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Deep Learning-Based Assessment Model for
Real-Time Identification of Visual

Learners Using Raw EEG
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Abstract— Automatic identification of visual learning
style in real time using raw electroencephalogram (EEG) is
challenging. In this work, inspired by the powerful abilities
of deep learning techniques, deep learning-based models
are proposed to learn high-level feature representation for
EEG visual learning identification. Existing computer-aided
systems that use electroencephalograms and machine
learning can reasonably assess learning styles. Despite
their potential, offline processing is often necessary to
eliminate artifacts and extract features, making these meth-
ods unsuitable for real-time applications. The dataset was
chosen with 34 healthy subjects to measure their EEG sig-
nals during resting states (eyes open and eyes closed) and
while performing learning tasks. The subjects displayed
no prior knowledge of the animated educational content
presented in video format. The paper presents an analy-
sis of EEG signals measured during a resting state with
closed eyes using three deep learning techniques: Long-
term, short-term memory (LSTM), Long-term, short-term
memory–convolutional neural network (LSTM-CNN), and
Long-term, short-term memory–Fully convolutional neural
network (LSTM-FCNN). The chosen techniques were based
on their suitability for real-time applications with varying
data lengths and the need for less computational time. The
optimization of hypertuning parameters has enabled the
identification of visual learners through the implementation
of three techniques. LSTM-CNN technique has the highest
average accuracy of 94%, a sensitivity of 80%, a specificity
of 92%, and an F1 score of 94% when identifying the visual
learning style of the student out of all three techniques.
This research has shown that the most effective method
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is the deep learning-based LSTM-CNN technique, which
accurately identifies a student’s visual learning style.

Index Terms— Raw-electroencephalogram, deep learn-
ing, machine learning, visual learner, classification, learn-
ing styles.

I. INTRODUCTION

LEARNING style plays a vital role in acquiring learning
skills; hence, the part of learning style cannot be ignored

in overall learning [1]. Learning style depends on one’s person-
ality, preference for learning in a group or individual, and level
of intelligence [2]. For achieving the ultimate learning goals in
a classroom setting, it is vital to use a combination of methods
to enhance Learning by addressing all the learning styles. The
learning styles are categorized into four types that correspond
to the four learning modalities: (1) visual, (2) kinesthetic,
(3) audio, and (4) tactile [3]. According to statistics, 70% of
students are visual learners, 20 % are auditory learners, and
10% fall into the remaining two categories. Hence, the focus
of this work is on the identification of the visual learning style,
as most people are visual learners in real time.

A real-time learning system is important as assessing learn-
ing styles is helpful for teachers and students to improve their
grades. Therefore, obtaining this assessment during learning
is essential to enhance learning. That’s why it is crucial to
have a real-time system. Real-time assessment tailored for
visual learners has numerous applications across education.
Some examples of applications include 1) Interactive Quizzes,
2) Digital whiteboards, 3) Simulations, 4) Data visualiza-
tion, and 5) Video feedback. These applications cater to the
visual learning style, enhancing engagement and comprehen-
sion through real-time visual assessment methods. However,
these are all subjective measures and suggesting someone’s
learning style without looking into their brain patterns can
only increase the cognitive load. Therefore, it is important
to consider objective measures by looking into brain pat-
terns using neuroimaging techniques such as EEG. In current
practices, objective measures are used for feature extraction
using handcrafted feature extraction techniques. That requires
preprocessing of EEG data, which cannot be done in real-time,
resulting in delayed feedback; however, to enhance learning
outcomes, it is required to provide feedback in real-time just
after the learning is performed.

Visual learners are those who learn best through visuals,
and these visuals include pictures, videos, presentations, etc.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9984-3889
https://orcid.org/0000-0001-7777-1119
https://orcid.org/0000-0003-1085-3157


JAWED et al.: DEEP LEARNING-BASED ASSESSMENT MODEL 379

[3]. In other words, visual learners are the ones who learn by
visual descriptors. The subjective measures to identify visual
learning style are based on self-assessment; hence, they can
be dubious, that is, one identifies oneself as a visual learner.
But, in reality, this is just a learned behaviour, and the brain
patterns suggest something different [3]. As Learning and,
correspondingly, the learning style is related to brain neuronal
dynamics, it is therefore important to directly investigate brain
patterns to assess the learning style. Thus, brain modalities
such as electroencephalogram (EEG), functional near-infrared
spectroscopy (fNIRS), magnetoencephalography (MEG), and
functional magnetic resonance imaging (fMRI) can be used
to compute objective measures for tracing brain patterns
during visual learning [4], [5], [6], [7]. However, EEG is
the only feasible modality for real-time processing in an
outside environment (like a classroom) because of its mobility,
accessibility, and ease of use. Hence, this paper focuses on the
use of EEG to study brain patterns for real-time identification
of visual learning styles in people.

In neural engineering, neuroscience, and biomedical
research, electroencephalography (EEG) is very popular. It
is commonly used for many medical and non-medical appli-
cations, such as the diagnosis of depression, assessment
of mental workload, and seizure detection [8]. Due to its
noninvasive nature, resolution, high mobility, high temporal,
and low cost, it is commonly used. The challenge lies in
real-time automatic Classification of the EEG data, which
could be more beneficial for practical applications and more
attractive for professionals due to lower training complexity.
The brain generates EEG signals that are recorded from the
scalp. These signals can be recorded during rest or while
performing tasks. Next, the EEG dataset stores voltage and
channel information in a matrix. Due to its time-series nature,
EEG data is beneficial for machine learning tasks.

