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ABSTRACT Fault diagnosis holds important significance in mitigating financial losses and ensuring
equipment safety. As a crucial aspect of industrial machinery, bearing fault diagnosis becomes imperative.
Nevertheless, in reality, identifying faults becomes challenging due to the presence of diverse variations in
abnormal data, such as different vibration rotational speeds. In this paper, a novel framework for bearing
fault diagnosis is proposed, called DTM-bearing, built upon the diffusion transformation model (DTM).
This approach can transfer signals across different vibration speeds into a standardized signal aligned with
a speed template. The primary purpose of DTM-bearing is to eliminate speed variations and extract speed-
invariant features. Consequently, bolster the robustness of bearing fault diagnosis across diverse vibration
speed scenarios. To the best of our knowledge, the proposed method is the first to combine the concepts
of diffusion model and transformation in the domain of bearing fault diagnosis. Various experiments are
performed on some datasets withmultiple different speeds, which shows proposal can effectively improve the
performance of bearing diagnosis. The framework based on the diffusion transformationmodel is expected to
eliminate additional variations and improve the effectiveness of bearing diagnosis in practical applications.

INDEX TERMS Bearing fault diagnosis, diffusion transformation model (DTM),DTM-bearing framework,
speed-invariant.

I. INTRODUCTION
A. MOTIVATION
Fault diagnosis plays a significant role in mitigating financial
losses and ensuring equipment safety. As an essential
part of industrial machinery, bearings play a pivotal role
in supporting rotating components and ensuring smooth
operation. Any undetected faults in bearings can lead
to severe consequences, including machinery breakdowns,
costly repairs, and potential hazards to personnel and assets.
The effective identification of bearing faults also plays a
crucial role in preventing economic losses resulting from
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unexpected industrial shutdowns triggered by machinery
failure [1]. Therefore, it is necessary to provide an accurate
diagnosis of bearing faults.

However, bearing fault diagnosis is still challenging in
real-world industrial settings. This is because there are
many various influencing factors that would affect the
vibration characteristics of bearings, such as high background
noise, fluctuating working conditions, and different vibra-
tion rotational speeds of bearings. It is still necessary to
keep developing and improving the existing bearing fault
diagnosis.

In this paper, it mainly focuses on the influence factor
of bearing rotational speed. This is because the rotational
speed of bearing is various and there are many unknown
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rotational speeds of bearing in reality. This will cause it
challenging to detect one signal under an unknown rotational
speed. Alongwith the development of bearing fault diagnosis,
it can roughly group two categories: based on traditional
machine learning approaches [2], [3], [4], and based on
deep learning approaches. In terms of traditional machine
learning approaches, Sugumaran and Ramachandran [2]
proposed SVM to classify different bearing fault types, and
Cerrada et al. [4] used random forest (RF) to improve the
accuracy. In addition to these traditional machine learning
approaches, there are also some deep learning techniques.
In 2017, Zheng et al. [5] proposed a method base on artificial
neural network (ANN) and transfer learning for bearing
vibration signals. However, this method is challenging to
extract important features when transferred to the knowledge
domain for further classification at different speeds. In order
to increase the power of the network, Lu et al. [6] used
the hierarchical convolution network to extract the invariant
feature instead of a simple artificial neural network, and
Shao et al. [7] employed a deep autoencoder network.
Hasan and Kim [8] used the stockwell transform which is
a time-window Fourier transform that has the advantages
of both the short-term-Fourier transform and the wavelet
transform. Yan et al. [9] employed a diffusion model to
reconstruct the signal while not considering speed transfer
learning. These approaches have defined multiple fault
classification dimensions without relying on handcrafted
features. However, these methods are not compatible very
well under unknown dynamic rotational speeds in real
scenarios.

Recently, some transformationmodels [10], [11] have been
discovered to primarily excel when dealing with data that
possesses relatively restricted variations, and verified that the
generative transformation model can remove variations and
effectively improve model robustness in the area of object
recognition. These works use generative adversarial networks
(GANs) to transfer any external variations into one template
and remove the influence of these variations. The proposed
method is inspired by these works [10], [11], and proposes a
novel framework based on the diffusion transformationmodel
in the area of bearing fault diagnosis.

