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Abstract—Solid and accurate object detection in optical re-
mote sensing images still remains significant challenges such as
complex background and weak object information. To alleviate
above problems, we propose a revolutionary one-stage object
detection network. Specifically, the proposed effective localization
attention is embedded in deep feature maps with more channels,
and is used to locate channels that are effective for detection
tasks through one dimensional convolution operations. Following
that, a small object compensation strategy is proposed to use
compensation fusion operation to enable the reuse and compen-
sation of weak object information. Additionally, a background
separation strategy is designed to separate foreground and
background, highlighting the features of interest, suppressing
background noise. To ascertain our model, extensive experiments
are conducted in three public datasets, it can simply achieve mAP
of 94.2%, 70.7% and 80.5% in NWPU VHR-10, DIOR and DOTA
datasets.

Index Terms—Optical remote sensing images, object detection,
effective localization attention module, background separation
strategy, small object compensation strategy.

I. INTRODUCTION

IT is easy to obtain overwhelming high-resolution remote
sensing images, and object detection in remote sensing im-

ages has become a research priority presently [1]. The purpose
of remote sensing object detection is to determine the position
and category of the object in an image, which has important
significance and widely application in military, navigation,
agriculture, [2], [3], [4], [5], [6], [7]. Inversely, achieving
higher detection accuracy while keeping faster reference speed
is still an urgent and pressing problem to be solved.

Recently, deep learning methods have been widely used,
because of the strong feature extraction capability and ad-
vanced performance, and many object detectors based on CNN
have been proposed, such as mainstream one-stage detection
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Fig. 1. These samples explain the two challenges in remote sensing object
detection. The top two graphs represent complex backgrounds and the bottom
two graphs represent weak object information.

algorithms [8], [9], [10]. Paradoxically, in contrast to images
in natural scenes, remote sensing images are usually taken at
different altitudes, contain many small objects, and the image
background is relatively complex. Relatively small objects in
an image contain less information, and as the CNN progresses
deeper, the loss of information about small objects becomes
more severe, making it difficult to exactly detect objects.
Consequentially, due to the complex background and suffer
from insufficient information on objects, the features which
they are extracted usually have noise, which caused false
detection easily. Some samples are shown in Fig. 1.

For the difficulty in detecting small objects, many re-
searchers have generated characteristics of high quality by
constructing and aggregating multi-scale features. For in-
stance, the improved feature fusion network used a weighted
fusion method to fuse different feature layers, achieving higher
accuracy and superior real-time performance [11]. To reduce
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information loss on small objects due to continuous down-
sampling operations, [12], [13], [14] used parallel unfolding
convolutional layers with different rates to reconstruct different
levels in the feature pyramid and enhance the contextual infor-
mation of small objects. Though these methods had improved
detection capabilities, they still have some drawbacks. The
direct feature fusion of different feature layers extracted from
the backbone network introduces a large amount of noise while
enriching the contextual information. Simultaneously, they did
not take into account the variability between different feature
layers, which can affect the detection results. For small objects,
improving detection accuracy is still limited by using only
feature fusion enhancement techniques. While these methods
treated attention and convolution as distinct parts, the relations
between them were not fully exploited. Analogously, they
did not take into account the decoupling of background and
foreground.

For the complex background, Dong et al. [15] integrated
local and global contextual information into FPN. Ma et
al. [16] improved the YOLOv5 algorithm for small objects
detection, integrating the CBAM to make target information to
be enhanced. Cheng et al. [17] introduced a multi-scale feature
aggregation module, which can achieve information fusion and
interaction by aggregating feature maps at different scales.