Since this work focuses on visual learning styles, reviewing
some of the most recent works to identify visual learning styles
using EEG is important. Visual learning style is essential as
most learners are visual learners [9], [10], [11]. The category
encompasses various items, including visuals like pictures,
graphs, videos, images, and written materials such as words.
Here, the overview of some selected works is presented that
used EEG to classify visual learning styles. In [1], the visual
and reading part of the Visual, Audio, Reading, Kinesthetic
(VARK) test was used along with P200 amplitude to measure
event-related potential at the occipital site on the scalp. These
students were divided into two groups under visual learning
modality groups; visual learners (who learn by looking at pic-
tures) and verbal learners (who learn by reading (books, arti-
cles, and flashcards). The study concluded that there was a psy-
chological difference between students who were visual learn-
ers and those who were readers. The visual Learner’s students
had a higher peak of P200 compared to the readers [1]. This
study sees the difference between the two categories, that is,
between visual and reading learners. Thus, additional work is
required to classify all the categories of visual learning styles,
such as videos, presentations, multimedia, and animations.

A study examined the brain reactions of individuals pre-
sented with a learning style that doesn’t match their brain
pattern [12]. The study compared visual and verbal learners
using 135 healthy, right-handed students. The indexed learning

style test [12] determined their learning style, and their EEG
was recorded while they viewed pictures of animals. The data
categorized students as visual or verbal learners. It showed
that visual learners’ theta waves decreased and beta waves
increased during a verbal task, while verbal learners had higher
theta waves and lower beta waves. The conclusion was that
visual learners’ concentration decreases during a verbal task
[12]. The drawback was it does not cover all the aspects of
visual modalities, such as Learning using texts, videos, and
PowerPoint presentations. Thus, further analysis is required.

Another research [13] identified students’ visual learning
styles who used electronic learning mediums for Learning.
The number of participants in this study was one hundred and
eighteen. The idea was to use a bio-inspired chatbot using
VARK modified test to identify the visual learning style of
students who are either introverts or extroverts. After two
minutes of learning content, the VARK test was recorded to
identify the visual learning style. It was observed that while
watching the learning content, the beta waves recorded from
the whole brain of visual learners were higher. This EEG-
recorded data was then classified using Naïve Bayes and
Clustering algorithms. The classification accuracy was 93 %.
The result showed that the bio-inspired chatbot method took
less time to classify learners. The limitation of this work [13]
is that it could only be used to identify the learning style of
specific personality types, such as introverts and extroverts,
for E-learning systems, not covering all personality types and
not all aspects of visual learning modality.

Another work [14] was done to identify the visual learning
style of the students using the VARK test and physiological
signals such as heart rate and blood pressure. The study group
included thirty university students and forty primary school
students. The students were asked first to see the video, and
later, they were supposed to fill out the VARK Performa. The
physiological signals were recorded while watching the videos.
The increased blood pressure and heart rate were observed
in students who were not visual learners. Later the data
were classified using a decision tree classifier. For university
students, 90 % classification accuracy and 85 % accuracy
were achieved for primary school students. The results also
concluded that most of the participants were visual learners.
Although the author claimed that physiological signals could
be used for the Classification, they did not consider factors
such as; (1) the nervousness of students and (2) introverted
personality type. If any of the above-mentioned factors are
true, the results are jeopardized, and the model’s classification
accuracy is no longer reliable. Thus, a more reliable approach
is directly looking at the brain patterns addressed in the current
study.

Although many existing studies work on identifying the
visual learning style of students [15], [16], [17], [18], [12],
[14], and [13], they have certain limitations that are summa-
rized below.

Researchers use learning models [19], [20], [21] to identify
students’ learning styles, but these models are based on
self-assessment methods that can be biased. Existing studies
[15], [16], [17], [18] use resting state EEG and synthetic EEG
to correlate with self-assessment-based learning styles [19],
[20], but synthetic EEG is not accurate and may not depict
real scenarios. ML models have task dependencies [19], [20],
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meaning one model may not fit all scenarios and datasets.
Some models may work well for certain datasets but fail for
others [15], [16], [17], [18].

The biggest limitation of existing studies is that their
methodology cannot be implemented on raw EEG for real-
time applications, as the existing studies used machine learning
techniques with handcrafted features. The accuracy of hand-
crafted features from EEG data is typically low. This is
especially true when dealing with a small dataset, which
can result in bias. Handcrafted feature extraction is also
expensive and requires professional knowledge [22], [23]. It
often overlooks high-level features derived from lower-level
features. The solution is hierarchical Learning, also known as
deep Learning, which creates high-level model abstractions
of the data. This paper proposes using deep Learning for the
real-time classification of visual learners using raw EEG.

II. DEEP LEARNING FOR REAL-TIME CLASSIFICATION
OF VISUAL LEARNING STYLE USING EEG

Deep Learning was not considered the best option for
classifying EEG signals in the past due to its long compu-
tational time and vanishing gradient problems [24]. Recent
developments, such as large datasets and GPUs, have given
deep learning researchers an inexpensive solution to their
hardware bottleneck. Investigating deep learning architectures
with many hidden layers is now easier. These technological
discoveries make people more interested in deep-learning
applications. Deep networks optimize parameters automati-
cally, making them useful for medical research with massive
datasets that are difficult to interpret. Even experts face dif-
ficulty in interpreting medical data [25]. Another limitation
of dealing with a large dataset is the need for preprocessing,
which is tedious and time-consuming. In this scenario, deep
learning-based models can simplify the processing by doing
end-to-end preprocessing, feature extraction, and Classification
while performing well.

Deep Learning has been used with EEG data [26], [27].
It can improve existing EEG models in various ways. For
example, it can automatically extract features from raw EEG,
eliminating the need for data preprocessing. These features are
more expressive and capable of high-level performance. Deep
Learning can also help develop EEG-based generative mod-
eling, improving performance and representation for different
tasks and subjects [26], [27].

EEG datasets are often analyzed using a Convolutional
neural network (CNN), Recurrent neural network (RNN), and
Long-term short-term memory (LSTM). The most commonly
used activation function is Rectified Linear (ReLU), followed
by Sigmoid (S-Shape curve) and SoftMax (logistic function).
A literature review found that the highest accuracy of 87%
[28] was achieved with two LSTM layers and one dense layer,
while the next best accuracy of 82% was achieved with CNN
alone. This suggests that combining multiple deep learning
architectures with dense layers can improve classification
accuracy [28].