B. METHOD OVERVIEW AND CONTRIBUTIONS
The overview of the proposed method can be shown in
Figure 1. In the inference stage, input is a vibration signal
with any rotational speed, it will be through the diffusion
transformation model (DTM) to transfer the signal into a
signal with a known speed template. And then, it will be
through a simple MLP model to output the diagnosis result,
normal baseline (NB), inner race fault (IRF), ball fault (BF),
and outer race fault (ORF). The proposal has the following
contributions:

• A novel framework for bearing fault diagnosis based
on the diffusion transformation model (DTM) is intro-
duced, called DTM-bearing, which can transfer one
signal with any vibration speed into one signal under a

speed template. The main purpose of DTM-bearing is
to remove speed variation and extract speed-invariant
features, and improve the robustness of bearing fault
diagnosis under different vibration speeds condition.
To the best of our knowledge, the proposed method
the first to combine the concepts of diffusion and
transformation on the bearing fault diagnosis task.

• Unlike traditional diffusion model algorithm [12] which
is similar to a reconstruction model, a new diffusion
transformationmodel (DTM) is presentedwhich enables
the diffusion model can transfer one source data into
target data and achieve data transformation. In addition,
instead of using the two stages to learn the bearing fault
representative feature, the proposed method combines
the DTM network and a simple MLP network to learn
better representative features and can directly output the
fault state.

• The Proposed method was evaluated on some bearing
datasets with multiple different speeds and achieved a
high recognition rate in comparison to other methods.
The experiment results demonstrate that the DTM-
bearing framework is an effective way to handle with
various speed variants, and validate its potential for
practical bearing fault diagnosis applications.

II. RELATED WORKS
This section will provide brief introductions about generative
models’ application in the area of rolling bearing fault
diagnosis. Including Variational AutoEncoders (VAEs: focus
on reducing dimension and data reconstruction), Generative
Adversarial Networks (GANs: focus on data generating
data for dataset balance), and Diffusion Model. Their basic
network structure can be seen in Figure 2.

A. VARIATIONAL AUTOENCODERS (VAES)
Variational AutoEncoders (VAEs) [13] has emerged as a
powerful tool in various fields, including rolling bearing fault
diagnosis. VAEs is a powerful class of generative models
that offer a sophisticated approach to learning compact
representations of complex data. These models consist of two
crucial components: an Encoder and a Decoder, as shown
in Figure 2. The encoder’s role is to transform input data
into a lower-dimensional latent space, while the decoder
reconstructs the original data from points in this latent space.
What sets VAEs apart is their probabilistic approach, where
the encoder defines a multivariate Gaussian distribution in
the latent space, facilitating more effective sampling and
interpolation of data points.

VAEs are generative models that can capture complex
data distributions and perform data reconstruction while
learning useful latent representations. In the context of
bearing fault diagnosis, researchers have employed VAEs
to reduce the noise and learn informative features from
vibration signals. Martin et al. [14] used a fully unsuper-
vised deep variational auto-encoder-based method to reduce
the dimensional and extract feature capabilities for fault
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FIGURE 1. The overview framework of DTM-Bearing: transfer one signal of varying vibration rotational speeds into a unified signal under a
speed template. When facing an unknown speed signal, DTM will transfer it into a signal with a know speed template. (With input a signal,
the DTM transfers it into signal with speed template, through a classifier, and finally outputs the result). The purpose of DTM-Bearing is to
eliminate speed discrepancies and extract speed-invariant characteristics, leading to significantly enhancing the robustness of bearing fault
diagnosis across diverse vibration speed conditions.

FIGURE 2. The structures of three generative networks.

diagnosis. Zhang et al. [15] used variational autoencoder
(VAEs) generative models to propose a semi-supervised
learning scheme for fault diagnosis, which can leverage a
dataset when only a small subset of data have labels.

B. GENERATIVE ADVERSARIAL NETWORKS (GANS)
Generative Adversarial Networks (GANs) [16] have also
made significant contributions to the field of rolling bearing
fault diagnosis. At the core of a GAN, two primary
components work in tandem: the Discriminator and the
Generator, as shown in Figure 2. The Discriminator, often
implemented as a convolutional neural network (CNN),
serves as a classifier with the task of distinguishing between
real data and fake data generated by the Generator. The
Generator, on the other hand, is responsible for creating
synthetic data samples. It begins with random noise as
input and progressively refines these samples, often using

transposed convolutional layers and non-linear activations,
to produce data that aims to be indistinguishable from real
examples.

