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ABSTRACT Monocular depth estimation (MDE) is an important task in scene understanding, and significant
improvements in its performance have been witnessed with the utilization of convolutional neural networks
(CNNs). These models can now be deployed on edge devices, thanks to advancements in CNN optimization,
enabling effective depth estimation in safety-critical and security-sensitive systems like robots, rovers,
drones, and autonomous cars. However, CNNs used for MDE are susceptible to adversarial attacks,
which can be exploited for malicious purposes by generating plausible images containing carefully crafted
perturbations that distort the model’s output. To assess the vulnerability of CNN-based depth prediction
methods, recent studies have attempted to design adversarial patches specifically targeting MDE. However,
these methods have not been powerful enough to fully deceive the vision system in a systemically threatening
manner. Their impact is less effective, misleading the depth prediction of only certain parts within the
overlapping region of the input image by using conspicuous and eye-catching patterns. In this paper,
we investigate the vulnerability of MDE to adversarial patches. We propose a novel Stealthy Adversarial
Attacks on MDE (SAAM) that compromises MDE by either corrupting the estimated distance or causing an
object to seamlessly blend into its surroundings. Our experiments demonstrate that the designed stealthy
patch successfully causes a CNN to misestimate the depth of objects. In fact, our proposed adversarial
patch achieves a significant 60% depth error with 99% ratio of the affected region. Importantly, despite
its adversarial nature, the patch maintains a naturalistic appearance, making it inconspicuous to human
observers. We believe that this work sheds light on the threat of adversarial attacks in the context of MDE on
edge devices. We hope it raises awareness within the community about the potential real-life harm of such
attacks and encourages further research into developing more robust and adaptive defense mechanisms.

INDEX TERMS Adversarial attacks, adversarial patch, CNN, collision avoidance, localization, machine
learning, monocular depth estimation, navigation tasks, obstacle avoidance, robotics, stealthy, security,
visual SLAM.

I. INTRODUCTION
Monocular depth estimation (MDE) is increasingly being
utilized in a wide array of real-world applications, ranging
from autonomous driving to robotics. Its main purpose
is to acquire depth data, enabling a deeper and more
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comprehensive comprehension of the surrounding scene.
MDE plays a critical and indispensable role in various tasks,
including obstacle avoidance [1], object detection [2], visual
SLAM [3], [4], visual re-localization [5], and numerous
others.

Several methods for estimating depth rely on sensors like
RGB-D cameras, radar, LIDAR, or ultrasound to collect the
depth information directly from a scene. However, these have
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FIGURE 1. Overview of our novel contributions.

significant shortcomings. In fact, ultrasound devices suffer
from inherently imprecise measurements, LIDAR and radar
produce sparse information, and RGB-D cameras have a
narrow measuring range. The aforementioned devices are
extremely large and power hungry for small-sized systems,
especially those that must adhere to rigorous real-world
design constraints. In contrast, RGB cameras are lightweight
and less expensive. More importantly, they can offer more
detailed environmental information. Several tasks can now be
accomplished totally using MDE’s measurement and attain
competitive performance thanks to MDE’s rapid develop-
ments. These remarkable improvements can be attributed to
the successful integration of deep neural networks, which
have significantly enhanced MDE’s capabilities.

However, the increasing reliance on deep neural networks
also brings attention to their vulnerability to adversarial
attacks. As shown in various studies, these networks can
be susceptible to manipulations that intentionally deceive
their predictions. Hence, it becomes crucial to prioritize
the security of MDE models to ensure their reliability and
trustworthiness in practical applications. Safeguarding MDE
systems against adversarial attacks is vital for preserving
their integrity and preventing potential misinterpretations and
misjudgments in real-world scenarios.

Patch-based adversarial attacks [6], [7], [8] are a type
of adversarial attack in computer vision, where carefully
crafted perturbations are applied to specific patches or regions
of an input image to deceive a deep learning model. The
goal of patch-based adversarial attacks is to cause the
model to misclassify the entire image or produce incorrect
predictions for targeted regions. In contrast to traditional
global adversarial attacks that perturb the entire input image,
patch-based attacks are more localized, focusing on specific
regions of interest.

Patch-based adversarial attacks have implications in var-
ious applications, including object detection, image seg-
mentation, and scene understanding. They demonstrate the
vulnerability of deep learning models to localized adversarial
perturbations and highlight the importance of develop-
ing robust defense mechanisms to protect against such
attacks.

Only a limited number of studies have explored the realm
of patch-based adversarial attacks on depth estimation. This
particular direction of research remains relatively unexplored
compared to other adversarial attack methods in computer
vision. Previous work for patch-based adversarial attacks on
MDE [7], [9], [10] aiming at tricking the perception module
of an autonomous vehicle. Their effectiveness is limited,
as they only mislead the depth prediction of specific parts
within the overlapping region between the input image and
the patch, usually utilizing conspicuous and eye-catching
patterns. In this work, we investigate stealthy adversarial
patches that can either fully conceal a particular object or trick
the target methods into estimating the depth of that object
incorrectly at a target depth.