Researchers have not extensively explored the use of deep
learning in learning tasks related to mental workload [29]. Fur-
ther research is necessary to determine the best combinations
and arrangements of layers and to compare and interpret raw

versus clean EEG. This study uses deep learning to identify
visual learning styles, which is a stable way to access learning
styles without self-assessment. The study does not use any
tools that require self-assessment. The main contribution of
this work is identifying visual learning styles using deep
Learning, which is summarized as follows:

1) A reliable and unbiased method for identifying students’
learning styles is proposed. EEG is recorded during
Learning without any self-assessment tool, making it
unbiased. The use of raw EEG data makes it more reli-
able. Using the EEG data, real-time results are achieved
by identifying the student’s learning style.

2) To improve accuracy, the proposed framework can auto-
matically learn delicate and thorough features from raw
EEG. This is achieved through the use of trainable
LSTM, LSTM-CNN, and LSTM-FCNN architectures.
Thus, this new assessment model is introduced to
identify visual learning styles using the F-measure.
This model represents state-of-the-art modality-based
assessment. The proposed method combines temporal
modelling, feature extraction, and summary generation
into a single end-to-end architecture.

Deep learning models have shortcomings. Existing models
have single structures, and there aren’t enough samples to train
them. To address this, batch normalization and dropout layers
are added to LSTM layers to learn features effectively. Raw
EEG segments are divided into non-overlapping chunks to
increase available data for training and testing. This proposed
scheme is beneficial for real-time identification of visual
learning styles using raw EEG signals.

Inspired by the lack of identifying visual learning style
in real-time in global features. We proposed a deep
learning-based model for identifying visual learning styles in
real time using raw EEG signals considering global features.

In this work, the main contribution can be summarized as
follows:

1) An unbiased and reliable method is proposed to identify
student’s learning styles. The EEG is recorded, and no
self-assessment tool is involved in the data collection
process, making it unbiased. Secondly, the EEG data is
not synthetic, which makes it more reliable. For the first
time, we have used deep learning on raw EEG to identify
the student’s learning style to achieve better results.

2) Delicate and thorough features of raw EEG are automati-
cally obtained in the proposed framework using trainable
LSTM, LSTM-CNN and LSTM-FCNN architecture.
These features are especially learned from the raw EEG
to improve the accuracy of the proposed method. We
set a new state-of-art modality-based assessment model
for the identification of learning styles measured by
F-measure. Our proposed method combines temporal
modeling, feature extraction, and summary generation
into an end-to-end architecture.

3) The following shortcomings of deep learning models
are also addressed by our proposed model. First, the
existing deep learning models consist of comparatively
single model structures. Secondly, the small number of
available samples which are not enough to train a deep
model. To solve the above-mentioned concerns, first, the
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Fig. 1. Example of multiple choice question [30].

batch normalization layer and dropout layer are added
into the traditional LSTM layers for learning features,
that can help in identifying the learning style effectively.
Second, to increase the number of samples for training
and testing the segments of raw EEG were divided into
non-overlapping chunks, which can benefit the network
by increasing the available data for fully training a deep
model. The research findings of this study have shown
that the proposed scheme is beneficial in identifying the
student’s learning style using raw EEG signals.

III. MATERIAL AND METHODS

This section discusses the research work’s data collection
and explains the overall process comprehensively.

A. Participants
Thirty-four (34) university participants, aged 18 to 30 years

with an average of 23.17±3.04, were recruited for the exper-
iment. They had normal or “corrected to normal” vision,
no neurological disorders or hearing impairments, and were
not taking any medications. Before the trials, participants
signed an informed consent document, and the Ethics Coordi-
nation Committee approved the research study [30].

B. Tasks
The test had two tasks: Task 1 was for learning, and

Task 2 was for memory retrieval. Task 1 used 8-10 minutes of
animated human anatomy materials to teach participants with-
out prior knowledge. It was suitable for assessing Learning
and skills. Task 2 consisted of 20 multiple-choice questions
related to the animated content. Participants had 30 seconds
to answer each question, and each question had four options
with only one correct answer. Figure 1 displays an example
question from the test.

C. Procedure
The participants followed a particular order to perform the

test. First, the memory test was conducted. Then, the partic-
ipants were divided into two groups based on the memory
test score. The details are explained in the experiment and
the result section of this paper. The process was followed
by the eyes open/eyes closed EEG recording. The third step
of the process was to show learning tasks to participants,
followed by the retrieval (recall) sessions. After the learning
tasks, the participants were given a 30-minute break before
starting the retrieval task (recall session 1). Then, the par-
ticipants performed the same retrieval task after 2 months

(recall session 2). Next, the EEG was recorded for eyes open
resting state; eyes closed resting state, learning sessions, recall
session 1, and recall session 2. We have used resting state data
for this analysis to investigate the Classification of the visual
learning style.

The experiment has 2D visuals without the speech. The
participants learned in the experiment using visual pathways
only. The EEG is recorded from the whole brain. However,
the frontal, parietal, and occipital EEG signals were consid-
ered for analysis as these regions are activated during visual
information processing and learning.

The first three sessions were Learning sessions representing
the encoding of new information because, in these sessions,
new information was given to the participants. On the other
hand, the results of the recall sessions explain how well
the students retain new information. Both the learning and
recall sessions provided the ground truth data of whether
the participant was a visual learner. Research suggests that
individuals who identify as visual learners often exhibit better
comprehension and retention of newly acquired information,
leading to improved performance on assessments.

However, resting-state data, where a subject is not engaged
in a specific task, provides valuable insights into inherent
brain connectivity patterns. During the resting state, the
brain’s spontaneous activity reflects its baseline functioning.
Analysing this intrinsic activity can reveal distinct patterns
associated with various cognitive traits, including visual learn-
ing styles. Resting-state data allows researchers to identify
consistent neural networks related to visual processing, even
without a specific learning task. Patterns detected during rest
can indicate how an individual processes visual information,
aiding in the identification of visual learners. Machine learn-
ing techniques analyse these resting-state patterns, discerning
unique brain signatures linked to visual learning [36]. In
rest state Eyes-closed resting state data is often selected in
studies because it provides a stable and consistent baseline
for measuring brain activity. When participants close their
eyes, it reduces visual input and minimizes external stimuli,
allowing researchers to focus on intrinsic brain activity. Their
controlled environment enhances the reliability of data analysis
and interpretation. Therefore, analyzing the results of resting
state sessions allows the development of a model for real-time
identification of a visual learner that is highly reliable and can
also be implemented in real-life scenarios.