The essence of GANs lies in a competitive training
process: the Generator strives to produce data that fools the
Discriminator, while the Discriminator seeks to improve its
accuracy in telling real from fake. As training progresses, the
Generator becomes increasingly adept at generating realistic
data, leading to a delicate equilibrium in which it creates
highly convincing samples. GANs have revolutionized image
generation, style transfer, and more, making them a corner-
stone of generative deep learning models. In this context,
GANs have been used to generate realistic vibration signals to
handle with limited imbalance data. Liu et al. [17] proposed
a wavelet capsule generative adversarial network (WCGAN)
to generate data for balancing datasets. Viola et al. [18]
also proposed a methodology called FaultFace for failure
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detection on Ball-Bearing joints for unbalanced and contain
little information.

C. DIFFUSION MODELS
Recently, diffusion model [19] has achieved state-of-the-art
results in sample quality [20], denoising [12], and influence
maximization [21], [22]. Examples like Stable Diffusion [23]
model has achieved highly competitive performance on
text-to-image synthesis, unconditional image generation and
super-resolution. It consists of two key components: the
Diffusion Process and the Denoising Process, as shown in
Figure 2. The Diffusion Process is a method for gradually
deteriorating an observed image. It starts with a clean
image and iteratively adds noise, typically by applying a
series of transformations. Each step increases the image’s
uncertainty and complexity, effectively diffusing it. The
Denoising Process, conversely, aims to recover the original
image from the noisy, diffused version. It employs a neural
network, often called a denoiser, which takes the noisy image
as input and uses its learned parameters to reduce the noise
and uncertainty, progressively making the image clearer with
each iteration.

ComparedwithVAEs andGANs, diffusionmodels directly
estimate data likelihood, avoiding mode collapse, providing
a clear generative process, and offering more stable training.
This paper exploits the diffusion model in the area of
rolling bearing fault diagnosis. Unlike the traditional VAEs
approaches [14], [15] which focus on reducing dimension
and data reconstruction, or traditional GANs approaches [17],
[18] which focus on data generating data for dataset balance,
the proposal would transfer one signal of varying vibration
rotational speeds into a unified signal under a speed template
by diffusion models.

III. METHODOLOGY
A. DIFFUSION TRANSFORMATION MODEL (DTM)
Diffusion Transformation Model (DTM) combines the con-
cepts of diffusion and transformation, it consists of a diffusion
process and a transformation process. DTM is the variant
of Denoising Diffusion Probabilistic Models (DDPM) [12]
which is similar to a reconstruction model. Different from
DDPM [12], the DTM combines the concept of transfor-
mation which enable the diffusion model can transfer one
source data into target data and achieve data transformation.
The diffusion process will let the source signal add random
noises several times, while the transformation process is to
remove noise and transfer the latent signal into the target
signal, as shown in Figure 3.

To effectively implement DTM in bearing fault diagnosis,
the methodology setup begins with the selection of target (or
template) signals for each health condition, such as normal
and other fault conditions (Ball, Inner or Outer Race Fault),
as shown in Figure 4. During the training phase, DTM learns
to understand the relationships between different speeds and
projects the original signals into a high-dimensional space.

In this space, signals from normal conditions at varying
speeds are aligned closer to the normal condition target
signal. Similarly, signals from fault conditions are brought
closer to the fault condition target signal.

The true strength of DTM is highlighted in the inference
stage, where it demonstrates its capability not only to align
known speed signals with the corresponding target signals but
also to adapt unknown speed signals effectively to the nearest
target signal. This ability greatly enhances the discriminative
power of DTM, enabling it to identify different types of health
conditions with higher precision. Consequently, DTM serves
as a powerful tool in monitoring machine health conditions,
providing a more robust and reliable means of diagnosing
bearing faults in diverse operational speed environments.

1) DIFFUSION PROCESS
Give a signal x0 with any vibration rotational speeds. The
diffusion process will repeat adding Gaussian noise by T
times. The forward trajectory, corresponding to starting at the
signal x0 distribution and performing T steps of diffusion, the
equation as follows formula 1:

q(xt |xt−1) := N (xt ;
√
1 − βtxt−1, βtI) (1)

where t denotes step number, βt denotes variance schedule.
This processing is called diffusion process or forward
process, is fixed to a Markov chain which gradually
adds Gaussian noise to the data according to a variance
schedule βt .