This paper introduces a technique for deceiving a CNN-
based monocular depth estimation system by leveraging nat-
uralistic adversarial patches (See Figure 3). These patches are
strategically designed to manipulate the system’s predictions,
resulting in the generation of false distance estimates. The
proposed approach allows the adversarial patch to seamlessly
blend into its surroundings while for example resembling
a painting on a wall or a poster, and can be applied to
conceal specific objects or areas of interest effectively. In fact,
we set out to achieve two key goals: depth manipulation
and object concealment (i.e., object-background blending).
Through our proposed techniques, we can intentionally alter
the perceived depth of specific objects in a scene, leading
to inaccurate depth estimations. Additionally, we have
developed a method to completely conceal certain objects
from the depth estimation process, making them effectively
invisible to the system. Moreover, our approach enables
selected objects to seamlessly blend with the background,
creating a visual effect where they appear to be part of the
scenery, thus reducing their conspicuousness and detection.
An overview of our novel contributions is shown in Figure 1.
In summary, the contributions of this work are:
• We present a novel patch-based adversarial attack that
targets DNN-based monocular depth estimation.

• Our framework generates a stealthy adversarial patch
(SAAM) that can seamlessly blend into its surroundings
(e.g., resembling a painting on a wall or a poster).

13572 VOLUME 12, 2024



A. Guesmi et al.: SAAM: Stealthy Adversarial Attack on Monocular Depth Estimation

TABLE 1. Notations used in this paper.

• SAAM has the ability to withstand diverse transforma-
tions and adapt to different scenarios. It demonstrated
robustness against a range of deformations, including
rotation, perspective change, and lighting variation.
Additionally, the patch can be placed at arbitrary
locations within the scene, even under occlusion.

• Our proposed adversarial patch extends its applicability
to multiple use cases such as navigation tasks, obstacle
detection, localization, etc.

With a patch size as small as 0.7% of the input image,
we achieve an impressive 60% depth estimation error.
Moreover, the adversarial patch nearly covers the entire target
region, with an almost 100% ratio of the affected region.
These findings highlight the effectiveness and potency of our
attack in disrupting the depth estimation process.

The structure of the remaining article is organized as
follows. Section II provides a comprehensive overview of
related work on patch-based adversarial attacks onmonocular
depth estimation. In Section III, we present our proposed
methodology to generate the adversarial patch. This section
outlines the step-by-step process of crafting the patch
and explains the techniques employed to achieve effective
depth manipulation and visual realism. Section IV details
the experimental setup used to evaluate the performance
of the proposed adversarial attack. In Section V, we delve
into the evaluation of the proposed attack. We present
the results obtained from various metrics, such as depth
error, affected region ratio, and SSIM, to assess the attack’s
potency and visual similarity of the generated patch.
In Section VI, we thoroughly discuss the findings and
implications of our experiments. We analyze the strengths
and limitations of the proposed attack and interpret the
results in the context of real-world applications. Sec-
tion VII provides a succinct summary and conclusion of our
study.

II. BACKGROUND AND RELATED WORK
A. MONOCULAR DEPTH ESTIMATION
Monocular depth estimation is a prominent computer vision
task that involves predicting the depth information of a scene
from a single 2D image [11], [12]. It holds fundamental
significance in computer vision and finds applications in
a wide range of fields, including robotics, augmented
reality, and autonomous vehicles. The main objective of
monocular depth estimation is to infer the 3D structure of
the scene solely from a single 2D image. Unlike stereo depth
estimation, which relies on multiple images captured from
slightly different viewpoints, monocular depth estimation’s
practicality lies in its ability to work with just one image,
making it well-suited for various real-world scenarios.

B. ADVERSARIAL EXAMPLES
An attacker possesses the flexibility to modify the input
image of a victim model at the pixel level. These attacks
inherently assume that the attacker has control over the
DNN’s input system, such as a camera. The first adversarial
example, proposed in [13], involved adding small impercep-
tible noise to steer the prediction of the input image towards
an incorrect class. Numerous attacks have been developed,
advancing the algorithms for generating adversarial examples
[14], [15], [16], [17], [18]. In the face of the persistent
challenges posed by adversarial attacks, researchers have
diligently worked to establish resilient defenses, consistently
pushing the boundaries of innovation [19], [20], [21].

Although there have been efforts to enhance the power of
these attacks by crafting real-time attacks [22], [23] that are
generated on the fly, a more robust and realistic threat model
would consider the scenario where the attacker has exclusive
control over the system’s external environment or external
objects, rather than its internal sensors and data pipelines. In
the following sections, we will explore some state-of-the-art
patch-based attacks on object detectors.

C. PATCH-BASED ADVERSARIAL ATTACKS ON MDE
Patch-based attacks are a specific form of adversarial
perturbation that focuses on modifying localized patches
or regions within an image with the intention of deceiving
machine learning models. These perturbations are carefully
designed and printed on physical surfaces, such as images
or objects, to exploit the vulnerabilities of computer vision
systems. They aim to introduce imperceptible alterations that
can lead to misclassifications or incorrect interpretations by
the targeted models. This method involves substituting a
section of the targeted image with an image patch to impede
the performance of DNN-based models. The adversarial
patch is prevalent because it is simple to use and can usually
be printed out with ease.

Yamanaka et al. [9] was the first to propose a method
for generating printable adversarial patches for corrupting
MDE-based systems. However, the patches generated in their
approach had eye-catching patterns, making them easily
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FIGURE 2. State of the art patch-based adversarial attacks on MDE.

TABLE 2. Comparison of attack methods. M - Manipulate estimation; H - Hiding objects. A - Anywhere in the frame; O - On the target object(s).

noticeable. Cheng et al. [10] focused on addressing the issue
of stealthiness in the generated patch, aiming to ensure that
the patch is inconspicuous and does not draw attention.
However, a drawback of the generated patch is that it is
object-specific, meaning that a separate patch needs to be
trained for each target object. Additionally, the patch had
a limited affected region and was trained for a specific
setting with a fixed distance between the object and the
camera, making it ineffective for other distances. Guesmi
et al. [7] proposed an adaptive adversarial patch optimized
to be shape and scale-aware, and its impact adapts to the
target object instead of being limited to the immediate
neighborhood. Although this patch was effective but didn’t
consider the appearance and the stealthiness of the generated
patterns. Figure 2 illustrates the state-of-the-art patch-based
adversarial attacks on Monocular Depth Estimation (MDE).
Meanwhile, Table 2 provides a comprehensive comparison
of these attack methods, considering various aspects: attack
goal, attacker’s Knowledge, attack stealthiness, the placement
of the patch, and the setting specifying whether the attack is
designed for indoor or outdoor scenes.