A pre-test was conducted to ensure that the participants had
no background knowledge. Participants were asked to read
and answer 10 questions in the pre-test based on learning
the animated content. Based on the results of this pre-test,
exclusion criteria were created. It separates and excludes
participants who managed to answer more than 10 %. The
learning task was presented to the participants using a 42-inch
TV screen positioned 1.5 meters away from them. The tasks
were executed using E-Prime Professional 2.0 (Psychology
Software Tools, Inc., Sharpsburg, PA) [34].

D. Electroencephalogram (EEG) Recording
The EGI EEG device with 128 channels HydroCel Geodesic

Sensor Net was used to continuously record the subject
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responses. The raw signals were amplified using the EGI
NetAmps 300 amplifier’s band-pass filter (0.1–100 Hz) and
sampled at a rate of 250 Hz with an impedance below
50 k�. Cz served as a reference electrode in the standard
net configuration.

E. Behavioral Data Analysis
The behavioural data was analyzed to evaluate the accuracy

of the information retrieved by participants during visual
learning and memory recall. The participants were given a set
of twenty questions, each with a duration of one minute. The
time window’s total length was calculated to be 1200 seconds,
which is equivalent to 20 minutes multiplied by 60 seconds.
The assessment of learning and memory performance relied
on the accuracy of responses and the time taken by each
participant to answer the questions. The reaction time is an
indicator of information processing speed related to cognitive
ability. The measurement of learning performance was based
on the percentage of accurate responses. The total number
of trials available per subject was calculated by multiplying
the number of subjects (34) by the number of multiple-choice
questions (20), resulting in a total of 680 trials. The assessment
of learning ability was conducted using the RAPM (Raven
Advanced Progressive Matrices). It is a test of working
memory. Here, a memory test is used for categorizing Visual
learners and non-visual learners as memory plays an important
part in learning as the learned information is stored in memory.
Thus, learning and memory are related. The control variable
that is used for categorizing groups is fluid intelligence,
which is measured using Raven’s advanced progressive matrix
(RAPM). It is a non-verbal test that commonly and directly
measures two components of a fluid’s cognitive ability, defined
as: (i) “the ability to draw meaning out of confusion” and
(ii) “the ability to recall and reproduce information that has
been made explicit and communicated from one to another”.
The subjects are divided into two equal groups using the
median score of the RAMP test [27]. Based on the median
score, the subjects who scored equal or above the median are
considered visual learners, and those who scored less than the
median are considered non-visual learners.

IV. METHODOLOGY

Deep learning models, a subset of machine learning, are
designed to automatically learn and improve functions by
analyzing algorithms. Deep learning models learn from data
to perform specific tasks. Deep learning models learn patterns
and extract global features from data. It has the ability to
handle unstructured data. In our case, raw EEG data, which is
unstructured, was given to the deep learning algorithm, which
finds patterns from noise in the data automatically. At the same
time, learning and adapting to new patterns make it highly
efficient for the task at hand.

The combination of Long Short-term Memory (LSTM) and
CNN forms a powerful model for handling time series data,
such as EEG signals.

Long Short-Term Memory (LSTM) Networks:
Sequential Learning: LSTMs are excellent at capturing

sequential patterns and long-term dependencies in time series
data.

Memory Cells: LSTMs use memory cells to store and
access information over long periods, making them ideal for
modelling temporal sequences.

Convolutional Neural Networks (CNN):
1D Convolutions: In time series data, especially EEG

signals, 1D convolutions are applied across the temporal
dimension to capture local patterns and dependencies in the
data.

Hybrid Model:
Combining Strengths: By combining CNNs for feature

extraction and LSTMs for sequential pattern recognition, the
LSTM-CNN hybrid model can capture both local patterns and
long-term dependencies in the time series data.

Advantages:
1) The synergy of CNNs and LSTMs enhances the accuracy

of predictions on time series data.
2). This architecture is versatile and can be adapted for

different types of time series data beyond EEG signals.
Challenges:
1) Building and training hybrid models require expertise

due to the complexity of integrating different neural network
architectures.

2) Computational Resources: Training such models
demands substantial computational resources, especially for
large-scale datasets.

Based on the above information it can be concluded that
Deep learning can particularly benefit from unfiltered data
where a high SNR ratio facilitates the deep learning-based
models to learn to discriminate features for robust classifica-
tion. Therefore, this study used the raw EEG data, which has
high SNR, and showed that such data, when used to train
a deep learning model, improves performance. The use of
raw data is also shown to work well for hyperdimensional
data. This proves right here as well, and higher classification
accuracy is achieved. Some other advantage of using deep
learning is: 1) There is no need to clean the data. 2) It is
capable of automatically detecting the most discriminating
hidden features that are overlooked by handcrafted methods.
3) The performance accuracy is way higher than machine
learning classifiers for all the sessions.

Based on that the problem is formulated as following:
1) Dataset: Let D be the dataset, consists of N number of

subjects i.e such visual learner and non visual learner.

D = {(x1, y1) , (x2, y2) , . . . , (xN , yN )}

xi represents the features of the ith subject, and yi is the
corresponding label or class.

2) Input Features: Let X represent the matrix input of
features

X =


x1
x2
...

xN


The i-th row of X (xi ) correspondiong to the feature of
i-th subject.
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3) Target Labels: Let Y represents the vectors of labels

Y =


y1
y2
...

yN


yi is the label of the i-th subject.

4) Model parameters: Let θ represent the parameter of the
classification model.