For easy understanding, the initial signal x0 will add
one random Gaussian noise to become x1, and add noise
again become x2, when repeat noise T steps, the x0 would
become xT , is thus:

x0 → x1 → x2 · · · → xT−1 → xT (2)

2) TRANSFORMATION PROCESS
For the backward transformation process, it aims to transfer
latent signal xT into target signal x ′

0 by denoising process,
as shown in Figure 3, the equation as follows formula 3. The
process is achieved by the neural network learning noise and
removing noise step by step.

xT → x ′

T−1 · · · → x ′

2 → x ′

1 → x ′

0 (3)

Specifically, given the prior probability q(x ′

t−1|x
′
t ),

the neural network will learn the posterior probability
pθ (x ′

t−1|x
′
t ),

pθ (x ′

t−1|x
′
t ) := N (x ′

t−1; µθ (x ′
t , t), 6θ (x ′

t , t)) (4)

where the µθ and 6θ represent signal mean and variance,
respectively. Experimentally, set the 6θ (x ′

t , t) = σ 2
t I = βt .

The neural network will learn to predict the noise ϵθ , and get
the x ′

t−1 from x ′
t .

x ′

t−1 = µθ (x ′
t , t) + σtz (5)

µθ (x ′
t , t) =

1
√

αt
(x ′
t −

βt
√
1 − αt

ϵθ (x ′
t , t)) (6)
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FIGURE 3. Diffusion Transformation Model (DTM). The diffusion process: add random noise. The transformation process:
remove noise. Aim to transfer a signal with any vibration rotational speeds into a signal with a speed template, and remove
speed variant for bearing fault diagnosis.

FIGURE 4. DTM presents a novel solution to these challenges. At the core of its functionality is the ability to standardize signals of
varying speeds to a consistent ‘template speed.’ This transformation is pivotal in eliminating discrepancies caused by speed variations,
thereby unveiling speed-invariant characteristics. The signal feature after DTM transformation is crucial in accurately detecting
bearing faults, irrespective of the operational speed of the machinery.

where z ∼ N ((0, I), αt = 1 − βt and αt = 5t
s=1αs.

The Diffusion Transformation Model (DTM) emerges as a
transformative approach, adept at handling the complexities
posed by varying speed conditions. Traditional methods
often grapple with two primary challenges when analyzing
signals for bearing health assessment. Firstly, for signals
under the same health condition, there is a noticeable spread
in the distances between different speeds, complicating the
analysis. Secondly, distinguishing between different health
conditions becomes problematic as the distances between
them tend to be smaller and more clustered, leading to
potential misinterpretations. These two challenges can be
effectively solved by the proposed Diffusion Transformation
Model, as shown in Figure 4.

B. FAULT DIAGNOSIS CLASSIFIER
In terms of the fault diagnosis classifier, a simple 1D CNN
is used to learn the fault representative feature and output the

type of fault. The network is simple and only includes two 1D
convolutional layers and two PReLU activate function layers.
This is because the signal becomes easier to distinguish
fault conditions after through diffusion transformation model
(DTM). The DTM will transfer vibration rotational speeds
into one template speed, so the transferred signal has the
speed-invariant feature.

In the experiment, the softmax loss can classify the input
into different classes. softmax loss is used many areas [24]
and achieve a good result. Softmax loss can enlarge the
inter-class variation and minimize the intra-class variation.

Lsoftmax = −

m∑
i=1

log
eW

T
yi
xi+byi∑n

j=1 e
W T
j xi+bj

(7)

where xi ∈ Rd is the ith feature that belongs to the yith class.
yi has four classes, that is, normal baseline (NB), inner race
fault (IRF), ball fault (BF), and outer race fault (ORF). And
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FIGURE 5. (a) An Experimental platform of the CWRU [25] bearing
components, and (b) its cross-sectional view. (Original image taken from
[26]).

W ∈ Rd×n and b ∈ Rd denote the feature dimension, last
connected layer and bias term, respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASET AND EXPERIMENTAL SETTING
1) CWRU DATASET
Some experiments are performed on one of the popular
bearing dataset CWRU [25] dataset. CWRU [25] dataset was
created by CaseWestern Reserve University. Rolling element
bearings, known as bearings, are vulnerable components in
the machinery whose health condition. The rolling element
bearing has four components: inner-race, outer-race, ball, and
cage, as shown in Figure 5, which shows the experimental
platform of the CWRU.

