training of such RGB to W+ encoder [68].

3) Fine-Tuning of the StyleGAN Generator: When an image
of a face includes something outside the training distribution
e.g., a tattoo (see Fig. 12), it is difficult to find a good inversion,
as there is no such a point in the latent space of StyleGAN
that allows for reconstruction of such details. In this case, a
possible solution is to fine-tune the StyleGAN generator weights
themselves, using the target image or a set of target images [70].
This motivates a set of methods that operate directly on the
generator weights to improve the inversion quality of a given
image.

Before starting such fine-tuning of the StyleGAN generator,
the target image must be first inverted into StyleGAN’s latent
space (see Fig. 7(c) and (d)) to the best possible reconstruc-
tion match (see Fig. 7(a) and (b)) using the previously dis-
cussed approaches. Then the StyleGAN generator model can be
fine-tuned using loss-functions applied to the reconstructed and
target images (see Fig. 7(c) and Chapter V −D1).

Fine-tuning the StyleGAN generator by gradient-based op-
timization (Fig. 7(c)) for each new image requires a couple of
minutes of computation. This makes such methods difficult to
apply in practice. By analogy with encoder-based methods for
predicting the inversion latent vector (see Fig. 7(b)), we can,
here too, seek an encoder whose output is used to modulate the
weights of the StyleGAN generator (Fig. 7(c)). An example of
such an approach is Hypernetworks [71]. The created Hypernet-
work is trained to scale channel-weights of kernels of selected
layers of the StyleGAN generator to match the target image and
image generated by StyleGAN from the latent code (see Fig. 7(d)
and Section V-D3).

B. Evaluating GAN Inversions

1) Reconstruction Quality Vs. Editability in StyleGAN: In
addition to preserving similarity to the original image, the central
motivation of the inversion step is to facilitate further latent
editing operations. There exist a variety of points in the latent
space that result in similar images to the original one, some of
these points are more suitable for latent editing than others [68],
[78], [79]. A successful encoding of a real image into a latent
space should enable decent editability via the latent code.

2) Distortion, Perceptual Quality, Editability: Following the
above observations, inversion methods and reconstruction qual-
ity should be evaluated based on several components: distortion,

Fig. 9. Editability gap in W∗ space. In paper [68] the space of vectors in W
that are out of the mapping network manifold was denoted as W∗.

perceptual quality and editability. Simply put, distortion is
a dissimilarity (e.g. MSE, SSIM, LPIPS) between the original
and reconstructed images [56]. Distortion alone, however, does
not capture the quality of the reconstruction. Perceptual qual-
ity measures how realistic the reconstructed images are (e.g.
adversarial discriminator), with no relation to any reference
image [56]. Editability stands for maintaining high perceptual
quality of the image generated from the edited latent code [68].
The work [56] proved that there exists an explicit trade-off
between distortion and perceptual quality. Therefore, the dis-
tortion, perceptual quality and edibility of the reconstructed
images must be evaluated to provide a complete evaluation of
the inversion method.

3) Distortion Vs. Perceptual Quality & Editability Trade-Off:
All possible output vectors of the StyleGAN mapping network
constitute its latent space W , where the input vectors of the
mapping network are normally distributed vectors in Z space.
Latent vectors generated as the result of an inversion method
may, however, not necessarily lie within this manifold of the
StyleGAN mapping network W . In [68] and Fig. 9 the set of
such vectors is denoted as W∗. Moreover, manipulation via the
inverted image code can be performed not only inW orW∗ latent
spaces of StyleGAN, but also in W+ space, where vectors for
18 layers of StyleGAN2 are independent but each 512-dim style
vector belongs toW space. InW space, reconstructions have the
highest distortion, but good editability and perceptual quality. In
W∗ space (see Fig. 9), reconstructions have the lowest distortion,
but the worst editability and perceptual quality after editing. In
W+ space, reconstructions have low distortion, good editability
and perceptual quality.

C. Inversion Encoders

Inversion encoders solve the GAN inversion task in the form
of a direct mapping from an image onto a latent code. Ideally,
the concatenation of the GAN and the Inversion Encoder should
produce the identity mapping. An early version of this idea
came up in BiGAN [80], where the forward and backward
mappings are developed simultaneously. However, with regard
to StyleGAN inversion, the inverted part of the GAN is not the
entire path from the image to its z-input, but to one (or several)
of its intermediate latent spaces (see Chapter IV ).

1) Psp Encoder: Image-to-StyleGAN: The idea behind the
pixel2style2pixel (pSp) inversion encoder into W+ space [67]
is based on the fact that different layers of the StyleGAN archi-
tecture correspond to different levels of generated detail (coarse,
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Fig. 10. pSp encoder architecture [67].

Fig. 11. (a) e4e encoder architecture with progressive training of encoder
sequence by combining regularization, adversarial and distortion losses (not
depicted) to improved control of editability-distortion trade-off [68]. (b) ReStyle
iterative inversion scheme [69].

medium, and fine). Similarly, different layers of CNN-encoder
feature maps also correspond to different levels of detail (coarse,
medium, and fine). In the pSp encoder (see Fig. 10) feature
maps are first extracted using a standard feature pyramid over
a ResNet backbone. For each of the 18 target styles, a small
mapping network is trained to extract the learned styles from
the corresponding feature map, where styles (0-2) are generated
from the small feature map, (3-6) from the medium feature map,
and (7-18) from the largest feature map. The mapping networks,
map2style, are small fully convolutional networks, each of which
generates a 512 Δi vector that are added to w, where w is the
mean of the distribution of the mapping network output vectors
when sampling in Z space [67]. The resulting 18× 512 vectors
w +Δi in the W+ space are fed into the StyleGAN, starting
from its matching affine transformation,A (see Fig. 10) [67]. The
pSp encoder is trained using the L2, LPIPS [58], Identity [61]
and additional regularization loss functions. For the training of
the encoders the weights of the StyleGAN generator are frozen,
leaving as the adapted components only the ResNet backbone,
the upsampling layers, and the map2style mapping networks.