5) Prediction function:
The prediction function f0 maps input

Ŷ = f0(X)

Ŷ is the vector of the predicted label.
6) Loss function:

The objective function, J (θ), measures the difference
between true labels. It quantifies the cost of the model

J (θ) = Loss(Y, Ŷ )

7) Optimization:
The goal is to find the parameter θ that minimizes the
objective function:

θ∗
= argmin J (θ)

8) Decision Boundary for Binary Classification:
In binary classification, the decision boundary separates
the instances of one class from the other. For a linear
model, it can be represented as:

θ0 + θ1x1 + θ2x2 . . . + θN xN = 0

Here, θ0 is the basic term, θ1, θ2, . . . , θN are the weights.
For the problem of classification of visual learners, a hybrid
LSTM-CNN model is used. The model is formulated mathe-
matically as follows:

1) LSTM network:
• Input: x(t) represents the input of raw EEG data with

time t
• LSTM operation: h(t − 1)andc(t − 1) represent the cell

state and the cell state from the previous time step,
respectively.

• LSTM operation: LSTM x(t), h(t −1), c(t −1) denotes
the including forget, input, cell state, and output gates

• The complete LSTM operation is donated as follows:
h(t), c(t − 1) = LSTM (x(t), h(t − 1), c(t − 1))

2) CNN network:
• Input w (t)
• Convolution operation ∗ signifies the convolution oper-

ator applied to the input sequence.
• Activation function: σ() = denotes the activation func-

tion RELU. This will applied after the convolution
operator.

• The CNN operation can be represented as:

C N N (x(t)) = σ(x(t) ∗ f ilters)

3) Hybrid LSTM-CNN model:
• Combining LSTM and CNN: The CNN output and

LSTM hidden states are combined to produce a hybrid
LSTM-CNN

Fig. 2. The proposed assessment model uses deep learning classifiers
to recognize visual learning styles. The input to the pipeline is 1D raw
EEG signals and class labels at the training stage. The proposed model
is evaluated using a confusion matrix and predicted class labels.

• Fully connected layer: A fully connected layer is applied
for classification.

H ybrid output = Fullyconnected(C N N (x(t), h(t))

The above-mentioned notation integrates pattern recognition
from CNN and sequential pattern learning from LSTMs for
robust modelling of complex data, such as time series data
like EEG signals.

In short, the methodology proposed involves the use of
three deep learning techniques: Long-term, short-term memory
(LSTM), Long-term, short-term memory – Convolutional neu-
ral network (LSTM-CNN), and Long-term short-term mem-
ory – Fully convolutional neural network (LSTM-FCNN).
The classification models of deep Learning, including LSTM,
LSTM-CNN, and LSTM-FCNN, have been optimized for raw
EEG by hypertuning parameters that are outlined in the follow-
ing subsections. After completing the classification process,
the model’s performance is evaluated using metrics. The mod-
els are compared to determine which one has the highest level
of accuracy. The sub-sections provide a detailed explanation
of every step in the deep learning pipeline. Figure 2 presents
the pipeline proposed for deep Learning.

A brain-learning model has been developed for classifying
visual learners using deep learning techniques like LSTM,
LSTM-CNN, and LSTM-FCNN. This is necessary as con-
ventional machine learning techniques cannot process the raw
EEG data. LSTM, LSTM-CNN, and LSTM-FCNN are imple-
mented for classification to identify the optimum combination
that produces the best results.

A. Data Preparation
The dataset comprised an eyes-closed session. This session

consists of 34 subjects, with each subject’s EEG recording
lasting between 2 to 8 minutes. Each minute of these signals is
then segmented into samples of 15001. The segments extracted
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from various signals are pooled as a large dataset regardless of
origin. The large dataset was divided into training, validation,
and testing sets. There was no overlap between these sets,
as the signals for training and testing sets are divided and
separated before feeding to the classifier; therefore, there is no
mixing of testing and training datasets. The results presented
are based on completely unseen data and not on the same
signals.

Further, The EEG was recorded while answering the MCQ’s
questions. The EEG data is then divided into training and
testing from where 75% of the data goes to training and
15% of the data goes to testing where 10 % of the data
is used for validation which is the standard practice in the
Machine learning community. The instances are the EEG
data collected during resting state eyes open eyes close and
during performing learning tasks from the participants. After
the model development, the data is randomized into three
parts here 3-fold cross-validation is used for training, testing,
and validation. The training set is used to train the model;
however, testing is performed to evaluate the overall ability
of the dataset’s training part. Since there were 34 subjects,
we separated 26 subjects for training and 8 for testing. The
8-minute data for each subject were segmented into one
minute. Each data segment was then multiplied by a sampling
frequency of 250 Hz; hence, 15000 data points (60 seconds and
250 samples per second) for each sample were obtained. The
data is arranged in this way to facilitate the implementation
process. Out of 128 electrodes, 102 were selected that covered
all the brain regions. The excluded 16 electrodes cover the
areas of the neck and face, which may be contaminated with
artifacts; also, the data captured from these electrodes are
not required to analyze this problem. The input (15000,102)
consists of 15000 samples and 102 electrodes. The imple-
mentation of this format aims to increase the number of
samples. The segmented data undergoes the application of
classification models. The participants from class 1 and class
2 are randomly assigned to the groups. This randomization
helps in distributing both known and unknown confounding
factors evenly across groups, reducing the impact of artifacts
on one specific class.

The network specifications during the training phase are
summarized as follows.

• The categorical cross-entropy loss function is commonly
utilized in binary classification problems.

• The Adam optimizer was utilized with an initial learning
rate of 0.001. The first moment has an exponential decay
rate of 0.9, and the second moment has an exponential
decay rate of 0.999 through the heuristic approach. The
default value for the constant stability epsilon is 1e-7, and
the default value for the ASMGrad variant is ( False).

• Through experimentation, the values of 16 for batch
size, 15 for a number of epochs, and 400 for hidden
size were chosen for LSTM. The specifications for CNN
include a filter size of 256, a kernel size of 3, and the
use of the SoftMax activation function. The subsequent
model utilized is LSTM-FCNN. The chosen parameters
for LSTM are a batch size of 16, 15 epochs, and a hidden
size of 400. CNN uses a filter size of (128, 256, 128),
a kernel size of 3, and the activation function SoftMax.