CWRU [25] data has one normal baseline condition (NB)
and three fault conditions, e.g. inner race fault (IRF), ball fault
(BF), and outer race fault (ORF). Each condition has 4 dif-
ferent motor speeds, 1797RPM, 1772RPM, 1750RPM, and
1730RPM respectively. In terms of fault conditions, there are
also different fault diameters and different sampling frequen-
cies. Because some fault conditions miss some data. For sim-
plicity, experiments are performed on the signal with a 12k
sampling frequency and 0.007 inches, and pick centered outer
race as outer race fault (ORF). In the experiment, the signals
of 1797RPM, 1772RPM, and 1750RPM are set as training
data, and 1772RPM as speed template. For the testing,
an unknown speed 1730RPM is set as test data, as shown in
Table 1.

TABLE 1. Experimental setting on CWRU dataset.

2) MULTI-SPEED DATASET
In order to evaluate the effectiveness of the proposed
method in the condition of large changes of speed,
a rolling bearing dataset is built which has multiple

FIGURE 6. Multi-Speed rolling bearing data collection experiment
equipment.

different rotational speeds in the experimental equipment.
The experimental platform is shown in Figure 6. This
multi-speed dataset has 5 different motor speeds, that is
400RPM, 600RPM, 800RPM, 1000RPM and 1200RPM.
Compared with the existing dataset, this dataset has larger
changes of speed, with 200RPM speed change. To simplify
the experiment, this dataset collects 1160 normal signals
and 883 signals in the condition of an unbalanced rolling
bearing.

To fully evaluate the proposed method in different
situations, three test conditions are set, as shown in Table 2.
For each condition, there are three speeds as training set, and
the rest of the unknown speeds as test set.

B. EXPERIMENTAL ENVIRONMENT AND DATA
PROCESSING
In the experimental setup, Python 3.8.5 for its robust
ecosystem and PyTorch 1.2.0 for its dynamic neural network
building capabilities. The Adam optimizer was employed for
network training. This algorithm is favored for its adaptive
learning rate properties, which can lead to more efficient
convergence in training deep neural networks. A constant
learning rate of 0.001 was set for the optimizer. This rate
was chosen based on preliminary experiments that indicated
it allows for a steady decrease in loss without overshooting
the minimum. The computations were carried out on a
GPU endowed with 8 GB of memory, providing a suitable
environment for the efficient processing of deep learning
models.

The DTM model involves noise adding processing,
to enhance the generalizability and robustness of model in
the context of Rolling Bearing Fault Diagnosis. The diffusion
preprocessing pipeline incorporated the augmentation of
training data with Gaussian noise. Gaussian noise is a
statistical noise that has its magnitude determined according
to a normal distribution, a common inherent noise type
in real-world sensor data and electronic instrumentation.
This noise simulation is pivotal as it closely mirrors the

8880 VOLUME 12, 2024



R. Liao et al.: DTM-Bearing: A Novel Framework for Speed-Invariant Bearing Fault Diagnosis

TABLE 2. Experimental setting on the multi-speed dataset.

FIGURE 7. Gaussian noise with mean=0, std=0.5.

FIGURE 8. Gaussian noise with mean=0, std=1.

operational conditions that rolling bearings are subjected
to, which often include random noise from various sources
such as vibrations, thermal effects, and electrical interference.
Following is the Gaussian noise examples, the first with a
mean of 0 and a standard deviation of 1 to replicate typical
noise intensity, and the secondwith amean of 0 and a standard
deviation of 0.5 to emulate scenarios with lower noise levels,
as shown in Figure 7 and Figure 8. By training the model
to distinguish between the fault signatures and these noise
patterns, the model can improve the diagnostic accuracy in
diverse and unpredictable real-world environments.

C. VISUALIZATION OF SPEED TRANSFORMATION ON
CWRU DATASET
In order to show the effectiveness of DTM treatment in a
more intuitive way, the histogram statistics are plotted to
show the Euclidean Distances between template speed signal
and different speed test signals on the four conditions. The
Figure 9 shows the result on the Normal Baseline condition,
the Figure 10 shows the result on the Inner Race Fault
condition, the Figure 11 shows the result on the Ball the
Fault condition, and the Figure 12 shows the result on the
Ball the Outer Race Fault condition. The blue histograms
represent the Euclidean Distances on the original signals,

the red histograms represent the Euclidean Distances on the
signals after DMT transformation.