To mitigate above problems, we propose an optical re-
mote sensing object detection algorithm based on background
separation and small object compensation strategy. First, an
effective channel attention module is proposed to focus more
on channel features that are effective for detection task and
achieve more powerful feature extraction during the fusion
process. Following that, a small object compensation strategy
is used to reuse the small object information to avoid flooding
the network with small object information. Subsequently, the
background separation strategy is to separate background and
foreground objects to enhance the object features. Addition-
ally, the enhanced features are sent to prediction, that consist
of three independent regression branching, and are integrated
at prediction time. And, the public DIOR [18], NWPU VHR-
10 [12], and DOTA [19] datasets are used to demonstrate
that our proposed algorithm can solve these problems as
described above, our approach is better than other state-of-
the-art detectors based CNN. Our method can achieve a mAP
of 70.7%, 94.2% and 80.5% on DIOR, NWPU VHR-10 and
DOTA datasets, respectively.

In nutshell, our works mainly contributes to the following:
1) An effective localization attention module (ELAM) is

proposed to focus more on channel features that are effective
for detection task, provide effective feature descriptions and
reduce redundant information.

2) A small object compensation strategy (SOCS) is pro-
posed to effectively extract contextual information while also
compensating for discriminative details and small objects to
enhance feature representation.

3) Be aimed at the complex background, a background sep-
aration strategy (BSS) is proposed to separate the foreground
and background, enhance the features of the objects.

4) Extensive experiments are carried out on the widely used
NWPU VHR-10, DIOR and DOTA datasets, the results have

proven the effectiveness of our model.

II. RELATED WORK

A. Remote Sensing Object Detection

Since complex background information in remote sensing
images can interfere with target detection, a network with
hybrid attention was proposed to get contextual information
[20]. A new multiscale variability attention module is designed
and added to the top of the feature pyramid to highlight
features [21]. Li et al. [22] proposed a parameter free mask-
ing module that can detach instance related foreground and
instance independent background in multiscale features. To
mitigate the interference of complex backgrounds, Yang et al.
[23] achieved accurate positioning and classification of objects
by introducing the Coordinate Attention Module(CoAM). Hu
et al. [24] proposed an attention-guided multi-scale detection
network structure, that can successfully detect ships even in
complex scenarios. Ma et al. [25] proposed a one stage scale
aware network for remote sensing target detection, a target
saliency enhancement strategy was to enhance the features
of interest through the proposed affiliation function and sup-
presses the background information, consequently preventing
false and missed detections.

For the large scale variation of targets in remote sensing
images, a novel model with density map and attention mecha-
nism (DA2FNet) was proposed [26]. Shen et al. [27] improved
the Adaptively Spatial Feature Fusion (ASFF) to fuse multiple
branches, improving accuracy through fusion. Wan et al. [28]
introduced a MobileNetV2S as the backbone of YOLOX, and
designed a detection head that is conducive to multi-scale
detection. Teng et al. [29] proposed a model that integrates
global contextual cues extracted and local contextual cues en-
coding local spatial contextual correlation, and designed adap-
tive anchor blocks using rich semantic features to effectively
mitigate scale variations. Wang et al. [30] proposed a new
multiscale enhancement network (MSE-Net) that integrates
Laplacian kernels with fewer parallel multiscale convolutional
layers to provide multiscale description enhancement. Li et
al. [31] proposed a network (SGFTHR) with hybrid residual
operations to extract structural information with significant
differences for easy identification.

Remote sensing image imaging is characterized by arbitrary
orientation. For the rotating targets, Shi et al. [32] proposed a
method for detecting aircraft in arbitrary orientation in high-
resolution aerial images. Hu et al. [33] designed a local and
nonlocal attention model to obtain local and nonlocal features
separately. In order to smooth L1 loss, Yang et al. [34] intro-
duced the IoU constant, for more accurate rotation estimation
to solve the boundary problem of rotating bounding box. A
rotate bounding box is used for ship detection [35]. Dong et
al. [36] designed a vector field filter and a neural network
for remote sensing. Wang et al. [37] used transformation to
convert regression to classification to eliminate the confound-
ing information caused by angular discontinuities. Jiang et al.
[38] proposed a field edge decomposition rotate bounding box
based on centernet to avoid boundary discontinuity.
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Fig. 2. The structure diagram of our method. From left to right are the backbone, neck, and detection head in sequence. An effective localization attention is
proposed to perform feature refinement on small objects. Then, the small object compensation strategy can be reused by obtaining contextual feature information
at different scales and for small objects. The background separation strategy decouples the instance related foreground and the instance independent background.
Finally, the prediction maps are generated using the prediction head.