2) e4e Encoder for StyleGAN Image Manipulation: The au-
thors of encoder4editing or simply e4e (Fig. 11(a)) [68] ap-
proach took the above described pSp architecture [67] (Fig. 10)
as their starting point and proposed a novel encoding scheme.
The encoder’s input is an image and the encoder output is a tensor
of shape 18× 512 in the W+ space, whose first 1× 512 values
specifies the StyleGAN2’s w vector, and its remaining 17× 512
values represent the Δi vectors for the last 17 layers of the
StyleGAN2 generator. Now, instead of training all components
of this tensor simultaneously, the authors propose a progressive

learning scheme that they structure in the following way: first,
learning starts with setting all 17× 512 Δi = 0, thus training
only the first 1× 512 values for matching StyleGAN2 w vec-
tor. Subsequently, the mapping networks sequentially unfreeze
learning of their Δi outputs for the higher layers i = 2 . . . 18
of the StyleGAN2, in ascending order. This scheme allows the
encoder to first learn a coarse reconstruction, to which it then
learns to add increasingly finer details.

Additionally, they propose a refined regularization scheme
for the 17× 512 Δi vectors to keep w +Δi in the space W to
achieve a better editability, due to the individual adjustment of
the style vector w for each layer of generator, along with im-
proved perceptual quality. This regularization scheme employs
three parts: a L2 regularization loss is used to minimize the joint
variance of all Δi (Ld−reg in Fig. 11(a)). A second part is a loss
derived from a latent discriminator (Ladv in Fig. 11(a)) which is
trained in an adversarial manner to discriminate between latent
codes from the “true” W (obtained by feeding samples from
Z to the StyleGAN encoder), and the encoder’s learned latent
codes. Finally, to make the Δi also to contribute to distortion
reduction, additional distortion losses (L2, LPIPS [58], and
Identity preservation ArcFace [61]) are added.

3) ReStyle: Iterative Inversion Refinement: The ReStyle [69]
method differs from typical encoder-based inversion methods,
which infer the inverted latent code of the input using a single
forward pass, by adding an iterative inversion mechanism with
an additional feedback input. (see Fig. 11(b)). The encoder
is fed with the output of the previous iteration along with
the original input image, using several forward passes. This
approach enables the encoder to focus on the relevant regions
while leveraging the knowledge acquired in earlier iterations.

This method begins with an initial reconstruction x̂0 =
G(w0) of a source image x, generated from an initial
representation w0. To predict a sequence wt, t = 1..N of image
style codes, this method performs N > 1 steps. The final inver-
sion w = wN and its corresponding reconstruction x̂ = G(w)
are the final results. At each step t, the encoder E receives an
inputxt = (x, x̂t) consisting of the original imagex, paired with
its reconstruction x̂t from the most recent time step, to compute
a refined new residual code Δt = E(xt), which is added to the
inversion code of the source image as wt+1 = Δt + wt. This
new latentwt+1 is passed through the StyleGAN generator again
to update image reconstruction x̂t+1 = G(wt+1), which is used
in the next iteration.

The ReStyle approach demonstrates better L2, LPIPS [58],
and Identity [61]) metrics than encoder-based approaches [67],
[68] delivering high-quality reconstructions while maintaining
fast inference times.

D. Fine-Tuning of the StyleGAN Generator

Images of real faces often contain various unique details such
as tattoos, scars, fashion elements or light. It is challenging
to apply identity-preserved editing to such out-of-domain face
images even with the previous methods. Inversion of such face
images may lead to poor results far away from the generator’s
domain, because the nearest image in this domain may not have
all these details. As a result they will be lost after the editing
process (see Fig. 12).
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Fig. 12. Comparison of Pivotal Tuning [70] and other inversion methods
(see [1] [5], [70] and Section V-C2)).

Fig. 13. MyStyle fine-tuning scheme of the StyleGAN generator [7] using
pivotal tuning around a large number of anchors given by a collection of views
of the face of a single person.

1) Latent-Based Editing of Real Images: To better cope with
the inversion problem of unique face details (e.g., tattoos) the
Pivotal Tuning [70] method adds a tuning step for the StyleGAN
generator. The method inverts the source image x to style code
wp ∈ W in the native latent space of StyleGAN, which will
be called as the pivot code. Let xp = G(wp; θ) be the image
generated from the pivot code wp when using the generator
with weights θ. Then, the tuning step consists of adapting the
weights between the pivot code and the output to bring xp closer
to x using LPIPS and L2 losses. The mapping network layers
between z and w remain frozen. However, it is important to
constrain the changes of the tuning such that they only affect
the reconstruction mapping within a neighborhood of the pivot
code wp. To achieve this, they introduce a suitably designed
regularization term, implemented in the form of an iterative
process. At each iteration, a z value is sampled from the stan-
dard normal distribution and the StyleGAN mapping network
produces corresponding style code wz . The difference wz − wp

and wp gives a direction away from the pivot point whose length
is scaled to the value of a coefficient α. The resulting end point
wr of this scaled vector, attached to the pivot point wp (see (3))
is a code in a certain neighborhood of the pivot wp:

wr = wp + α
wz − wp

‖wz − wp‖2 . (3)

It contributes a regularization step for the fine-tuned Style-
GAN generator by adapting the weights θ∗ of the latter towards
minimizing the distance between the image pair (xr, x

∗
r) ob-

tained from wr with original generator (xr = G(wr, θ)) and
the tuned generator (x∗

r = G(wr, θ
∗)), using LPIPS and L2 loss

functions. This neighborhood-restricted tuning process ends up
altering appearance features that represent mostly face identity,
without interfering with editing capabilities.