III. PROPOSED APPROACH
A. PROBLEM FORMULATION
In the context of Monocular Depth Estimation, when
presented with a benign image I , the objective of the
adversarial attack is to compromise the depth estimation
process by employing a maliciously designed adversarial
patch Pδ . This patch is strategically crafted to introduce
stealthy perturbations into the original image, transforming
it into an adversarial example denoted as I∗. Technically, the
adversarial example with generated patch can be formulated
as:

I∗ = (1 −MP) ⊙ I +MP ⊙ Tθ (Pδ) (1)

⊙ is the component-wise multiplication, Pδ is the adversarial
patch, Tθ is the ensemble of patch transformations, and MP
is a mask matrix to constrain the shape, the size and pasting
position of the patch, where the value of the pasting area is
1 and 0 elsewhere.

The adversarial depth, i.e., the output of the victim model
when taking as input the adversarial example is:

dadv = F((1 −MP) ⊙ I +MP ⊙ Tθ (Pδ)) (2)

The problem of generating an adversarial example can be
formulated as a constrained optimization 3, given an original
input image I and a DNN-based MDE model F(.):

min
δ

∥δ∥∞

s.t. F((1 −MP) ⊙ I +MP ⊙ Tθ (Pδ)) ̸= dclean (3)

The objective is to find a minimal adversarial noise,
denoted as δ used to form the adversarial patch Pδ , which,
when applied at any arbitrary placement in the scene,
selectively undermines the underlying MDE model F(.)
by causing the objects to appear farther or closer than
they really are. It is important to note that a closed-form
solution cannot be obtained for this optimization problem
due to the non-convex nature of the DNN-based MDE model
F(.). Therefore, Equation 3 can be reformulated as follows
to enable numerical approximation of the problem using
empirical techniques:

argmax
P

∑
I∈U

loss(F((1 −MP) ⊙ I +MP ⊙ P), dclean) (4)

where loss is a predefined loss function and U ⊂ U is the
attacker’s training dataset. We can use existing optimization
techniques (e.g., Adam [24]) to solve this problem. In each
iteration of the training the optimizer updates the adversarial
patch P.

13574 VOLUME 12, 2024



A. Guesmi et al.: SAAM: Stealthy Adversarial Attack on Monocular Depth Estimation

FIGURE 3. Overview of our proposed attack SAAM. In the first row, the depth estimation for objects in a clean scene is accurate and
correctly predicted by the MDE-based system. However, in the second row, when the objects are manipulated using our adversarial patch,
the depth estimation for these objects becomes incorrect and cannot be accurately estimated by the system.

B. ADVERSARIAL PATCH EVALUATION
In the evaluation of physical adversarial attacks, three key
aspects are commonly considered: effectiveness, robustness
under real-world conditions, and stealthiness to human
observers.

• Effectiveness: Attack effectiveness is a critical aspect to
consider when assessing the impact of physical attacks.
These attacks have demonstrated their effectiveness in
significantly degrading the performance of the targeted
task, thereby compromising the reliability and accuracy
of the victim system. Adversarial manipulations in the
physical space can cause misclassifications, incorrect
predictions, or erroneous decisions, leading to poten-
tially severe consequences.

• Robustness:Attack robustness is a key factor in evaluat-
ing the resilience of physical attacks in dynamic environ-
ments. Maintaining attack ability despite variations in
the environment is crucial for the sustained effectiveness
of adversarial manipulations. One aspect of robustness
is being able to maintain attack efficacy across different
scenes. This means that the perturbations should remain
effective and capable of deceiving the system, regardless
of changes in lighting conditions, backgrounds, or other
scene-specific factors.

• Stealthiness: Attack stealthiness is a critical charac-
teristic that determines the effectiveness of physical
attacks. To be successful, these attacks should ideally
go unnoticed by both the observer and the victim,
remaining imperceptible to human eyes. The ability
to maintain stealthiness ensures that the adversary can
carry out their attack without raising suspicion or
triggering any defensive mechanisms.

C. OVERVIEW OF OUR METHODOLOGY
In our approach, illustrated by Figure 4, we start by
introducing randomly initialized noise to a selected natural
image. This noise serves as the basis for our adversarial

patch generation. To enhance the robustness of the patch
and mimic real-world scenarios, we apply various data
augmentation techniques, such as resizing, adjusting bright-
ness and contrast, rotation, and perspective changes. These
transformations help us create diverse versions of the patch
that could occur in practical situations. Next, we proceed
with the patch rendering process.We utilize generated masks,
representing different and random placements of the patch
within the scene, to superimpose the patch on the clean
image of the scene. This composite image, which now
contains the adversarial patch, is then fed into the deep
neural network-based monocular depth estimation (MDE)
model to generate the corresponding depth map. To optimize
the adversarial perturbation and ensure its effectiveness,
we compute the loss function based on the discrepancy
between the depth map generated with the adversarial patch
and the clean depth values. Our goal is to maximize this
loss function to achieve the highest impact in manipulating
the depth prediction. However, it is crucial to maintain the
semantic meaning of the patch and retain visual similarity
to the original natural image. To address this, we enforce
a semantic constraint on the adversarial perturbation. We
project the noise onto the surface of an Lp norm-ball with
a predefined radius ϵ. This constraint helps to preserve the
meaningful appearance of the patch while keeping it within
a reasonable perturbation range. By following these steps,
we can generate effective adversarial patches capable of
concealing objects or altering their perceived depth in the
scene. Our approach ensures that the patches are practically
applicable, maintain visual realism, and successfully deceive
the deep neural network-based MDE model.