• The real-time implementation utilizes a 3-fold validation
process.

• The early stopping policy with a patience of 10 is used
during training to prevent overfitting or underfitting and
optimize resources.

• The initial parameters for the models are selected arbi-
trarily, which is one of the standard practices in deep
learning community researchers. Later, these parameters
are fine-tuned to improve the models’ accuracy, sensitiv-
ity, and specificity.

B. Long Short-Term Memory
This section offers a detailed description of the technical

concept of LSTM and its practical application as a classifier
for visual learners. The LSTM operates as a classifier, similar
to a conventional neural network, taking input from a particular
time step and the hidden state of a prior time step. LSTM is
employed for classification tasks, like other forms of neural
networks. The choice to use LSTM for this research was
based on its demonstrated ability to effectively manage time
series data in comparison to other deep learning techniques
[31]. Human cognition is characterized by persistent focus
and high levels of attention. Conventional Recurrent neural
networks lack this persistence attribute and address this issue
[32] by including loops in their approach. One limitation of
RNN is its inability to retain long-term dependencies. The
Long-Short Term Memory (LSTM) network is a type of RNN
that can effectively learn long-term dependencies. It possesses
the capacity to retain information for an extended period.
The structure of LSTM is comparable to RNN, featuring
a chain-like formation and consisting of four layers. Gate
structures regulate the cell state by adding or removing infor-
mation, which helps to retain long-term information. A deep
learning model based on LSTM has been suggested for the
classification of visual and non-visual learner states using brain
waves. The chosen technique for implementation is one-hot
encoding, utilizing the tensor flow platform.

The process of classifying raw EEG using LSTM involves
the following steps.

• The embedded layer is the initial layer that utilizes the
unprocessed (raw) EEG data.

• The next layer of the LSTM has 400 memory units.
The term “cells” is often used to refer to these memory
units. The cell and hidden states are first passed on to
the succeeding cell. The cell state is integral to the data
flow. The cellular mechanism involves the transmission
of data through linear transformations without altering
it. Sigmoid gates in the cell state allow for the addition
or removal of data. A gate can be described as a set
of individual weights used in layering or matrix opera-
tions. During the first layer of the LSTM network, input
information is evaluated, and if deemed unnecessary, it is
excluded from the cell in this stage. The decision to
include or exclude data is made by the sigmoid function,
which utilizes the output of the previous LSTM unit
(ht −1) at time t − 1 and the current input (X t ) at time t.
The sigmoid function plays a role in determining which
portion of the previous output should be discarded. This
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Fig. 3. LSTM architecture [34].

gate is referred to as the forget gate (or ft ); and it utilizes
a vector ft with values between 0 and 1 that correspond
to the numbers in the cell state, Ct −1.

ft = σ(W f [ht − 1, X t ] + b f ) (1)

The sigmoid function is represented by σ , and W f
and b f are the weight matrices and bias of the forget
gate are represented by and, respectively. The next step
involves storing and decoding information from the new
input (X t ) in the cell state, as well as updating the cell
state. This step has two parts: the sigmoid layer deter-
mines whether the new information should be updated or
ignored (0 or 1), and the tanh function assigns weight
to the passed values, which determines their level of
importance (−1 to 1). The two values are multiplied to
update the new cell state, which is then added to the old
memory Ct−1, resulting in Ct .

it = σ(Wi [ht − 1, X t ] + bi ) (2)
Nt = tanh(Wn[ht−1 − 1, X t ] + bn), (3)
Ct = Ct − 1 ft + Nt it (4)

The cell state at time t − 1 and t are represented by
Ct−1 and Ct , respectively. Weight matrices and bias are
denoted by W and b. The output values (ht ) are based
on the output cell state (Ot ) but are a filtered version.
A sigmoid layer decides which parts of the cell state make
it to the output. The output of the sigmoid gate (Ot ) is
multiplied by the new values created by the tanh layer
from the cell state (Ct ). The value ranges between −1
and 1.

Ot = σ(W0[ht − 1, X t ] + b0), (5)
ht = Ot tanh(Ct ) (6)

The weight matrices and bias for the output gate are
represented by W0 and b0. The architecture of LSTM
is illustrated in Figure 3.

• The LSTM layer is followed by a dense output layer that
utilizes a SoftMax activation function to predict either
0 or 1 for the two classes, namely L - Visual Learner
and NL - Non-Visual Learner. The selection of hidden
layers for LSTM is typically determined by the specific

Fig. 4. 1D CNN structure.

problem being addressed. Thus, The arbitrary parameter
setting is utilized for selecting hidden layers [33].

C. Long Short-Term Memory Convolutional Neural
Network

Temporal information is considered crucial in the classifi-
cation of Learning based on EEG signals. The CNN-LSTM
architecture is being studied to determine its effectiveness
in classifying visual learning styles. The LSTM-CNN model
incorporates LSTM for sequence analysis and feature extrac-
tion, which CNN subsequently interprets. The architecture
utilized for this study includes a 1D CNN structure, which
is illustrated in Figure 4.

This model’s hidden layer works for a 1D sequence. To
avoid overfitting, the dataset is shuffled at each epoch. Train-
ing involves 15 epochs and 16 batch sizes. A dense, fully
connected layer is connected to the convolutional and pooling
layers, explaining the extracted features. A dropout layer
randomly turns off 20% of neurons at each iteration to ensure
generalization. A flattened layer reduces feature maps to a sin-
gle one-dimensional vector. Standard practices are employed:
SoftMax as an activation function along with Adam optimizer
for Classification. The loss function used is cross-entropy, suit-
able for Classification. Max-pooling after convolution retains
essential features while reducing the dimension of the feature
matrix. Feature reduction methods are employed for better
resource optimization. The dataset is divided into training,
validation, and testing data to avoid underfitting and overfit-
ting. Table I shows the optimized parameters obtained through
accuracy optimization and model architecture details.