B. Attention Mechanism

Attention mechanism is applied to machine translation tasks
originally, it mainly has two aspects, one is determining which
part of the input needs to be focused, another is allocat-
ing limited information processing resources for important
parts. Attention mechanism is used in various areas of deep
learning, whether in image segmentation, speech processing,
or in computer vision and natural language processing. Hou
et al. [39] designed a new attention in order to emphasize
positional information, called “coordinated attention”, which
can encode feature maps that enhance the target of interest.
It is easy to be implemented and is a lightweight structure.
A new normalization based attention module (NAM) was
proposed to achieve better performance while also ensuring
high computational efficiency by suppresses less significant
weights [40].

C. Feature Fusion

Feature fusion refers to the combination of feature infor-
mation from different sources or layers to generate richer and
more representative feature representations.

Zhao et al. [41] had added a multi-scale attention feature fu-
sion (MSAFF) structure based on YOLOX, which can expand
the receptive field to capture larger contextual information.
Song et al. [42] designed adaptive instance normalization
(AdaIN) blocks during the fusion process to improve the
performance of the object detection model by improving it’s
adaptability to different types of images, and used attention
modules (AM) to help the model better handle small domain
changes and local information weights. Wang et al. [43] had
introduced a feature fusion module to effectively aggregate
features at different levels. Zhao et al. [44] proposed an
Attention Feature Fusion Module (AFFM) that fully integrates
and refines texture features and semantic features of aircraft.
A multi-scale feature fusion module was proposed to obtain
local details and global contextual features [45]. Chen et al.
[46] had designed a feature fusion module that facilitates the
full transmission of spatial and semantic information through
effective bidirectional cross connections and weighted fusion.

Inspired by these works, attention mechanisms and various
strategies are aggregated in our work, such as small object
compensation strategy and background separation strategy.

Fig. 3. The details of ELAM.

III. PROPOSED METHOD

A. Overview

The network model, as illustrated in Fig. 2. We use YOLOX
as the baseline, and the detection algorithm consists of three
parts: feature extraction, enhanced feature extraction, and
prediction. Firstly, in the feature extraction stage, an effective
localization attention module is designed and embedded into
the backbone network to achieve feature refinement of small
objects by locating key channels. Simultaneously, to enhance
detection ability of small objects a small object compensation
strategy is proposed, by obtaining contextual feature informa-
tion at different scales and reusing small objects. Additionally,
the background separation strategy is used to separate the
object related foreground and the object independent back-
ground to further promote the ability to detect objects in
complex contexts. Finally, different feature maps are send to
the detection head for prediction.

B. Effective Localization Attention Module

We design an effective localization attention module based
on channel attention module (CAM), the details are shown
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in Fig. 3. Due to the shallow feature maps mainly contain
local details and edge information about the image, they
have relatively rich information on localization. Paradoxically,
shallow feature maps have relatively less semantic information
compared to deep feature maps, which make it difficult to
express higher-level semantic information such as relationships
and categories between various objects in the image. Equally,
deep feature maps can capture richer semantic information
and identify various objects and their categories in the image
through multi-level abstraction and induction. Whereas, deep
feature maps have relatively less positioning information, and
difficult to provide precise positioning information compared
to shallow feature maps. Consequently, in computer vision
tasks, it is usually necessary to combine the advantages of
shallow and deep feature maps to achieve more accurate and
refined image analysis and understanding. Effective localiza-
tion attention module can localize channel features that are
practical for the detection task. As consequence, we embed it
before C4 and C5 of the backbone network.