From these figures, it is obvious that the distances between
different speed signals on the original signals are large and
dispersive. In contrast, the distances between different speed
signals after DMT processing are small and concentrative.
The blue histograms show that the distances between them are
big and spread out. This means the signals are quite different
from each other. However, after applying the DTM, shown by
the red histograms, these distances become much smaller and
grouped closely together. This change is important because it
tells us that the DTM is really good at transforming signals of
varying speeds into a standard ‘template speed.’ It shows that
the DTM model has the ability which can transfer a signal
with different speeds into the signal with template speed.
With the assistance of DTM transformation, DTM gets rid of
the differences caused by speed and brings out features that
don’t change with speed. This makes it much easier to spot
faults in bearings, even if the machine is running at different
speeds.

D. HISTOGRAM STATISTICS OF DIFFERENT HEALTH
CONDITIONS ON CWRU DATASET
To show the signals after DTM transformation have a
powerful distinguish ability to identify four different healthy
conditions. The histograms are plotted to show the Euclidean
distances between signals (after DTM transformation) of
each pair of conditions. There are four distinct conditions
on CWRU data: Normal Baseline, Ball Fault, Inner Race
Fault, and Outer Race Fault. The Figure 13 shows the result
on the Normal Baseline condition with other conditions,
the Figure 14 shows the result on the Ball Fault condition
with other conditions, the Figure 15 shows the result on the
Inner Race Fault condition with other conditions, and the
Figure 16 shows the result on the Outer Race Fault condition
with other conditions. The blue histograms represent the
Euclidean Distances on the negative pair conditions, the red
histograms represent the Euclidean Distances on the positive
pair conditions.

A significant variance in distance distributions is observed.
Specifically, for pairs of conditions that are not similar
(negative pairs), the histograms reveal large and dispersive
distances, indicating a clear differentiation between the
conditions. Conversely, for similar conditions (positive pairs),
the distances are markedly smaller and more concentrated,
as evidenced in the histograms. This stark contrast in the
distribution of distances underlines the robust capability
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FIGURE 9. Histogram of euclidean distances between template speed signal (motor speed: 1772 RPM) and test signals. Motor speeds (from left to right)
include ‘‘known’’ speeds (1797, 1772, and 1750RPM) and ‘‘unknown’’ speed (1730 RPM) at the normal baseline condition.

FIGURE 10. Histogram of euclidean distances between template speed signal (motor speed: 1772 RPM) and test signals. Motor speeds (from left to right)
include ‘‘known’’ speeds (1797, 1772, and 1750RPM) and ‘‘unknown’’ speed (1730 RPM) at the inner race fault condition.

FIGURE 11. Histogram of euclidean distances between template speed signal (motor speed: 1772 RPM) and test signals. Motor speeds (from left to right)
include ‘‘known’’ speeds (1797, 1772, and 1750RPM) and ‘‘unknown’’ speed (1730 RPM) at the ball fault condition.

FIGURE 12. Histogram of euclidean distances between template speed signal (motor speed: 1772 RPM) and test signals. Motor speeds (from left to right)
include ‘‘known’’ speeds (1797, 1772, and 1750RPM) and ‘‘unknown’’ speed (1730 RPM) at the outer race fault condition.
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FIGURE 13. Histogram of euclidean distances between normal template signal and other condition signals (ball fault, inner race fault, outer race fault).

FIGURE 14. Histogram of euclidean distances between ball fault template signal and other condition signals (normal baseline, inner race fault, outer race
fault).

FIGURE 15. Histogram of euclidean distances between inner race fault template signal and other condition signals (normal baseline, ball fault, outer race
fault).

FIGURE 16. Histogram of euclidean distances between outer race fault template signal and other condition signals (normal baseline, ball fault, inner race
fault).
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FIGURE 17. Comparison with other methods. DTM-Bearing is ours, it achieves the highest performance on average
accuracy compared with other methods.

FIGURE 18. Comparison analysis of the classification accuracies of
Diffusion Transformation Model (with DTM) vs. without Diffusion
Transformation Model (without DTM).

FIGURE 19. Comparison of the learning curve of Diffusion Transformation
Model (with DTM) vs. without Diffusion Transformation Model (without
DTM).

of the after DTM transformation to distinguish effectively
among the four different health conditions. The histogram
analysis thus not only validates the discriminative power of
the feature but also provides a quantifiable means to assess
the severity and type of bearing faults, a critical aspect in
predictive maintenance and fault diagnosis. By looking at
how these distances group in different conditions, it can
understand and identify each fault type better. This shows that
the proposed way of measuring is really good at telling these
four conditions apart.