The implementation of the LSTM-CNN model involves the
utilization of the Keras library in Python. The model follows
the protocol illustrated in Figure 5. The EEG data is fed into
the pipeline as input.

• The next step adds the LSTM layer as a front-end layer.
• The subsequent layers include the CNN, dense, and

output layers.

D. Long Short-Term Memory Fully Convolutional Neural
Network (LSTM-FCNN)

This combination is commonly utilized when the data
dimension is uneven, and it is also efficient for segmented data.
The LSTM-FCNN technique is used to differentiate between
visual learners and non-visual learners. Research suggests that
temporal convolution is a successful model for classifying time
series data [32], [33]. FCNN utilizes temporal convolutions to
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TABLE I
DEEP LEARNING ARCHITECTURE

extract features and reduces the number of parameters through
global average pooling before classification [33]. The FCNN
block is expanded with the addition of the LSTM block in this
pipeline. A dropout layer is added to the architecture [34],
as depicted in Figure 6. The FCNN consists of three CNN
blocks featuring filters of sizes 128, 256, and 128. The CNN
architecture shows similarities to the proposed architecture by
Graves et al. [32]. The CNN block comprises a temporal

Fig. 5. (a) LSTM-CNN model (b) LSTM-CNN classifier architecture.
Input is EEG data, and the LSTM layer is added as a front-end layer
followed by CNN and a dense layer. The output is classified as Learner
and non Learner.

convolution layer and batch normalization. The activation
function used here is ReLu, which helps prevent the vanishing
gradient problem. The global average pooling is applied prior
to the final block.

The EEG data obtained from the dimension shuffle is
transferred to the LSTM block. The LSTM block consists
of an LSTM layer and a dropout layer. The global pooling
layer and LSTM block are combined and fed into a Soft-
Max classification layer. The fully convolutional block and
LSTM block interpret the EEG data input from two distinct
perspectives. The fully convolutional block considers EEG
data containing multiple time steps. The FCNN will gather
information throughout all time steps in order to compute the
ultimate outcome.

In contrast, the proposed architecture utilizes the LSTM
block to process input data, a multivariate time series with
a single time step. The temporal dimension of the data is
transposed through the use of the dimension shuffle layer.
After transforming, univariate EEG data with a length of N
will be perceived as a multivariate time series. It will have a
single-time step and N variables. This approach is key to the
enhanced performance of the proposed architecture [36].

V. RESULTS

This section discusses the analysis of deep learning tech-
niques for the Classification of visual learners from non-visual
learners. The LSTM, LSTM-CNN, and LSTM-FCNN-based
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Fig. 6. LSTM-FCNN architecture. The input is EEG data to FCNN and
LSTM. FCNN consists of three CNN layers, each having ReLU as an
activation function. LSTM is applied to the same data then both FCNN
and LSTM model layer has concatenated. The output of this is given to
the softmax layer for the classification of individuals as visual or non-
visual learners.

deep learning models have been used for the Classification
of visual learners (L) and non-visual learners (NL) with raw
EEG as input data. One hot encoding technique is used for all
the models. The model implementations are done using Keras.
The results of the classification models are discussed in detail
in the following sections.

A. Performance Analysis of LSTM, LSTM-CNN, and
LSTN-FCNN Classifier Using Raw EEG Eyes
Closed Condition

The features were visualized using t-SNE method as shown
in Figure 7. The t-SNE shows the best clustering distribution
and is the most decentralized for all data. It clearly separates
the Visual learner features (clustered together in purple) from
the Non visual learner features (clustered together in orange),
which has a positive influence on the classification of the
low-dimensional data representation, as it increases the sep-
aration between the natural clusters in the data.

The model performance is evaluated by computing the
accuracy, precision, and recall parameters and obtaining the
receiver operating characteristic (ROC) curve. The compu-
tation of accuracy, precision, and recall involves the use of
the confusion matrix. The recall parameter is determined by
dividing the predicted number of learners (L) by the total
number of learners as calculated by the model. A confusion
matrix provides a means of evaluating the accuracy of a
classification model by comparing its predictions to a set of
known true values.

Table II(a) presents the accuracy, precision, recall, and
confusion matrix for the raw EEG data obtained from various
iterations. According to Table II(a), the LSTM model predicts
12 Ls and 4 NLs. Table II(b) shows that actual learners and
non-learners are 13 Ls and 4 NLs, as indicated in the support

TABLE II
MODEL EVALUATION

column. The components of the confusion matrix include true
positive (TP), true negative (TN), false positive (FP), and false
negative (FN). The TPs indicate when individuals predicted
to be visual learners are indeed visual learners. The TNs
represent cases, where individuals predicted to be non-visual
learners are, in fact, non-visual learners. The term “FPs” refers
to the prediction of visual non-learners as visual learners.
The FN (False Negative) occurs when individuals who are
visual learners are incorrectly identified as non-visual learners.
Table II(a) also displays the confusion matrix, which computes
the accuracy, sensitivity, and specificity.

The ROC can be generated by plotting the FP rate along
the x-axis and the TP along the y-axis. The ROC curve for the
LSTM classifier is shown in Figure 7(a), where the backline
represents visual learners and the green line represents non-
visual learners. The AUC values for both classes are equal
to 1. The system’s accuracy is 96%, and it has an F1 score
of 0.96 and 0.89. The ROC analysis serves several purposes,
including assessing the ability of continuous predictors to
correctly classify two groups, determining the optimal cut-off
point to avoid misclassification, and demonstrating the effec-
tiveness of the predictor.

The LSTM-CNN model was used in the subsequent step.
According to Table II(b), there are 13 Ls and 4 NLs, as indi-
cated in the support column. The model predicted 12 Ls
and 4 NLs, as Table II(b) shows. The ROC can be generated
by plotting the FP rate along the x-axis and the TP along
the y-axis. The ROC curve of the LSTM-CNN classifier is
depicted in Figure 7(b) with the visual Learner indicated by
the backline and the non-visual Learner indicated by the green
line. The AUC values for both classes were 0.95 and 0.96.
The system’s overall accuracy is 94%, with an F-score of
0.96 and 0.89.