As Fig. 3, we split the input X into horizontal and vertical
branches. The vertical branch undergoes 1×1 convolution for
channel number adjustment. The horizontal branch is captured
information between channels through different convolutional
operations based on CAM. The detailed diagram is shown
in Fig. 3. After Element-wise Sum, we obtain the output
in the horizontal direction. After that, we perform matrix
multiplication on two outputs in different directions. In the
end, a 1× 1 convolution is used for dimensionality reduction
to obtain the output Y.

For CAM, the original input feature map T ∈ RC×H×W is
reshaped into C ×K, K = H ×W , we multiply the reshaped
result with its transposition to obtain the attention feature map
M. Subsequently, we multiply M with its reshaped result and
add the multiplied result to the original feature map to achieve
L(C ×H ×W ). Where the equation is expressed as follows:

mij =
exp(AiAj)∑C
i=1 exp(AiAj)

(1)

Lj = β

C∑
i=1

(mijAi) +Aj (2)

Where mij measures the ith channel’s impact on the jth
channel. β is a scale parameter, we set it as 1.

In short, an effective localization attention module (ELAM)
is proposed to focus more on channel features that are effective
for the detection task and provide validity feature descriptions.

C. Small Object Compensation Strategy

Small targets contain relatively little information, but when
extracting features, we often use operations such as con-
volution, down-sampling, and pooling, which may lead to
information loss. As in Fig. 4, we visualize the adjacent
feature maps extracted from the backbone network. Observe
that as the depth of the network increases, the small object
information is gradually lost. As the number of iterations
increases, the model gradually focuses more on large objects.

Fig. 4. Feature map visualization. By comparing each row, we find that the
information of small objects gradually become lost with the development of
network; by comparing each column, we find that as the number of training
repetitions increases, it gradually focuses more on large objects.

As consequence, convolution, pooling and other operations
are also an influential factor in the unsatisfactory detection of
small targets. The information reuse capability of the model for
small objects needs to be improved.for enhancing the detection
accuracy of small objects.

Follow that, we propose a small object compensation strat-
egy, the details are shown in Fig. 5. After feature extraction, we
obtained different effective feature layers, where F1 represents
the shallow feature map, F2 represents the middle layer, and
F3 represents the deep feature map. A 3 × 3 convolutional
operation is performed on F3 for channel number reduction
and model parameter reduction, and then W is obtained after
the Sigmoid activation function, which is to enhance the
nonlinear representation capability of our model.

In order to acquire the composite semantic feature map,
we perform matrix concatenation operations on F4 and F1. It
can not only retain the preservation of spatial and semantic
information about the feature map as much as possible, but
also effectively extract multi-scale contextual information,
which is efficacious in detecting remote sensing small objects.
Consequently, channel shuffle is performed to exchange the
features between groups (shuffle), so that each group contains
the features of other groups to achieve the purpose of enhanced
feature extraction. As a result, a 3 × 3 convolution operation
is performed to obtain the output feature map F.

In brief, we propose a small object compensation strategy.
It enables the fusion and interaction of contextual information
by compensating information operations, which can efficiently
moderate the sluggish performance results of small object
detection.
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Fig. 5. Structure diagram of the small object compensation strategy. F1 indicates shallow feature map, F2 indicates deep feature map. The fusion and
interaction of contextual information through compensation information operations can effectively alleviate the problem of poor performance results of small
object detection.

Fig. 6. Background Separation Strategy. Enhancing features of interest,
suppresses background noise.

D. Background Separation Strategy

As the consequence of the special characteristics of remote
sensing imaging technology, the viewing angle of remote sens-
ing images is mostly overhead, which inevitably obscures the
target, causing incomplete features of the object, consequently
leading to the missed detection of some objects. Additionally,
the remote sensing image field of view is relatively large and
contains a variety of backgrounds, which will introduce a lot
of noise in the feature extraction process and produce stronger
interference to the object detection, further weakening the
feature characterization ability of the object.