E. EFFECTIVENESS OF DTM ON CWRU DATASET
The experimental result of the proposed method can be seen
in Figure 18. There are 4 accuracies, including the accuracy
of normal baseline condition (NB), inner race fault (IRF), ball
fault (BF) and outer race fault (ORF). The average accuracy
of DTM-bearing can achieve 99.28 %.
In order to show the effectiveness of the Diffusion

Transformation Model (DTM), the experiment without
DTM network is performed, the experimental result of
without-DTM can also be seen in Figure 18. From Figure 18,
it can see the overall performance will be increased when
adding the module of DTM. The average accuracy increases
from 97.47% to 99.28%. It is obvious shows that the
Diffusion Transformation Model (DTM) is a feasible way to
improve the performance of bearing fault diagnosis.

The learning curve of above without-DTM and with-DTM
frameworks during training can be seen in Figure 19. It is
clear that with the loss value with DTM framework can be
more accelerate convergence and reduce overall loss value
during the training process.

Here, the emphasis lies in highlighting that the proposed
framework can improve the accuracy of bearing fault
diagnosis, even when trained with only three different speeds.
With the increase in the number of vibration rotation speed
signals in the training stage, the proposed framework can
further facilitate the performance of bearing fault diagno-
sis. According to the research of popular transformation
model [10], [27], the accuracy gap can be improved more
if put signals with more different rotation speeds into the
training process. This is because it can provide a much denser
sampling and learn its relations to lighten the burden of
speed-invariant feature extraction.

F. COMPARISONS WITH OTHER METHODS ON CWRU
DATASET
To validate the performance of the proposed method
DTM-Bearing, this paper compares the proposed DTM-
Bearingmodel with other methods on the task of bearing fault
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FIGURE 20. Histogram of euclidean distances between template speed signal (motor speed: 800 RPM) and test signals. (‘‘known’’ motor speed from left
to right: 400, 800, and 1200 RPM) at the normal baseline condition.

FIGURE 21. Histogram of Euclidean Distances between template speed
signal (motor speed: 800 RPM) and test signals (‘‘unknown’’ motor speed
from left to right: 600 and 1000 RPM) at the Normal Baseline condition.

diagnosis, including some recent deep learningmethods, such
as based on transfer learning and neural networks method
CNN [5], hierarchical convolutional network based method
Hierarchical [6], and ensemble deep Auto-Encoder [7]
method. In addition, the proposed DTM-Bearing approach
also compares with some of the traditional machine learning
methods, such as ANN [5] and SVM [2]. The comparison
result can be seen in Figure 17.
It is very clear that the accuracy of DTM-Bearing is much

better than that of traditional machine learning methods
(ANN [5] and SVM [2]) in the fault detection of inner
race fault (IRF), ball fault (BF), and outer race fault (ORF).
In terms of deep learning methods [5], [6], [7], it can
be noticed that DTM-Bearing achieves the highest average
accuracy compared with these methods.

G. VISUALIZATION OF SPEED TRANSFORMATION ON
MULTI-SPEED DATASET
In order to show the effectiveness of DMTmodel on the large
change speed dataset. The histograms are plotted to show
the Euclidean Distances between the template signal and test
signals. For the multi-speed dataset, there are five speeds,
(400, 600, 800, 1000, and 1200 RPM. 800 RPM is set as the
target speed. The ‘‘known’’ speeds (400, 800, and 1200 RPM)
are utilized for training, while the ‘‘unknown’’ speeds (600
and 1000 RPM) are reserved for testing.

The Figure 20 and Figure 21 show the result of ‘‘known’’
speeds and ‘‘unknown’’ speeds on the normal condition,
respectively. For these two figures, it is obvious that

followingDTMprocessing, these distances becomemarkedly
smaller and more concentrated both ‘‘known’’ speeds and
‘‘unknown’’ speeds conditions.