Fig. 14. HyperStyle method illustration [71].

2) MyStyle: A Personalized Generative Prior: The MyStyle
architecture [7], [81] (see Fig. 13) extends the idea of pivotal
fine-tuning from a single to hundreds of pivots, all taken to
be portrait images (called anchors) of a given person. The
authors propose to collect about 100 anchor examples that form
a personalized region in the latent space W of the StyleGAN2
generator and fine-tune the StyleGAN2 generator on these exam-
ples. This allows it to use the StyleGAN2 generator as backbone
for super-resolution (see Section VIII-C), inpainting or semantic
editing tasks for a given person. This anchor space was described
by Generalized Barycentric coordinates, which allows us to
detect when a latent point is inside the convex region of known
anchors in the latent space, and when a latent point is outside
this region. For semantic editing task is necessary to preserve
personality. Existing directions in the latent space are learned for
the whole domain of faces and are not personalized. Because of
this, some directions may lie outside the anchor space and any
small step in this direction will lead to degradation of the quality
of the edited image. To solve this problem we need to project
the direction on the anchor space and perform editing in it [7].

3) HyperStyle: StyleGAN Inversion With HyperNetworks for
Real Image Editing: The HyperStyle [71] approach proposes
to combine several ideas of the previous discussed approaches
of ReStyle [69] (iterative improvement with inversion encoder),
Pivotal Tuning [70] (fine-tuning of StyleGAN generator weights
for a specific image of a face), and e4e [68] (initial inversion
prediction of w ∈ W) for fine-tuning the pre-trained StyleGAN
generator on the fly.

Key idea is to learn to predict coefficients for a channel-wise
scaling of weights of selected layers of the pre-trained StyleGAN
generator (see Fig. 14) to personalize it for a given image of a
face. In this way HyperStyle is computationally much lighter
direct mapping for fine-tuning coefficients of the StyleGAN
generator, than the gradient based fine-tuning approaches like
Pivotal Tuning [70]. The required scaling of channel weights is
parameterized as θ̂i,jl := θi,jl (1 + Δi,j

l ), where θi,jl denotes the
weights of the j-th channel in the i-th filter in the StyleGAN
generator’s l-th layer and Δi,j

l is the output of the Refinement
Blocks (see Fig. 14). For a better trade-off between network ex-
pressiveness and feasibility of learning, the HyperStyle model is
trained to predict scaling coefficients only for kernels of selected
StyleGAN generator layers. As the initial inversion captures
coarse details, only layers that are responsible for medium and
fine details may be selected. The HyperStyle architecture with
iterative refinement of StyleGAN weights (depicted in Fig. 14)
consists of a ResNet backbone that receives a source image with
its initial reconstruction and Refinement Blocks of convolutions
and fully-connected layer. Training is guided by an image-space
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reconstruction objective through pixel-wise L2, LPIPS [58] and
ArcFace [61] losses.

VI. EDITING FACE IMAGES WITH STYLEGAN

The main idea about editing an image using StyleGAN is
that editing is achieved through some manipulation of its latent
code, thereby moving the point that represents this latent code
within one of the latent spaces of StyleGAN (see Section IV).
At first we do not know how movement in the latent space will
affect the generated image but there are methods to learn how to
navigate the latent Space to edit an image in a more controlled
and semantically meaningful manner. Movement of the point in
a wrong or a random direction will in the worst case lead away
from the face distribution (thereby destroying the “faceness”
of the image), or lead to an undesired, simultaneous change of
different attributes, most likely accompanied by a loss of identity
of a person on the image.

In this chapter we will focus on methods to identify directions
in a latent space of StyleGAN which are correlated with desired,
semantically interpretable editing attributes, like smile, pose,
hairstyle, age, and so on. Also, we will discuss how the different
latent spaces of the StyleGAN architecture differ with regard to
their editing properties.

Identifying semantic directions can typically be divided into
global semantic directions (see Section VI-A) and single image
semantic directions (see Section VI-B). Section VI-A1 intro-
duces a supervised approach for finding semantic directions.
Section VI-A2 offers an unsupervised approach for discovering
semantic directions by using PCA. Section VI-A3 describes
discovering directions in StyleSpace using only few points
with known attributes. Section VI-B1 introduces a text-driven
approach for discovering semantic directions.

A. Global Semantic Directions

The first class of approaches is based on averaging a direction
in latent space correlated with the given attribute over a number
of contrastive pairs, with and without a desired attribute.

1) Identifying Semantic Directions in aW Space: InterFace-
GAN [82] proposes a supervised method for identifying seman-
tic directions in a StyleGAN’s latent space. Suppose there is a
pre-trained binary classifier for some attribute we want to edit.
We make an assumption that for any binary semantic attribute
there exists a hyperplane in the StyleGAN latent space serving as
the separation boundary between points of positive and negative
examples of that attribute. To find a suitable separating hyper-
plane that represents editing direction in the latent space W of
the StyleGAN, InterFaceGAN [82] proposes to apply a linear
SVM to points of positive and negative examples of the selected
semantic attribute. They generate images for 500,000 randomly
selected latent points in W and use the scores of a pre-trained
ResNet binary classifier to identify a subset of 10,000 images
for which the classifier reports the highest scores (attribute is
present), and 10,000 images with the lowest scores (attribute is
absent). Thus, to manipulate the attribute of an image, we can
move the original latent point along the normal vector of the
hyperplane.

When we edit several fine-grained attributes, one may affect
another. To achieve a more disentangled editing it was proposed

Fig. 15. Moving along the tenth principal component in 7-8 layers changes
hair color [83].

to orthogonalize a discovered set of semantic directions [82].
For example, given two hyperplanes for two semantics with
normal vectors n1, n2, then we can find a projected direc-
tion n = n1 − (nT

1 n2)n2 such that editing along this projected
direction correlates with the first attribute, but is not affecting
the second attribute.