In a nutshell, a background separation strategy is proposed
in this paper, and the detail diagram is shown in Fig. 6.
We consider the edge pixels as background. Our formula for
calculating Fs and Bs ∈ RC×H×W is as follows:

Bs = AvgPool(Ws × Fs) (3)

Where Ws ∈ RC×H×W is a tensor with learning ability, the
edge value is 1, other areas value is 0. We use the learnable
tensor to obtain edge pixels of Fs and use the global maximum

pooling to obtain the background Bs, which preserves the
spatial structure information of Fs. During the process of
training, we continuously optimize the element values of Ws

to better represent the background. Then, we consider Bs

as the difference between the feature maps Fs and Bs. The
calculation formula is shown as follows: We use the learnable
tensor to obtain all edge pixels of Ws .The calculation formula
is shown as follows:

∆Ws = Fs −Bs (4)

Usually, there are differences between the element values
in correspondence with the object area and the background.
△Ws(i, j) is obtained by subtracting between Fs and Bs ,
the greater of it, the more likely a specific location in the
feature map will contain the object information, and therefore
the model should focus more on that object region. We define
the confidence function f to give an account of correlation,
determined as follows:

f =

{
1− e−∆Ws if ∆Ws > 0

0 otherwise
(5)

We can get the feature map after background separation by
putting the input feature map through the correlation function
calculation. Whereas, in this process, we should understand
that the value of f is really between [0,1], which reflects the
confidence magnitude of each element belonging to the object.
It is mainly used to make our model focus more on the object
region and suppress the background region. Consequently, we
can the expression of the final feature map used for detection,
determined as follows:

FF = Fs ⊕ (F
′

s × f) (6)

The background separation strategy can separate the object
from the complex background in accordance with f , it boosts
the features of the object, reduces the interference of noise,
the details of which will be developed in the Section of
Experiments.
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TABLE I
ABALATION EXPERIMENTS ON NWPU VHR-10 (%)

Group Baseline ELAM SOCS BSS mAP
Group1 ✓ 92.3
Group2 ✓ ✓ 93.4
Group3 ✓ ✓ 93.5
Group4 ✓ ✓ 93.3
Group5 ✓ ✓ ✓ 93.6
Group6 ✓ ✓ ✓ 93.7
Group7 ✓ ✓ ✓ 93.9
Group8 ✓ ✓ ✓ ✓ 94.2

TABLE II
ABALATION EXPERIMENTS ON DIOR (%)

Group Baseline ELAM SOCS BSS mAP
Group1 ✓ 66.9
Group2 ✓ ✓ 68.3
Group3 ✓ ✓ 68.5
Group4 ✓ ✓ 68.3
Group5 ✓ ✓ ✓ 68.6
Group6 ✓ ✓ ✓ 68.9
Group7 ✓ ✓ ✓ 69.3
Group8 ✓ ✓ ✓ ✓ 70.7

IV. EXPERIMENTS

We first describe the dataset and the evaluation metrics
utilized in the experiment. To demonstrate the effectiveness
of our approach, we conduct extensive experiments with three
sets of data separately. Accordingly, we conduct extensive
ablation experiments to estimate the performance of each
proposed module.

A. Datasets

In our experiment, we evaluated and analyzed the achieve-
ments of our method on three different datasets, DIOR, NWPU
VHR-10 and DOTA.

1) DIOR: It’s a large-scale, publicly available object detec-
tion dataset released by Northwestern Polytechnical Univer-
sity. It consists of 23463 images, totaling 20 categories. 11725
images are used for training and validation , 11738 images are
used for testing.

2) NWPU VHR-10: It’s also a public remote sensing im-
age object detection dataset that includes 650 high-resolution
optical remote sensing images in a total of 10 categories.

3) DOTA: DOTA contains 15 types of objects of different
scales, directions, and shapes. We split it into 640× 640 pixel
blocks during training and validation.

B. Evaluation Metrics and Parameter Settings

The achievements of the network are measured using the
mean Average Precision (mAP) and Average Precision (AP).
AP measures the performance of the learned model in each
category; the higher the AP value, the better the classification.
mAP measures the performance of the model in all categories,
and its range is [0, 1].