D. PATCH STEALTHINESS: SEMANTIC CONSTRAINT
Taking inspiration from the imperceptibility constraint com-
monly employed in Lp-norm based adversarial perturbations,
we incorporate a projection function (Equation 6) to ensure
that the generated adversarial patterns maintain visual
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FIGURE 4. Overview of the stealthy adversarial patch (SAAM) framework used to generate patches for monocular depth
estimation. This framework leverages a semantic constraint to ensure the stealthiness of the generates adversarial patch
and a data augmentation technique which takes potential transformation in the real world into account during the
optimization.

similarity to natural images throughout the optimization
process. By enforcing this constraint, we achieve high-
quality semantic patterns that closely resemble a predefined
natural image, for example, a painting on a wall. Empirical
results demonstrate the effectiveness of optimizing with
this constraint, as it facilitates the creation of visually
convincing adversarial patterns that seamlessly blend into
their surroundings.

Pδ = N + δ (5)

where N is a chosen natural images to ensure the generated
camouflage patterns are semantically meaningful.

δt = Proj∞(δ(t−1)
+ 1δ,N , ϵ) (6)

where δt and 1δ denote the adversarial pattern and its
updated vector at iteration t, respectively. Proj∞ projects
generated pattern onto the surface of L∞ norm-balls
with radius ϵ and centered at N. Here we choose N
as natural images to ensure the generated camouflage
patterns are semanticallymeaningful. For our experiments we
set ϵ = 0.3.

E. PATCH ROBUSTNESS
1) DATA AUGMENTATION
In order to effectively deceive CNN-based monocular depth
estimation models in real-world scenarios, we incorporate
the considerations of physical world conditions during
the optimization process of adversarial patches. Real-
world scenarios often involve various conditions, including
changing lighting, different viewpoints, natural noise, and
more. To simulate such dynamic factors, we apply several
physical transformations. These transformations encompass
various aspects, such as adding noise, random rotation,

varying scales, random brightness and contrast adjustments,
and more. These physical transformation operations are
encapsulated within the patch transformer.

The geometric transformations performed include ran-
domly scaling the patch [0.25, 1.25]. Additionally, random
rotations (±20◦) are applied to the patch Pδ . This simulates
uncertainties in patch placement, size, and distance with
respect to the camera. Color space transformations are con-
ducted by introducing random noise (±0.1) to pixel intensity
values, applying random contrast adjustments within the
range of [0.8, 1.2], and implementing random brightness
adjustments (±0.1). Furthermore, we perform patch cropping
and perspective change. This process leads to the formation of
the resulting patch Tθ (Pδ), which is then forward propagated
through the monocular depth estimator.

By accounting for these physical transformations and
incorporating them into the optimization process, we aim
to create adversarial patches that can successfully deceive
CNN-based monocular depth estimation models in real-
world scenarios. In typical real-world applications, the object
detection model scales the adversarial sample along with the
image to a square shape, which can reduce the effectiveness
of the patch. To address this limitation, SAAM directly scales
the adversarial patch along with the targeted images. This
scaling operation introduces additional deformation to the
patch, making it more challenging to optimize.

2) TOTAL VARIATION NORM (TV LOSS)
The characteristics of natural images include smooth and
consistent patches with gradual color changes within each
patch [25]. Therefore, To increase the plausibility of physical
attacks, smooth and consistent perturbations are preferred.
Additionally, extreme differences between adjacent pixels
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FIGURE 5. Estimated depth for different patch locations (patch scale: 1%): the patch is designed to create
an illusion of the target region appearing closer.

in the perturbation may not be accurately captured by
cameras due to sampling noise. This means that non-smooth
perturbations may not be physically realizable [26]. To
address these issues, the total variation (TV) [25] loss is
introduced to maintain the smoothness of the perturbation.
For a perturbation P, TV loss is defined as:
It is defined as:

Ltv =

∑
i,j

√
(Pi+1,j − Pi,j)2 + (Pi,j+1 − Pi,j)2 (7)

where the subindices i and j refer to the pixel coordinate of
the patch P.

F. ADVERSARIAL PATCH GENERATION
We iteratively perform gradient updates on the adversarial
patch (Pδ) in the pixel space in a way that optimizes our
objective function defined as follows:

Ltotal = αLdepth + βLtv (8)

Ldepth is the adversarial depth loss.

dadv = F((1 −MP) ⊙ I +MP ⊙ Tθ (Pδ)) (9)

The adversarial losses are defined as the distance between the
estimated adversarial depth (Eq. 9) and the estimated clean
depth or the target depth and calculated as follows:

For un-targeted attacks:

Ldepth = −(|dclean − dadv| ⊙MP) (10)

For targeted attacks:

Ldepth = dclean ⊙ (MP × c) (11)

where c is the target depth.
Ltv is the total variation loss on the generated image to

encourage smoothness.
α, and β are hyper-parameters used to scale the losses. For

our experiments we set α = 1 and β = 0.5. We optimize the

total loss using Adam [24] optimizer. We try to minimize the
object function Ltotal and optimize the adversarial patch. We
freeze all weights and biases in the depth estimator and only
update the pixel values of the adversarial patch. The patch is
randomly initialized.