2) Discovering Interpretable Semantic Directions in W: In
contrast to the previous, supervised method, GANSpace [83]
describes an unsupervised approach for discovering semantic
directions. The method, which requires only a pre-trained Style-
GAN generator, proposes sampling of a large number of random
points in Z space, collecting the corresponding points in W
space, and applying PCA to obtain a basis in W space. These
PCA basis vectors contain the semantic directions responsible
for some attributes. Within their study, using on the order of
100 basis vectors, the authors find that large-scale changes
to geometric configuration seem to be limited to the first 20
principal components. For a further refined control of editing
features, these PCA directions can be applied individually to
each of the 18 StyleGAN2 layers. By checking the influence
of the discovered PCA directions, it is possible to identify
directions responsible for specific face editing attributes, for
example hair color (see Fig. 15). The authors show that such
a check – in their work of about 1800 combinations – can be
done both automatically or manually.

3) Identifying Semantic Directions in StyleSpace (S): The
search for semantic directions can be done not only in the W
space, but also in the more disentangled StyleSpace (S space,
see Section IV-D) [66]. In this space, identification of semantic
directions can already succeed with as few as 10 to 30 positive
examples that contain the target attribute. This utilizes the idea
that the differences between the mean style vector of the positive
examples and the mean of the entire generated distribution of
500 k samples in S space reveal which StyleGAN channels are
the most relevant for the target attribute [66]. Such channels can
be identified, e.g., with statistical methods that determine which
vector components show statistically significant deviations to-
wards higher values. Once we know the right channel, we can
change its activation along the corresponding S dimension so
that the generated image shows an increase or decrease of the
desired semantic attribute.

4) Text-Driven Discovering of Semantic Directions: It is also
possible to search for a global semantic direction using com-
bined image-text embeddings, e.g., using the CLIP model [4],
[26]. For example, to find the semantic direction of the attribute
smile in the latent space of CLIP, we can take the direction
between text embedding vectors such as face with smile and face.
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Fig. 16. StyleCLIP mapping network architecture [4]. For a fixed “surprised”
text attribute three mapping networks Mc, Mm, and Mf for coarse, medium
and fine scale are trained for images to map their latent vector w (blue bar, left)
of images into a short change direction Δ that, if added to w (blue bars, right
side), moves the generated output towards better satisfying (lower CLIP loss of
the new image-text pair) the chosen text attribute.

To find the global direction of the example attribute smile in the
StyleSpace S of StyleGAN for some image, the coordinate of its
latent point is moved in the positive and negative directions for a
selected channel. This produces a pair of generated images (±σ)
that are fed into CLIP to measure how the perturbed direction
of the chosen StyleGAN channel in S space is correlated with
semantic direction of smile in the latent space of CLIP. This
process is repeated for a number of images always using the
same channel inS space, to compute the corresponding averaged
direction in CLIP space. Projection of this computed average
direction on the semantic direction of attribute smile in the latent
space of CLIP provides a direct measure how much the chosen
channel in S space affects the selected semantic direction in
CLIP space. After going through all the StyleGAN2 channels,
those with projection values greater than a certain threshold are
selected as related to the given semantic direction in the S space.

B. Single Image Semantic Directions

The second class of approaches optimizes a single image
and requires an assessment network over the generated image,
like CLIP or a binary attribute classifier. Loss from such an
assessment network produces a gradient step in latent spaces
which indicates the direction to move the input point of the
generator to decrease the target attribute loss.

1) Text-Driven Manipulation of StyleGAN Imagery: The
StyleCLIP [4] offers a text-based approach to image editing
(technical details are already described in VI-A4). The CLIP-
model produces gradients through the CLIP image-encoder to
minimize the similarity loss of text and image points in the com-
bined latent space of CLIP, thus allowing to obtain the overall
gradient that indicates the editing direction for the point in theW
latent space of StyleGAN with regard to the textual attribute that
is represented in CLIP. In addition, Identity [61] and L2 losses
on the StyleGAN generated image allow to penalize loosing
the person’s identity in the generated image under text-attribute
driven changes. However, the disadvantage of this method is
the need to conduct computationally expensive gradient based
optimization steps for each image and text attribute, because
each pairing of image and text attribute gets its own editing
direction in a StyleGAN latent space.

As seen several times before, this problem of computationally
expensive gradient based optimization can again be remedied
by training an additional mapping network (Fig. 16). Each text
attribute that is of interest for editing, e.g. smile, requires to
train a separate mapping network. This StyleCLIP mapping

Fig. 17. Examples of reference-guided BlendGAN synthesis [86].

network [4] moves the point in W+ space according to the
text attribute. The StyleCLIP mapping network employs an
architecture with three prediction sub-networks (denoted asM c,
Mm andMf in Fig. 16) for the coarse, medium and fine layers of
the StyleGAN2 generator respectively. Each sub-network takes
the corresponding W+ dimensions as input and predicts Δw for
them (see Fig. 16). The overall gradient guidance by the CLIP
loss of the text-image pair is supplemented by terms to keep the
result image in the vicinity of the input image (small L2 loss)
and to preserve identity (identity loss Lid). Authors employ the
CelebA-HQ dataset [48] for training.

2) Interpretable Control: Facial Pose and Expression
Change Based on FaceRig: To be able to create editable faces
as flawlessly as possible, controlling semantic face parameters
that are interpretable in 3D like face pose and expressions play
a crucial role. StyleRig [11] by Tewari et al. offers nice results
using both three-dimensional morphable face models (3DMM)
in combination with StyleGAN to provide such control. (See
Fig. 1(k) for StyleRig examples)

VII. CROSS DOMAIN FACE STYLIZATION

The original StyleGAN architecture allows mixing styles of
two sources of information (see Fig. 3) from the same train-
ing domain, for example CelebA-HQ dataset [48]. However,
what if we want to mix styles of two sources of information
from different domains, for example mixing with cartoon faces
(Fig. 17)? This chapter discusses approaches for style mixing
from different domains by fine-tuning or merging the StyleGAN
generators.