The mAP is the average of the AP across all categories. It
evaluates the performance of the model more comprehensively
compared to accuracy and recall. Therefore, the above two
evaluation metrics are important indicators of the achievement

TABLE III
ABALATION EXPERIMENTS ON DOTA (%)

Group Baseline ELAM SOCS BSS mAP
Group1 ✓ 79.0
Group2 ✓ ✓ 79.8
Group3 ✓ ✓ 79.9
Group4 ✓ ✓ 79.8
Group5 ✓ ✓ ✓ 80.1
Group6 ✓ ✓ ✓ 80.1
Group7 ✓ ✓ ✓ 80.2
Group8 ✓ ✓ ✓ ✓ 80.5

of the object detection algorithm. Precision indicates how
many of the predicted positive samples are truly positive, and
mAP is the average precision for multiple objects. Precision,
recall, AP and mAP are calculated as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

AP =

∫ 1

0

P (R)dR (9)

mAP =
1

N
APi (10)

Where TP, FP, and FN separately represent the sum total of
true positives, false positives, and false negatives.

The training process is divided into freeze training and
unfreeze training. We choose YOLOX as our benchmark
model and trained a total of 150 epochs. First, the pre-trained
model is loaded and the freeze training is executed in the
first 50 epochs, we set the learning rate to 0.001, and use the
cosine annealing method to train and adjust only the later parts
of the backbone network. Unfreeze training is executed in the
last 100 epochs, we set learning rate to 0.0001. At this stage,
the cosine annealing algorithm is still used. We use SGD to
optimize the model throughout the entire training process. The
same parameter settings are used during the training process of
all experiments. We use Pytorch on DGX-Station-A100 GPU
to train our model, and use a framework of Python 1.7.1 and
CUDA version 11.0.

C. Experimental Results

We first presented the contributions of three modules in
our model through ablation experiments, including effective
attention mechanism modules, small object reuse strategies,
and background separation strategies. Then we compared our
model with other state-of-the-art detectors on three widely
used datasets, NWPU VHR-10, DIOR and DOTA dataset.

1) Ablation Experiment
To evaluate the effectiveness of different modules, we

conducted ablation experiments on the NWPU VHR-10 and
DIOR dataset, all experiments used the same settings, we can
see the results in Table I, Table II and Table III.

It can be seen that the method proposed in this article
has achieved significant improvements in terms of effective
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TABLE IV
COMPARISON EXPERIMENTS ON DIOR DATASET (%)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Airplane Airport Baseball
field

Basketball
court Bridge Chimney Dam Expressway

service area
Expressway
toll station Goff course

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20
Ground

track field Harbor Overpass Ship Stadium Storage tank Tennis court Train station Vehicle Windmill

Methods C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 mAP
R-CNN [47] 35.6 43.0 53.8 62.3 15.6 53.7 33.7 50.2 33.5 50.1 49.3 39.5 30.9 9.1 60.8 18.0 54.0 36.1 9.1 16.4 37.7

SSD [9] 59.5 72.7 72.4 75.7 29.7 65.8 56.6 63.5 53.1 65.3 68.6 49.4 48.1 59.2 61.0 46.6 76.3 55.1 27.4 65.7 58.6
F-RCNN [48] 53.6 49.3 78.8 66.2 28.0 70.9 62.3 69.0 56.0 68.9 56.9 50.2 50.1 27.7 73.0 39.8 75.2 38.6 23.6 45.4 54.1

CornerNet [49] 58.8 84.2 72.0 80.8 46.4 75.3 64.3 81.6 76.3 79.5 79.5 26.1 60.6 37.6 70.7 45.2 84.0 57.1 43.0 75.9 64.9
RetinaNet [10] 53.7 77.3 69.0 81.3 44.1 72.3 62.5 76.2 66.0 77.7 74.2 50.7 59.6 71.2 69.3 44.8 81.3 54.2 45.1 83.4 65.7
YOLOX [50] 86.7 70.5 74.0 89.0 40.8 74.8 46.9 56.5 57.2 72.7 70.9 60.9 57.1 88.4 61.9 71.7 88.6 35.8 52.0 82.2 66.9
SCFNet [51] 82.1 78.0 77.7 88.7 42.8 76.0 57.8 60.9 59.7 77.3 41.8 61.9 57.3 89.3 70.8 74.9 86.9 55.6 52.7 76.0 69.9