The optimization process involves iteratively updating the
patch to maximize the adversarial objective function. This
is achieved through gradient-based optimization, where the
gradient of the objective function with respect to the patch is
calculated.

Pnew = Pold + λ · ∇PLtotal(Pold , I ) (12)

where λ is the learning rate. To maintain consistency with the
original range of the clean input image, we apply a clamping
operation, restricting the values of the patch between 0
and 1. This ensures that the adversarial patch remains within
the valid range and aligns with the characteristics of the
unperturbed input image.

IV. EXPERIMENTAL SETUP
In order to assess the effectiveness of our proposed attack,
we analyzed vulnerabilities of twoDNN-basedMDEmodels;
The self-supervised depth prediction models are chosen
based on their practicality and open source codes.

A. NETWORKS
DiverseDepth [27] trained on depth prediction on multiple
data sources including high-quality LiDAR sensor data
[28], and low-quality web stereo data [29], [30], [31]. The
model has a backbone ResNet-50 and ResNet-101. The
DiverseDepth model, is a cutting-edge deep learning archi-
tecture specifically designed for monocular depth estimation.
It addresses the challenge of handling diverse real-world
scenarios by introducing an affine-invariant representation
of the depth map, ensuring accurate predictions regardless
of camera orientation or viewpoint changes. Leveraging
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FIGURE 6. Estimated depth for different patch locations (patch scale: 5%): the patch is designed to create an illusion of the target region
appearing farther.

multi-task learning, the model combines depth estimation
with tasks like normal estimation and instance segmentation,
enhancing overall scene understanding and boosting depth
prediction robustness. The model benefits from extensive
data augmentation, simulating diverse and realistic scenarios
through geometric transformations to enrich the training
dataset. Trained on a large-scale dataset encompassing
various scenes, camera poses, and lighting conditions, the
DiverseDepth model excels in predicting depths accurately
under real-world variations. Additionally, it estimates depth
uncertainty, crucial for assessing the reliability of predictions
in different image regions. As a result, DiverseDepth achieves
state-of-the-art performance on benchmark datasets, demon-
strating its significant contribution to advancing monocular
depth estimation.

Monodepth2 [11] is based on the general U-Net archi-
tecture, i.e. an encoder-decoder network, enabling the
representation of both deep abstract features as well as local
information. The ResNet18 [32] pretrained on ImageNet [33]
was used as the encoder and the decoder was based on several
convolution and upsampling layers with skip connections
used to decode the output back to the input resolution.
Monodepth2 builds upon the original Monodepth model, sig-
nificantly improving depth estimation performance. Notably,
Monodepth2 adopts an unsupervised learning approach,
utilizing monocular video sequences for training without
the need for ground truth depth annotations. The model
employs a geometry-based loss to enforce consistency in
predicted depth and ego-motion across consecutive frames,
encouraging accurate depth estimation aligned with the
scene’s geometry. Its encoder-decoder architecture captures
multi-scale features and employs skip connections for
enhanced depth prediction. Furthermore, Monodepth2 offers
the capability of estimating monocular ego-motion, making
it valuable for comprehensive scene understanding and
visual odometry tasks. The model’s unsupervised nature and
ability to predict both depth and ego-motion have made it
a significant advancement in monocular depth estimation,

yielding competitive results on benchmark datasets while
reducing the reliance on costly ground truth annotations.

GLPdepth [34] involves a hierarchical transformer encoder
to capture global context and a lightweight, efficient decoder
for local connectivity. They employ a selective feature fusion
module to connect multi-scale local features and the global
decoding stream, allowing the network to produce more
accurate depth maps with fine details. Additionally, the
proposed decoder outperforms previous models with lower
computational complexity. They enhance depth-specific aug-
mentation techniques based on an important depth estimation
observation, achieving state-of-the-art results on the NYUv2
dataset. Their approach demonstrates better generalization
and robustness compared to other models.

MIMDepth [35] is an approach that leverages masked
image modeling (MIM) for self-supervised monocular depth
estimation. While MIM has traditionally been used for
pre-training to learn generalizable features, authors proposed
its adaptation for the direct training of monocular depth
estimation. Their experiments revealed that MIMDepth
exhibits greater robustness to various challenges, including
noise, blur, weather conditions, digital artifacts, occlusions,
as well as both untargeted and targeted adversarial attacks.

B. DATASETS
The patch was trained on indoor scenes from NYUv2 dataset
[36]. The NYUv2 dataset is a widely used benchmark dataset
for depth estimation and 3D scene understanding in computer
vision. It was introduced by Silberman et al. in 2012 and
is an extension of the original NYU Depth dataset. The
NYUv2 dataset provides RGB-D data, consisting of RGB
images and corresponding depth maps, captured from a
variety of indoor scenes. The dataset contains images and
depth maps from a diverse set of indoor scenes, captured
with Microsoft Kinect cameras. The scenes include various
rooms, objects, and furniture arrangements. Each RGB-D
data sample in the dataset includes a high-resolution RGB
image (640 × 480 pixels). The RGB images capture the
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color information of the indoor scenes. The dataset provides
aligned depth maps for each RGB image, obtained from the
Kinect depth sensor. The depth maps contain per-pixel depth
information, allowing researchers to perform monocular
depth estimation and other 3D scene understanding tasks. The
NYUv2 dataset comprises a significant amount of data, with
over 1449 RGB-D samples. This large-scale nature makes it
suitable for training and evaluating deep learningmodels. The
indoor scenes in the dataset cover a wide range of challenging
scenarios, including occlusions, cluttered environments, and
varying lighting conditions.