StyleAlign [84] explains why we can do cross domain face
stylization using StyleGAN fine-tuning to another domain (see
Section VII-A). The layer-swapping approach [85] devises a
controllable domain adaptation between original and fine-tuned
StyleGAN models (see Section VII-B). BlendGAN [86] pro-
poses a style encoder for fine-tuning face StyleGAN such that its
output becomes adaptable to an arbitrary style (see Section VI-
I-C). StyleGAN-NADA [10] (see Fig. 18) proposes fine-tuning
of the StyleGAN generator towards a target style domain using
CLIP (see Section VII-D).

A. Fine-Tuning Generator to the Target Style Domain

Let’s consider two similar style domains - source and target.
We can fine-tune the StyleGAN generator pre-trained on the
source domain towards the target domain. To stylize a source
image we can invert it into a latent code and generate from
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Fig. 18. StyleGAN-NADA [10] allows to create images that do not even exist
in real life (”Nicolas Cage Dogs” using a generator trained to generate dogs and
the “Nicolas Cage” text prompt).

this code using the fine-tuned generator. StyleAlign [84] work
suggests that the same latent code z ∈ Z is mapped to similar
codes in W in source and target domains, which is called point-
wise alignment. Moreover, changing individual channels in S or
moving in directions inW leads to the same semantic changes in
generated images of source and target domains. This alignment
can be measured by calculating the overlap between channels in
S used for semantic editing (see Section VI-A3) in original and
fine-tuned generator, which is called semantic alignment [84].
These alignments explain why fine-tuning based methods can
be used for cross domain face stylization.

B. Layer Swapping

Since we know that fine-tuning can be applied to cross domain
stylization, we need methods to better control the stylization.
Point-wise alignment doesn’t guarantee that we will preserve
all the necessary features from the original face after sampling
from a tuned generator. So in [85] a layer swapping technique
was proposed (see Fig. 19). This technique allows to control
which features we want to transfer from a target domain.

Layer swapping domain adaptation is done by combining
selected layers from the original and fine-tuned generator. Now
we can transfer, for example, low level features from the target
domain such as face geometry or hair style (see Fig. 19(c)) or
transfer only high level features (see Fig. 19(d)).

If it’s not enough to swap layers, for example, when the shape
variations between the photo domain and the target domain are
too large to successfully capture the exaggerations and color
stylization of caricatures using the layer swapping technique,
we can use additional blocks [34] appended to the layers of the
first StyleGAN blocks to modify coarse features.

C. Blending for Stylized Face Generation

Paper [86] suggested an alternative to the layer swap-
ping mechanism which allows to generate images in different
domains using only one model. It proposed to fine-tune a Style-
GAN model on a dataset of faces in different artistic styles (see
Fig. 17). A separate encoder is trained using contrastive learning
to extract style latent code z from artistic images. The encoder
is trained on augmented variations of stylized images of faces
to produce the same latent vector for geometric augmentations
of the same style image, but distinct to latent vectors of other
style images. Thus, the encoder becomes insensitive for facial

Fig. 19. [85] (a) and (b) are samples of the “Base” and “Transferred” trained
models, respectively. (c)–(e) are “Interpolated” results of different combination
of layers from the “Base” and “Transferred” models.

details, but focused on the style of an artistic face image. The
latent space of this encoder is connected to the latent spaceW of
StyleGAN via a second mapping network of 8 fully connected
layers.

The blending procedure is similar to the vanilla StyleGAN
merging of two sources of information. The resulting image is
generated by taking two points in the latent space Z . One z
point that represents a face is being transforming into the latent
space W using the original mapping network and used for some
first layers of the StyleGAN model. The second z point that
represents a style is obtained from the reference artistic image
by the encoder. This point is being transformed into the latent
space W using the second mapping network and used for other
layers of StyleGAN.

D. CLIP-Guided Domain Adaptation of StyleGAN

Default fine-tuning and layer swapping requires a large dataset
of stylized images from the same domain. There are some
advanced methods for fine-tuning a generator to a target domain
without large stylized datasets. StyleGAN-NADA [10] allows to
fine-tune the StyleGAN generator using CLIP based gradients
towards a different style domain using only text prompts, for
example “zombie faces”. For that, first the semantic direction
of the prompt is identified in CLIP latent space by subtracting
embeddings of two text prompts “zombie face” and “face”.
Using the CelebA-HQ dataset [48] for training, the authors
demonstrate that the semantic direction in CLIP latent space
can be used to fine-tune a StyleGAN model [48] towards domain
defined by the text. To this end, thousands of images of faces are
generated by sampling a latent space of the trained StyleGAN
model. Then, according to the loss, embeddings of these images
in CLIP space have to move in a parallel direction to the found
semantic direction in CLIP text space. This parallel movement
of thousands of points in the CLIP latent space becomes the
training objective for changes of the StyleGAN model weights.

To solve overfitting and divergence problems, [10] proposes
to fine-tune only StyleGAN layers with the most influence on
the new domain and freeze weights of the rest of the layers.
To determine fine-tuned layers, the approach moves these latent
image points in CLIP space to the text embedding of the target
domain and chooses those layers in which the latent code has
changed the most. These layers are considered as sensitive to
the new domain. Further only these layers are unfrozen and
generator weights are fine-tuned by above mentioned method.