RAST-YOLO [52] 84.3 76.4 78.7 85.9 40.2 76.8 50.2 62.6 56.5 77.1 73.7 61.1 56.6 91.1 74.3 77.9 89.3 53.3 54.0 76.2 69.8
Ours 87.4 78.4 74.5 89.1 44.3 77.6 59.8 58.5 60.2 78.2 71.8 62.4 59.2 89.7 65.7 74.0 88.5 55.6 54.4 84.8 70.7

TABLE V
COMPARISON EXPERIMENTS ON NWPU VHR-10 DATASET (%)

Airplane-APL, Baseball diamond-BD, Basketball court-BC, Bridge-BR, Ground track field-GTF, Harbor-HA,
Ship-SH, Storage tank-STO, Tennis court-TC, Vehicle-VE.

Methods APL BD BC BR GTF HA SH STO TC VE mAP
F-RCNN [48] 82.8 96.3 68.8 78.8 98.4 82.5 77.5 52.5 62.9 63.8 76.4
M-RCNN [53] 93.2 90.4 91.2 60.6 95.2 75.2 75.5 92.9 90.3 74.2 83.9

RFBNet300 [54] 97.2 97.7 93.8 97.6 96.5 98.5 77.4 59.8 81.6 55.2 85.5
YOLOv4 [55] 94.9 98.3 67.5 95.9 99.3 80.7 78.6 95.4 88.2 67.7 86.7

DNN [56] 93.0 92.8 89.0 81.0 78.0 76.0 84.5 87.1 82.0 84.5 84.8
RICAOD [57] 99.7 92.9 80.3 68.5 90.8 80.3 90.8 90.6 90.3 87.1 87.1
MEDNet [58] 99.2 98.5 95.2 75.1 98.3 88.1 94.4 82.2 95.4 89.3 91.6

EGAT-LSTM [59] 97.3 96.5 94.5 80.1 94.2 86.2 96.7 97.2 86.6 90.8 92.0
YOLOX [50] 99.4 99.9 95.8 72.2 100 94.8 84.3 92.9 94.8 88.9 92.3

ours 99.9 97.3 98.8 85.4 100 97.7 85.9 89.7 96.6 90.8 94.2

TABLE VI
COMPARISON EXPERIMENTS ON DOTA DATASET (%)

Plane-PL, Baseball diamond-BD, Bridge-BR, Ground track field-GTF, Small vehicle-SV, Large vehicle-LV, Ship-SH, Tennis court-TC,
Basketball court-BC, Storage tank-ST, Soccer ball field-SBF, Roundabout-RA, Tennis court-TC, Harbor-HA, Swimming pool-SP, helicopter-HP.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
SCRDet [60] 89.9 80.6 52.1 68.3 68.3 60.3 72.4 90.8 87.9 86.8 65.0 66.6 66.2 68.2 65.2 72.6
FAOD [61] 90.2 79.6 45.5 76.4 73.1 68.2 79.6 90.8 83.4 84.7 53.4 65.4 74.2 69.7 64.9 73.2
RSDet [62] 90.1 82.0 53.8 68.5 70.2 78.7 73.6 91.2 87.1 84.7 64.3 68.2 66.1 69.3 63.7 74.1

S2ANet [63] 89.1 82.8 48.4 71.1 78.1 78.4 87.3 90.8 84.9 85.6 60.4 62.6 65.2 69.3 57.9 74.1
CSL [64] 90.2 85.5 54.6 75.3 70.4 73.5 77.6 90.8 86.1 86.7 69.6 68.0 73.8 71.1 68.9 76.1
CFA [65] 89.1 83.2 54.3 66.8 81.2 80.9 87.2 90.2 84.3 86.1 52.3 69.9 75.5 80.8 67.9 76.6