We conducted our experiments on a TeslaV100 GPU. The
models were implemented using Python version 3.10.12 and
PyTorch [37] version 2.1.0. In our optimization process,
we employed the Adam optimizer [24], with a learning
rate (lr ) set at 0.001, along with β1 = 0.9 and β2 =

0.999 for momentum parameters. Our optimization proce-
dure extended across 200 epochs. The details of various
attack hyperparameters can be found in Table 3, and a
comprehensive list of applied transformations is available in
Table 4.
Same as in [9], the patch resolutionwas configured at 256×

256 pixels, yet its apparent size within the input image was
changed by the patch transformation block.

TABLE 3. Attack hyper-parameters.

TABLE 4. Transformation distribution.

V. EXPERIMENTS
To validate the effectiveness of our proposed method,
we conducted a thorough analysis of the vulnerabilities
exhibited by anMDEmodel trained on indoor scene data. Our
approach involved generating adversarial examples to evalu-
ate the model’s robustness to potential attacks. By crafting
adversarial examples using our proposed technique, we were
able to manipulate the input data in subtle yet strategic ways,
aiming to deceive theMDEmodel during its depth estimation
process. These adversarial examples were carefully designed
to conceal specific objects, alter their perceived depths,

FIGURE 7. Effectiveness of SAAM in concealing objects: Placing the patch
on target objects changes its predicted depth in a way that the object is
blended with the background.

or induce other misinterpretations, challenging the model’s
ability to accurately understand the scene.

We systematically evaluated the performance of the MDE
model by feeding it these adversarial examples and com-
paring the resulting depth estimations with the ground truth
data. Through comprehensive experimentation and analysis,
we gained insights into the model’s vulnerabilities and
potential weaknesses, highlighting the need for robustness
against adversarial attacks.

A. EVALUATION METRICS
To assess the efficacy of our proposed adversarial attack,
we rely on two widely used metrics employed in previous
works [7], [9]: the mean depth estimation error (Ed ) and the
ratio of the affected region (Ra).
For calculating Ed , we consider the depth prediction of the

adversarial object and compare it with the depth prediction
of the benign object, using the latter as the ground truth. This
metric quantifies the extent of the attack’s effectiveness in
altering the perceived depth of the affected region. A higher
value of Ed indicates a more successful attack, as it signifies a
larger divergence between the predicted depth and the ground
truth. The Ra metric, on the other hand, measures the ratio of
the affected region, i.e., the proportion of the scene where the
depth estimation has been altered by the adversarial patch.
A higher value of Ra indicates a larger portion of the scene
being affected by the attack, highlighting the patch’s ability
to conceal objects or modify their depth over a significant
area.

By utilizing these metrics, we quantitatively evaluate the
performance of our proposed adversarial attack, providing
valuable insights into its effectiveness and impact on the
depth estimation process. A higher mean depth estimation
error and a larger affected region ratio indicate a more potent
attack, reinforcing the significance of our findings and the
need for robust defenses against such adversarial attacks on
depth-based computer vision systems.
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The depth estimation error (Ed ) is defined as follow:

Ed =

∑
i,j(|dclean − dadv| ⊙MP)∑

i,jMP
(13)

Ra measures the ratio of pixels that their depth value has
changed above a certain threshold with respect to the number
of pixels in MP. Any change in pixel’s depth value above
0.1, that pixel is considered as affected. I (x) is the indicator
function that evaluates to 1 only when the condition x is true.
The ratio of affected region (Ra) is defined as follow:

Ra =

∑
i,j I ((|dclean − dadv| ⊙MP) > 0.1)∑

i,jMP
(14)

B. SAAM EFFECTIVENESS
1) IN CORRUPTING THE DEPTH OF OBJECTS
In the initial experiment, we evaluated the impact of
adversarial patch attacks on the performance of the victim
depth estimation model. We examined how the presence of
the adversarial patch affected the accuracy and reliability of
the depth predictions produced by the model. By comparing
the results obtained with and without the adversarial patch,
we were able to assess the effectiveness and potential
vulnerabilities of the victim depth estimation model under
adversarial conditions. In un-targeted attacks, the objective
of the attacker is to corrupt the depth estimation of objects
in the scene without setting a specific target depth. In our
experiments, as depicted in Figure 5, we demonstrate the
effectiveness of our proposed adversarial patch in achieving
this goal. By crafting a patch that covers only 1% of the input
image, we were able to generate an adversarial patch capable
of significantly disrupting the target regions depth estimation.
The results presented in Table 5 illustrate the effectiveness of
our proposed untargeted adversarial attack. Remarkably, even
with a patch size as small as 0.7% of the input image, we were
able to achieve a substantial 57% depth error.

Observations indicate that bothMIMDepth and GLPDepth
demonstrate increased resilience against our adversarial
patch. However, it’s worth noting that a substantial level of
corruption remains, with depth estimation error rates of 47%
and 49%, respectively, when considering a patch scale of 5%.

TABLE 5. Effect of un-targeted adversarial patch on victim models in
terms of depth estimation error (Ed ).

The findings in Table 6 indicate that the adversarial patch’s
impact on the depth estimation is extensive, with an almost
100% ratio of the affected region. This means that the vast
majority of the overlapped region from the scene is influenced
by the patch, leading to significant distortions in the depth
perception.

TABLE 6. Effect of un-targeted adversarial patch on victim models in
terms of ratio of affected region (Ra).