The Figure 22 and Figure 23 show the result of ‘‘known’’
speeds and ‘‘unknown’’ speeds on the unbalanced fault
condition, respectively. They have same pattern with normal
condition. These visualizations reveal a striking contrast: the
distances between different speed signals in their original
form are large and highly dispersed. However, following
DTM processing, these distances become markedly smaller
and more concentrated. It shows again that DTM can
convert signals of varying speeds to a uniform, template
speed. This capability is critical for extracting speed-
invariant characteristics, which significantly enhances the
robustness of fault diagnosis across diverse vibration speed
conditions.

H. HISTOGRAM STATISTICS OF DIFFERENT HEALTH
CONDITIONS ON MULTI-SPEED DATASET
The histograms of Euclidean distances between signals (after
DTM transformation) of each pair of health conditions
are plotted. There are two health conditions on multi-
speed dataset: normal and unbalanced fault condition. The
Figure 24 shows the result on the normal template signal with
unbalanced fault test signal, while Figure 25 shows the result
on the unbalanced template signal with normal test signal.
From these figures, it shows that the DTM’s powerful ability
to distinguish between different health states of the bearing
system effectively. This distinction in histogram patterns
highlights the model’s potent diagnostic capabilities, offering
a reliable means of identifying and differentiating various
health conditions within bearings.

I. PERFORMANCE ON MULTI-SPEED DATASET
According to the setting of Table 2. The experiments are
performed on the multi-speed dataset. The experimental
result of three conditions is shown in Figure 26. From
Figure 26, it is clear that the highest accuracy is on
condition 1, even if the speed change between the test signal
and target signal achieves 200 RPM. In terms of condition
2 and condition 3, the speed change between the test signal
and target signal achieves 400 RPM and 600 RPM, the
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FIGURE 22. Histogram of euclidean distances between template speed signal (motor speed: 800 RPM) and test signals. (‘‘known’’ motor speed from left
to right: 400, 800, and 1200 RPM) at the unbalance condition.

FIGURE 23. Histogram of euclidean distances between template speed
signal (motor speed: 800 RPM) and test signals (‘‘unknown’’ motor speed
from left to right: 600 and 1000 RPM) at the unbalanced condition.

FIGURE 24. Histogram of euclidean distances between normal template
signal and unbalanced fault signal.

accuracy of the proposal can still be more than 98%. It is
obvious shows that the proposed DTM-bearing framework is
an effective way to improve the robustness of rotation speed
variations.

J. COMPARISON WITH DIFFERENT GENERATIVE MODELS
This paper’s two main contributions are the transformation
strategy and diffusion model network. In order to show the
usefulness of transformation strategy and diffusion model
network on the bearing fault diagnosis. Experiments are
performed on three different generative models, that is,

FIGURE 25. Histogram of euclidean distances between unbalanced
template signal and normal fault signal.

FIGURE 26. The performance on the three conditions (Table 2).

FIGURE 27. Comparison of different generative models.

Variational AutoEncoders (VAEs) [13], Generative Adver-
sarial Networks (GANs) [16], and Diffusion Model [19].
The experiment setting is following Table 2 condition 1.
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Each generative model has two strategies, one is without a
transformation strategy, another one is with a transformation
strategy. The experimental results as shown in Figure 27.
From Figure 27, it is clear that the Diffusion Model performs
best performance compared with VAEs and GANs in the
area of bearing fault diagnosis. In addition, the overall
performance of with transformation strategy can further be
increased both VAEs, GANs and Diffusion Model networks.

V. CONCLUSION AND FUTURE WORK
This paper introduces theDTM-Bearing framework, aimed at
enhancing bearing fault diagnosis byminimizing variations in
vibration speed and extracting consistent features. Through
experiments, the effectiveness of the DTM-Bearing frame-
work in bolstering the accuracy of diagnosing bearing faults
across different vibration speeds is demonstrated.

To the best of our knowledge, the method presented
here represents the first amalgamation of diffusion and
transformation concepts for bearing fault diagnosis. Future
plans involve expanding the DTM-Bearing framework to
encompass other sources of variation. In bearing fault
diagnosis, variations don’t solely stem from vibration speed;
they can also originate from different components of the
bearing (such as the fan-end or drive-end) and varying
sampling frequencies. The comprehensive nature of the
DTM-Bearing framework offers researchers a potential
avenue to address these diverse sources of variation, fostering
innovative solutions in bearing fault diagnosis.

The broad scope of the DTM-Bearing framework holds
promise for substantial advancements in the field of bearing
fault diagnosis. Its inclusive approach signifies a significant
milestone, setting the stage for future progress and break-
throughs in this area.
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