VIII. FACE RESTORATION WITH STYLEGAN

Face restoration aims at recovering high-quality (HQ) face de-
tail from low-quality (LQ) counterparts suffering from unknown
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Fig. 20. GPEN architecture [27]. A CNN encoder network receives a LQ input
(left) and has learned to provide z-input and via skip connections control inputs
to additional input fields in the GAN generator layer hierarchy (right) to cause
generation of a corresponding HQ output image.

degradation, such as low resolution, blur, compression artifacts
or noise. Context information may allow to properly infer such
missing detail. For example, location of hairs on a blurry face can
be estimated from low resolution details of a face. Exact location
of each hair is not important for human perception, but it is
important to restore overall structure and texture. Thus one may
expect that supervised training of neural network architectures
with LQ-HQ training pairs using pixel-wise losses will not lead
to high perceptual quality. Instead, pixel-wise loss functions
cause over-smoothed result images, as the model tends to be
the mean of high-quality faces.

However, architectures with energy-based components, like
GAN discriminators, can be a good approach for reconstruction
of fine detail from low resolution images and may provide per-
ceptually plausible results. In the fully converged state, the dis-
criminator will not be able to differentiate between a generated
sample and a sample from the dataset. Ideally, the same will then
also apply to human perception. Thus, we can expect GANs to be
able to generate deblurred images of perceptually high-quality,
but there remains the challenge of mapping a blurred input into
an appropriate latent vector of StyleGAN that makes StyleGAN
generate the corresponding deblurred version.

A. GAN Prior Embedded Network for Blind Face Restoration
in the Wild

The GAN Prior Embedded Network (GPEN) [27] is one of
the solutions for blind face restoration problem. The main idea
of this approach is to embed a StyleGAN like architecture as
the decoder part into an encoder-decoder architecture, thereby
utilizing its strong prior for generating high-quality faces. The
LQ image is fed to the encoder part, which is realized as a
conventional CNN whose output serves as the latent code for
the subsequent GAN decoder to generate an appropriate HQ
image (see Fig. 20). To this end, the activations of the final CNN
output layer are fed in place of the random vector into the GAN’s
latent space mapping network. Furthermore, to make efficient
use of the controllability of the StyleGAN decoder, the GAN is
slightly modified by padding its generator layers with additional
input fields for receiving activity patterns via skip connections
from more shallow layers in the encoder (see Fig. 20). They are
chosen such that the feature map hierarchy of the encoder CNN
and the GAN generator layers become connected at matching
levels of resolution.

In the first phase the GAN network (for example the Style-
GAN generator) is trained to generate high quality faces from
scratch. This phase uses the FFHQ dataset. During this phase,

Fig. 21. GFP-GAN architecture [6].

the added channels of the GAN layers are not yet used by the
encoder and the GAN generator network is encouraged to learn
ignoring signals from these noise channels by just providing
random noise for these inputs. Thus, in this phase the noise
channels play a placeholder role for a subsequent fine-tuning
of the GAN prior network. In the second phase of training, the
encoder is included, now replacing the random inputs to the
GAN by the activations of matching encoder layers.

For the second phase, training the whole architecture, a dataset
of pairs of low quality (LQ) and high quality (HQ) images
was synthesized. HQ images are downgraded to obtain LQ
images using blurring, gaussian noise, downsampling and JPEG
compression. A weighting of three losses was used to train
the GPEN architecture: L1, adversarial and LPIPS losses (see
Section III-A and III-C) based on features from discriminator,
rather than VGG network.

B. GFP-GAN: Towards Real-World Blind Face Restoration
With Generative Facial Prior

Generative Facial Prior GAN (GFP-GAN) [6] is a framework
for real-world blind face restoration applications (see Fig. 21). It
resembles GPEN (see Section VIII-A), but employs a degrada-
tion removal module in the form of a U-Net as an encoder, along
with with a number of connectivity changes that allow the usage
of a pre-trained StyleGAN as a decoder without the need for a
training from scratch and subsequent fine-tuning of a modified
StyleGAN, as in GPEN.

To achieve this, the U-Net decoder features are fed to a channel
split-spatial feature transform (CS-SFT) module that learns to
modify activations in StyleGAN layers for better perceptual
quality of the generated image with identity preservation. The
interaction between the standard StyleGAN and the newly in-
troduced spatial channels are shown in the CS-SFT box within
Fig. 21. The SFT operation happens as follows. Spatial features
from the U-Net go into a convolutional module generating an
output tuple (α, β) with parameters for spatial-wise feature
modulation. Parameter α is being used for element-wise scaling
of GAN features, β specifies an additive shift. After this, the
obtained modulated channels are concatenated with the un-
touched GAN channels to form the final result, as depicted in
box “Channel-Split SFT” in Fig. 21.

Again a composition of losses is applied to train the entire
architecture. First, motivated from the U-Net, a pixel-wise recon-
struction loss L1 between the degraded input image and ground
truth version of the image at different scales (see the blue U-Net
in Fig. 21) is used. Second, the restored output image x̂ of the
StyleGAN generator can be compared with the degraded input
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Fig. 22. Personalized super-resolution results using MyStyle [7], [81].

imagex using LPIPS, and Identity losses (see Section III). Third,
since the eyes and mouth are crucial to a person’s personality, a
further Facial Component loss is introduced which consists of
local discriminators for the left eye, right eye, mouth, and the
complete face. The Region of Interest Align operator provides
these discriminators with corresponding regions of the generated
face.

C. MyStyle: A Personalized Generative Prior

We have described this architecture [7], [81] already in
some detail in Section V-D2. Here, from the perspective of
HQ face image restoration (see Fig. 22), we only remark that
this architecture also applies a StyleGAN to solve the problem
of super-resolution, using L2 pixel and LPIPS losses, with a
downscaling operation applied to the images before application
of these losses.