The ability to disrupt the scene depth without a specific
target depth in mind highlights the far-reaching consequences
of adversarial attacks and raises important concerns for
applications relying on accurate depth estimation, such as
autonomous vehicles, robotics, and augmented reality.

In a targeted attack setting, we use the depth loss presented
in equation 11, we set c = 1 to indicate that the attacker’s
goal is to alter the depth of the target region to the farthest
point in the scene as illustrated in Figure 6. By crafting a patch
that covers 5% of the input image, we were able to generate
an adversarial patch capable of significantly disrupting the
overall scene depth estimation. The patch strategically alters
the depth perception of multiple objects in the scene, causing
distortions and misinterpretations by the depth estimation
model.

TABLE 7. Effect of targeted adversarial patch on victim models in terms
of depth estimation error (Ed ).

The same patch achieves 60% depth error with 99%
affected region. These findings further emphasize the
substantial disruption caused by the adversarial patch on
the depth estimation process. The high depth error and
near-complete coverage of the scene’s affected region indi-
cate a widespread and significant distortion of the perceived
depth across multiple objects and regions within the image.

Attacking both MIMDepth and GLPDepth resulted in
substantial corraption of the estimated depth. For instance,
as shown in Tables 7 and 8 using a patch of a scale 1% resulted
in an Ed of 0.38 and 0.42 and a Ra of 0.96 and 0.97 for
MIMDepth and GLPDepth, respectively.

TABLE 8. Effect of targeted adversarial patch on victim models in terms
of ratio of affected region (Ra).

2) IN CONCEALING OBJECTS
In this section, we assess the effectiveness of our attack in
achieving the objective of concealing objects and making
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FIGURE 8. The comparison of the impact of (a) Random noise and (b) SAAM on the model performance
under different transformations reveals distinct effects on the depth estimation model.

them blend with the background. By applying the patch
strategically to specific objects within the scene, we analyze
the resulting depth estimations and observe how effectively
the objects remain concealed. We explore the capability of
our adversarial attack to seamlessly blend targeted objects
with the background. By manipulating the depth estimations,
we aim to achieve a visual effect where the objects appear
as natural components of the scene, effectively reducing
their visibility and distinctiveness. We evaluate the blending
performance through both quantitative metrics and visual
assessments, comparing the modified scenes with their
original counterparts to discern the extent of successful
blending. As shown in Figure 7, by setting the variable c equal
to the depth of the surroundings, our proposed adversarial
patch successfully achieves the effect of making the target
object blend seamlessly with its environment.

C. SAAM STEALTHINESS
The Structural Similarity Index (SSIM) is a widely used
metric to quantify the similarity between two images,
assessing how close the generated patch is to the original
benign target image. In our evaluation, as presented in
Table 9, the computed SSIM value between the generated

patch and the natural image is exceptionally high, with a score
of 0.91 for a patch scale equal to 1%. Such a high SSIM score
indicates that the adversarial patch is highly similar to the
natural image, making it visually indistinguishable to human
observers.

TABLE 9. Structural Similarity Index (SSIM) between the benign target
image and the generated patch for different patch scales.

D. SAAM VS BASELINE ATTACKS
FGSM [15] is a single-step, gradient-based, attack. An
adversarial example is generated by performing a one step
gradient update along the direction of the sign of gradient at
each pixel as follows:

xadv = x − ϵ · sign(∇xJ (x, y)) (15)

where ∇J () computes the gradient of the loss function J and
θ is the set of model parameters. The sign() denotes the sign
function and ϵ is the perturbation magnitude.
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FIGURE 9. SAAM vs adversarial patch [9], FGSM [15] and MI-FGSM [38]: A comparison of the four methods in terms of their
effectiveness and impact on model performance.

MI-FGSM [38] introduced a momentum term to stabilize
the update direction during the iteration.

gt+1 = µ · gt +
∇xJ (xadvt+1, y)

∥ ∇xJ (xadvt+1, y) ∥1
(16)

xadvt+1 = xadvt − α · sign(gt+1) (17)

We conducted a comparative analysis between our tech-
nique and FGSM and MI-FGSM. Our experiments involved
running FGSM with a noise magnitude of epsilon = 8/255.
For MI-FGSM, we used epsilon = 8/255, alpha = 2/255,
executed 10 steps, and applied a decay factor of 1.0.
As demonstrated in Table 1, our approach yields a depth
estimation error of 0.58, whereas FGSM and MI-FGSM
exhibit errors of 0.12 and 0.078, respectively. Our technique
also achieves an impressive ratio of the affected region,
registering at 0.99. In contrast, FGSM and MI-FGSM only
manage to attain a modest ratio of 0.23 and 0.16, respectively.

TABLE 10. SAAM vs Baseline attacks: FGSM and MI-FGSM.

E. SAAM VS PATCH-BASED ATTACKS
In addition to its stealthiness, our adversarial patch also
demonstrated superior performance in deceiving the monoc-
ular depth estimation model. Through careful design and
optimization, the patch was able to effectively exploit the
vulnerabilities of the model, leading to significantly altered
and inaccurate depth predictions. Compared to other attack
methods, our patch exhibited a higher success rate in fooling
the depth estimation model, highlighting its effectiveness in
undermining the model’s performance. In fact, For a patch
size of 5%, SAAM achieves a substantial 58% depth error,
while the Adversarial patch method achieves a lower 40%
depth error.

TABLE 11. SAAM vs patch-based attacks.