According to Table II(c), the classifier indicated 5 Ls and
11 NLs. However, there are actual 6 Ls and 11 NLs. The
ROC can be generated by plotting the FP rate along the x-axis
and the TP along the y-axis. The ROC curve of the LSTM-
FCNN classifier is presented in Figure 7(c), with the backline
representing the visual Learner and the green line representing
the non-visual Learner. The AUC values for both classes are
0.89 and 0.90, respectively. The system has an accuracy rate
of 89%, with an F-score of 0.92 and 0.80.
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Fig. 7. Visualization of learned features using t-SNE.

TABLE III
COMPARISON OF EXISTING FEATURES AND PROPOSED FEATURES

TABLE IV
COMPARISON OF COMPUTATION TIME (INTEL(R) CORE (TM) I-5
10400 CPU @2.90GHZ, 16.0 GB (15.8 GB USABLE, 64-BIT

OPERATING SYSTEM, C64-BASED PROCESSOR)

The classification accuracy of LSTM and LSTM-CNN
classifiers is similar, as evidenced by the results. However,
the classification accuracy of LSTM-FCNN is on the lower
side. According to our results, the LSTM-CNN model is
recommended over LSTM for real-time applications due to
its lower computation time.

B. Performance Analysis of Handcrafted Existing
Features Extraction Methods to Identify Learning Style
With the Proposed Deep Learning Method

For comparison, the existing feature extraction techniques
to identify the learning style are selected and implemented

TABLE V
SUMMARY OF THE EXISTING WORK TO IDENTIFY THE LEARNING

STYLE OF THE STUDENT

on current study data. Those methods are selected from the
more related literature and have shown high accuracy. These
feature extraction methods include Spectral centroid frequen-
cies (SCF) and amplitude ratio. These methods are used with
the k-NN classifier and Euclidian distance, as published in the
literature [18]. These methods are implemented for comparison
with the proposed methodology. Results show that the Power
Spectrum Density (PSD) features outperform the SCF and
amplitude ratio features to identify the visual learning style of
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Fig. 8. The ROC curve of LSTM, LSTM-CNN, and LSTM-FCNN
classifier for the Eyes close condition is presented here.

the students. Overall, the results show that the deep learning
approach outperforms the machine learning-based methods.
Table IV. shows the comparison of handcrafted features
with automatic features. From Table III, it is observed that
handcrafted feature PSD has better sensitivity and specificity

as compared to automatically extracted features. However,
PSD cannot be employed for real-time processing. Hence,
we choose automatic feature extraction methods because of
their suitability for real-time applications, such as 1) no pre-
processing requirements and 2) low computational complexity
(having testing time as low as 1 minute), as shown in Table IV.

VI. DISCUSSION & CONCLUSION

Using the EEG dataset, the idea is to develop an assessment
model to distinguish visual learners from non-visual learners.
The learning style of the student can be identified in two ways.
The first is based on Learning modalities and the other is based

on learning models. The advantage of using learning modal-
ities over learning models is their stability as learning models
lack a common framework. This study uses visual modality
and the raw EEG data with deep learning techniques for
classification. Using raw EEG with deep learning techniques
can identify learning styles in real-time settings as it does not
require offline processing and feature extraction. Therefore,
this model is beneficial for educators and students, as it can
help them identify their preferred learning style in real-time
settings.

In the literature, it has been posited that the features based
on EEG data can be utilized for identifying students’ learning
style. Conventional methods to identify students’ learning style
are mainly subjective and based on learning models. These
models assess the learning style. However, they are based on
self-assessment and may not manifest the learning style. For
example, there might be a chance that a visual learner may
mistakenly assess as an audio learner. This can be improved
by using the objective evidence provided by neuroimaging
modalities. Hence, to identify the learning style, objective
measures based on neuroimaging modalities are required.
The neuroimaging modalities provide additional evidence to
perform a more accurate and valid assessment of learning style

In this context, the features extracted from various EEG
frequency bands can be used to gather enough evidence to
assess the learning style. More recently, the features extracted
from the EEG are used as inputs to the ML methods. On the
other hand, studies that involve the identification of learning
styles utilize features extracted from both EEG and synthetic
data. The synthetic EEG based features include EEG Spectral
Centroid Features and asymmetry and ML techniques are
used for the classification. The studies discussed have shown
promising research results. However, due to certain limitations,
these methods do not give the full picture and are not suitable.
Some of the limitations include the use of synthetic EEG.
Also, the studies have utilized small sample sizes. Moreover,
the studies did not present their results in standard metrics,
such as sensitivity, and specificities. Hence, the studies cannot
be compared with each other and pose a hindrance in the
generalization of the finding. Table II.8 shows a summary of
the existing work to identify the learning style of the students.

There are some existing works that recognize the learning
style of the students using EEG. These works mostly use
local features, having an accuracy of 74% [18]. In other work,
1D- CNN is used. They classify the learning style with 71.2%
accuracy [35]. In this work, local features are extracted and
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then fed to a deep learning model for identification of learning
style.

In our work, raw EEG is used to eliminate the preprocessing
steps and use global features, increasing the model’s accuracy
by 94 %. This work can be used in real-time scenarios.

The high accuracy of this model makes it highly reliable.
This designed model is not computationally expensive as
it requires as low as a few milliseconds to complete the
classification task. Because of this, it can train, test, and
validate large datasets.

Thus, the presented paper outlines a model for identi-
fying visual and non-visual learners through the utilization
of deep learning techniques, including LSTM, LSTM-CNN,
and LSTM-FCNN. The study shows deep learning techniques
are more effective than conventional machine learning tech-
niques in identifying visual learning styles. The proposed
approach effectively identifies the visual learning style of
students and demonstrates better performance in scenarios
where machine-learning approaches fall short. The proposed
method’s performance was evaluated based on the quality of
features used to identify learning styles from raw EEG data.
The proposed deep learning method has achieved a higher
level of accuracy, making it a reliable model that can be
utilized in classroom settings to identify the visual learning
style of the student.
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