D. VAEs With Codebooks - Alternative Approaches

Codeformer [87] and VQFR [88] are encoder-decoder based
approaches that don’t use StyleGAN infrastructure, however
achieve similar blind face restoration results. One common
property of these approaches is that they use a discrete latent
space (VQ-VAE codebooks [89]). Also the spatial resolution
of the bottleneck part and modulated skip connections have an
important role in restoration-identity preservation trade-off.

IX. DEEPFAKES

Deepfake: is the manipulation of an image of a face that is
hardly recognizeable by humans. Deepfake creation methods
can be classified into the following types (Fig. 23):

Synthesis: a deepfake face is created without a face image.
Section II covers the synthesis of photo-realistic fake images of
faces that do not exist.

Editing: facial features are altered, added or removed (see
Section VI).

Reenactment: a source face is used to control gaze, mouth
or expression of a target face [42], [90], [91]. Following articles
focus on mouth reenactment [92], [93], gaze reenactment [94],
and pose reenactment [95].

Replacement: the identity of the source face is used to replace
the identity of the target face [96], [97], [98].

Replacement (Transfer): the identity and expression of the
source face is used to replace the identity and expression of the
target face, which can be perceived as consecutive face swapping
and face reenactment [43].

This chapter will focus on reenactment (Sections IX-A)
and replacement (Section IX-B) methods. The main difference
between face reenactment and face replacement is that in face
replacement, the identity of the source face is transferred to the
target face.

A. Face Reenactment

Face reenactment (see Fig. 23(b)) is useful in the advertise-
ment or in the film industry [38]. Typically, if the main actor
(target) has limited time or high costs, another substitute actor
(source) can perform the acting and the expressions are then
transferred to the main actors face, as if he or she is actually
performing [99]. In this case, the main actor’s face would be
the target face and the substitute actor would be the source. One
usage of mouth reenactment could be voice dubbing into an-
other language for advertisements, music or video games. Gaze
reenactment can be used to improve photographs by making
the people (target) look into the camera. Pose reenactment has
been used for face frontalization in security footage (target) to
improve face recognition [100].

Facial reenactment can be realized by StyleGAN and its latent
code. For instance, for transferring expression from a source
image xs to a target image xt the authors of [41] solve the
following optimization problem to find the latent code sr of
the desired result image:

sr = argmin
s

[Dist1(G(s), xs) +Dist2(G(s), xt)].

Here, G(·) is the mapping function of the generator, and
Dist1(x, x

′), Dist2(x, x
′) are suitable distance functions in

image space that measure similarity of a face image pair w.r.t.
expression (Dist1) and appearance (Dist2) of the faces.

To solve this equation the authors constrain the solution space
to particular linear combinations sr = αss + βst of the Style-
GAN latent codes of the given images. Here, α and β = 1− α
are diagonal 18× 18 matrices whose diagonal elements may
only attain values 0 or 1. This is equivalent to adopting for the
18 style parameters of sr either the corresponding value of ss
or st, leading to a finite search space of 218 possibilities for the
optimization problem. From their solutions, they discover that
StyleGAN layer 4 is primarily responsible for expression, while
other layers (e.g., 8 and 9) primarily control hair color and hat
style [41].

B. Face Replacement and Face Transfer

Face replacement and face transfer are closely related. While
face replacement swaps a face into the position of a previous
face, face transfer additionally takes care to make the swapped
face inherit the expression of the previous face, which is usually
achieved with an additional face reenactment step.

Face replacement can be established using classical computer
graphics-based approaches [101] by using facial landmarks
extracted for each face. The results, however, are not as good
as using neural network based methods.

FakeApp [96] used an encoder-decoder NN architecture to
swap faces of two different people A and B. Expressions and
emotions from the target image are kept, while the facial identity
is swapped. First, it collects a dataset of faces of two people,
A and B, using an object detection method [102]. Secondly, it
trains two auto-encoders EA, EB to encode and two decoders
DCA,DCB to reconstruct the faces of A and B respectively. The
key idea is that the two encoders have to share the same weights,
but they keep their respective decoder weights independent. This
allows the encoder to learn global features of the two faces A and
B while the two decoders are trained to use this general encoding
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Fig. 23. (a) Face Synthesis and editing examples [38], (b) Description of the
types of deepfakes [38], (c) Face Reenactment of the mouth [41], (d) complete
face reenactment [42], (e) Face swapping utilizing StyleGAN [12], (f) Face
Transfer using DepthNets [43].

to generate face specific details of person A or B respectively.
Thirdly, to create the face swap, trained encoderEA and decoder
DCB are used for the images of person A. This method is
applicable for videos as well. The results are similar to Fig. 23(e)
and (f). The downside of this approach is the large dataset of
faces of both people that is needed to train the encoder-decoder
networks. When using this method on videos, a big problem is
the temporal coherence. As this method does not take preceding
frames into account, it may produce flickering of the faces. This
can be mitigated by providing context or implementing temporal
coherence losses [103], [104].

The Face Transfer Module (FTM) [12] mitigates most of the
problems described above. It can transfer faces without ever
having seen them before. The expression of the face of the
target image remains, but the facial identity is transferred from
the target image (see Fig. 23(d)). It uses a trained StyleGAN
model as a decoder and employs the Hierarchical Representation
Face Encoder (HieRFE), [12] which is based on the ResNet50
network, to project images of faces into the improved latent
space of StyleGAN with transformers [105].

Styletalk: method [106] creates lifelike animated faces from
a single image of a speaker based on reference videos us-
ing 3D Morphable Models expression parameters. Another
approach [43] tries to predict the 3D pose of the face and its facial
landmarks from the 2D source image and predict the rotation
and translation of the landmarks to map them onto the facial
landmarks of the target image. For predicting the 3D poses of
the facial landmarks, [43] uses an unsupervised Siamese-like
network [107] consisting of convolutions, pooling layers, and
densely connected layers that they named DepthNet. The two
images pass through the network which then predicts the depth
and affine transformation to map one face onto the other. A
CycleGAN [108] is used to cleanly blend the new face position
into the image.