F. SAAM VS RANDOM PATCH
While adversarial patches are purposefully designed to
exploit model vulnerabilities and achieve specific objectives,
random patches are not designed with any specific objective
in mind. They are typically generated by randomly selecting
or generating patterns or images, without considering their
impact on the model’s output. Random patches lack the
intentional manipulation and optimization seen in adversarial
patches, and therefore do not possess the same level of
effectiveness in influencing the model’s decision-making
process. In Figure 8, (1) & (2) illustrates how placing random
noise in the scene doesn’t have an impact on the depth
prediction. However, for (3) & (4), SAAM is effective in
manipulating the predicted depth even under perspective
changes and rotations. Moreover, as indicated in Table 12,
when quantitatively assessing the performance of our patch
SAAM in comparison to a random patch, a notable disparity
emerges. The random patch demonstrates minimal influence
on the model’s predicted depth compared to SAAM. In
fact, our patch implementation achieves a depth estimation
error (Ed ) of 0.58, whereas the random patch yields a mere
0.01 error, with Ra = 0, signifying the ratio of pixels whose
depth values have altered by more than 0.1. Notably, SAAM
achieves an impressive Ra value of 0.99, indicating that all
pixels undergo a change surpassing 0.1 in depth value.

Regardless of rotation, perspective changes, resizing,
or any other applied transformation, our patch retains its
effectiveness in manipulating the model’s predictions. This
robustness enables the patch to maintain its adversarial
impact under different real-world conditions and ensures that
it can be successfully deployed in a wide range of scenarios.
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FIGURE 10. Impact of occlusion on patch effectiveness.

TABLE 12. SAAM vs random patch.

VI. DISCUSSION
A. IMPACT OF OCCLUSION ON PATCH EFFECTIVENESS
Despite only a portion of the patch being visible in the
captured image, its presence still had a significant impact
on the depth prediction, leading to an inaccurate estimation.
This observation highlights the vulnerability of the depth
estimation model to adversarial perturbations, even when
only a fraction of the perturbation is visible.

The effectiveness of the patch in influencing the depth
prediction can be attributed to the model’s reliance on local
image features and its susceptibility to small perturbations
in those features. The adversarial patch, carefully designed
to exploit these vulnerabilities, can disrupt the model’s
perception of depth by introducing misleading cues or
altering the local features relevant to depth estimation.

B. SAAM ROBUSTNESS AGAINST INPUT
TRANSFORMATION-BASED DEFENSES
We thoroughly evaluate the capability of our technique
to withstand diverse sets of transformations, we use three
commonly used defense approaches that perform input
transformations without re-training the victim models to
assess the robustness of our patch against these defenses. We
use JPEG compression [39], addGaussian noise [40],Median
blurring [41].
The outcomes of our experiments, as showcased in

Tables 13, 14, and 15, substantiate the superiority of our
proposed technique over the adversarial patch by Yamanaka
et al. [9]. Our method consistently yields a higher attack
success rate across the diverse transformations considered.
This serves as compelling evidence of the resilience and

effectiveness of our approach when facing real-world dis-
tortions, affirming its potential for practical application in
adversarial attacks on the targeted system.

TABLE 13. Mean depth error when applying JPEG compression.

TABLE 14. Mean depth error when applying median blur.

TABLE 15. Mean depth error when applying Gaussian noise.

C. FUTURE WORK
In our research, we have introduced the Stealthy Adversarial
Attack on Monocular Depth Estimation (SAAM) technique,
a significant advancement in the field of adversarial attacks
on monocular depth estimation (MDE). Yet, there are
promising directions for future exploration:

• Defense Mechanism Development: Future research can
be dedicated to the creation and evaluation of robust
defense strategies capable of effectively countering
stealthy adversarial patches like SAAM, ensuring the
integrity and reliability of MDE systems.

• Multi-Objective Attacks: An intriguing avenue is the
investigation of adversarial patches designed to simul-
taneously impact depth estimation and other computer
vision tasks, such as object detection or semantic
segmentation. Multi-objective attacks present complex
challenges and have profound implications for overall
system reliability.
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• Cross-Modality Threats: Research can delve into
cross-modality adversarial attacks, where patches
initially designed for MDE are extended to interfere
with other sensors like lidar or radar. This expansion of
the attack vector poses a more comprehensive security
threat, particularly in the context of sensor fusion
systems.

These research directions promise to further our understand-
ing of adversarial attacks in MDE and contribute to the
development of robust countermeasures to safeguard critical
applications.

VII. CONCLUSION
In this paper, we introduce a novel patch-based adversarial
attack named SAAM, specifically designed to compromise
Monocular Depth Estimation (MDE)-based vision systems.
SAAM is a carefully crafted patch that can completely
conceal objects or manipulate their perceived depth within a
scene. The experimental results confirm that the SAAMpatch
can successfully compromise MDE-based vision systems,
highlighting the vulnerability of such systems to physical
adversarial attacks. This research sheds light on the potential
risks posed by adversarial attacks in real-world applications
where MDE plays a crucial role, such as autonomous
vehicles, robotics, and augmented reality. In fact, our patch
achieves almost 60% mean depth estimation error, with
almost 100% of the target region being affected. Our
proposed method is designed to be applicable to the real
world and practical scenarios. The generated adversarial
patch is optimized to be effective in real-world settings
and is designed to deceive depth estimation systems when
observed through cameras or sensors. Once the patch is
generated, it can be easily printed and used in the physical
world without the need for any specialized equipment or
complex setup. By demonstrating the susceptibility of depth
estimation systems to such adversarial attacks, our research
emphasizes the need for robust defense mechanisms to
enhance the reliability and security of depth-based computer
vision applications, including those in autonomous vehicles,
surveillance, and augmented reality.
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