X. ALTERNATIVE FACE GENERATION AND EDITING

APPROACHES

A. 3D-Consistent Generative Adversarial Networks

NeRF [109] based approaches exhibit consistency of an object
while altering position and camera orientation. Development
of successive StyleGAN architectures goes along the improv-
ing of such consistency along different camera poses. Thus, a
straightforward idea is to substitute the StyleGAN generator
with a NeRF-like architecture with disentangled camera pose
representation and integrate the idea of the mapping network and
W latent space [110]. While the high resolution of StyleGAN
(1024× 1024) can be computationally expensive for training
a NeRF architecture that would need to compute a batch of
1 M rays gradient updates, [110] proposed to generate an
only (64× 64) image/feature space with NeRF and upscale it
to 1024× 1024 using a generator modulated by W. Another
performance improvement is proposed by [111] where the en-
coding of positional information is proposed to be represented
by a Tri-plane Decoder, thus reducing NeRF to learn direction
information for every position. To conclude incorporating of the
NeRF components allows to achieve the required consistency
of face generation for different poses and directions, while
building on solutions accumulated through the development of
the StyleGAN architectures.

B. Diffusion Models

Deepfake: diffusion models [112] [113], [114] have emerged
as a result of advancements in diffusion-based methods. They
are designed to generate realistic Deepfake videos with audio
information used as a conditioning signal. The person’s identity
is preserved in the generated videos, conditioned by a single
image of a face or a full video, and the movements of their lips
and other facial features are synchronized with the audio. The
U-Net-based model serves as the diffusion component.

Face editing: with diffusion models can also be conditioned
by text instruction. In this way the InstructPix2Pix model [115]
can edit images, including faces. To train such text-conditioned
editing model, a dataset of triplets containing the original image,
the edited image, and the text editing instruction, was gener-
ated [115]. Similarly, ControlNet [116] allows to control the
generation of images (including faces) from two sides: on the
one hand the generated image originates from a simplified repre-
sentation of a given image (Canny Edge, Semantic Segmentation
or Normal Map), and on the other hand it must fit a certain text
prompt. The text prompt can be changed, thus allowing image
editing. In papers [117] [118], pre-trained diffusion models are
used to perform multi-modal guided face generation or editing.

XI. CONCLUSION

StyleGAN architectures [1], [17], [24] have been extensively
researched as deep learning models for face generation and
editing, making them the most studied in this domain. They are
providing a versatile editing control over the generation process
of high-quality images, which makes StyleGAN architectures
particularly valuable.

Existing limitations of StyleGAN, and emerging competing
techniques, like diffusion models, result in the following trends
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and expectations for future research in the area of face generation
and editing with deep neural networks:
� Foundation Models: Pre-trained StyleGAN models can

be considered as Foundation Models and require fur-
ther research on fast fine-tuning techniques, like neu-
ral network adapters for integration with other architec-
tures [119] [120], [121], scaling StyleGAN to large diverse
datasets [122] or new interactive image manipulation meth-
ods [123].

� Mobile Applications: Generative models on-mobile-device
are an open research topic with a lot of challenges. A
StyleGAN model is too computationally demanding for
mobile devices or applications that require a high frame rate
for videos. One common solution is to employ StyleGAN
to produce a synthetic dataset for a specific single feature,
like pairs of face with and without sunglasses. Then, this
synthetic dataset is utilized to train a tiny, single-function-
image-processing network for mobile applications (see
Section I-B). Another solution is to distill a downscaled
version of StyleGAN architecture from the original Style-
GAN [124]. For example, BlazeStyleGAN [124] has around
16 times fewer parameters and around 16 times fewer
FLOPs needed to generate a 10242 image than the Style-
GAN architecture. As a result, BlazeStyleGAN is able to
generate high quality images on mobile devices. However,
further research is needed to find out how latent space
works in compact models compared to the original model.

� Diffusion Models: are emerging competing approaches for
face generation [125], [126] [127], editing [112] [113],
[114], enhancement [128] [129], [130] and temporal con-
sistency [131]. However, the evaluation step of such models
is even more computationally demanding. Additionally, the
control over the image generation and editing is so far not
as well optimized as those of StyleGAN architectures. In
addressing the aforementioned challenges, this work [132]
presents an accelerated solution specifically tailored for the
task of local text-driven editing of images.

� Text2Face: Recent works [133] [134] have shown that
StyleGAN-based networks can be comparable in quality to
diffusion models in Text2Image task, while having better
performance. However, the quality of the generated images
is still inferior to such strong works as Imagen [135] or
DALLE-2 [136], so an open question is to improve the
generation of images from text using GANs.

� Neural Rendering: The 3D consistency of a generated face
when viewed from different angles is another crucial aspect
of face perception. NeRF [109] is a technique that has
shown impressive results for 3D scenes with faces [137],
and there have been efforts to combine StyleGAN and
NeRF [110] or to create 3D-GANs [138] [139], [140] [141]
and solve inversion task for them [142] [143].

� Temporal Consistency: A number of works in this survey
demonstrate nice style transfer results. However, when ap-
plied to a video sequence of frames, inconsistency of iden-
tity of a person, lighting conditions, and features flickering
at different frames become obvious. Thus, it is necessary to
apply different flicker suppression losses [144]. Also good
direction of development is to work with unaligned faces
as in StyleGANEX [145], which allows you to edit all the

details of a video frame (hair, clothes, environment) in a
compatible manner.

We expect to see a multitude of forthcoming papers in the
coming years focusing on the topics covered in this survey, but
with an emphasis on applying them to a blend of StyleGAN,
Diffusion, and NeRF techniques.
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