SASM [66] 89.5 85.9 57.7 78.4 79.8 84.2 89.3 90.9 58.8 87.3 63.8 67.8 78.7 79.4 69.4 77.3
YOLOX [50] 88.9 81.1 53.2 79.0 76.6 77.3 87.3 90.1 85.2 86.1 66.2 76.9 76.6 75.4 85.8 79.0
APOG [67] 89.9 85.5 60.9 81.5 78.7 85.3 88.8 90.9 87.6 70.5 71.5 82.0 77.4 74.5 80.6 80.3
DODet [68] 89.9 85.5 58 81.2 78.7 85.5 88.5 90.9 87.1 87.8 70.5 71.5 82.0 77.4 74.4 80.3

Ours 91.3 83.9 54.7 80.6 79.3 79.7 90.7 91.2 87.5 85.1 66.5 76.8 79.3 75.2 87.0 80.5

localization attention module, small object compensation strat-
egy, and background separation strategy. Compared with the
baseline, the mAPs are 1.1%, 1.2%, and 1.0% higher in NWPU
VHR-10 dataset, the mAPs are 1.4%, 1.6%, and 1.4% higher in
DIOR dataset, the mAPs are 0.8%, 0.9%, and 0.8% higher in
DOTA dataset. ELAM is proposed to focus more on channel
features that are effective for the detection task, it provides
validity feature descriptions. SOCS is proposed to compensate
in formation, which is effective for small object detection. BSS
can separate the object from the complex background, reduce
the interference of noise.

2) Comparison Results

We compared our model with other detectors on three
datasets, NWPU VHR-10, DIOR and DOTA. The achievement
of each category is evaluated by AP, and the overall perfor-
mance on the dataset is measured by mAP over the entire
dataset.

The experimental results of DIOR. We evaluated our model
on DIOR dataset and compared it with other outstanding
detectors, including RCNN [47], SSD [9], RAST-YOLO [52],
Faster RCNN [48], YOLOX [50], SCFNet [51] and Retinanet
[10], we can see the results in Table IV. Our model has
a map of 70.7% across all categories of DIOR, which is
significantly superior to other methods. Especially in small
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TABLE VII
PERFORMANCE ANALYSIS OF THE MODELS ON NWPU VHR-10 DATASET

Method Training time Detection speed GFLOPs Params mAP
F-RCNN [48] 4.9h 5.6fps 402.18 137.10M 76.4%
M-RCNN [53] 5.0h 5.1fps 354.16 63.73M 83.9%

Ours 1.1h 13.0fps 26.06 19.39M 94.2%

Fig. 7. Detection results by comparing our method against YOLOX on NWPU VHR-10. The top row of photos show the detection results of YOLOX, and
the following are our detection results.

object categories, our results are the best. For example, the
APs for airplane and vehicle categories are 87.4%, and 54.4%,
respectively, indicating that our model can accurately detect
small objects under limited information. It demonstrates the
effectiveness of small object compensation strategy. Similarly,
for large objects such as basketball court and chimney, the map
values of the model are 89.1% and 77.6%. It is higher than all
other methods. Our model can correctly locate small objects
and some objects under complex background interference.

The experimental results of NWPU VHR-10. We also
evaluated our method on NWPU VHR-10 and compared it
with else methods like Faster R-CNN [48], Mask R-CNN [53],
RFBNet300 [54], DNN [56] and EGAT-LSTM [59]. We can
see the results on NWPU VHR-10 in Table V. The mAP of
our model is 94.2%, followed by YOLOX and EGAT-LSTM.
Especially on the airplane, we get the AP of 99.9% , which is
difficult to achieve. Additionally, our detector has also made
significant improvements on other types of objects, such as
Basketball court, Bridge and Vehicle, which have reached
98.8%, 96.6% and 90.8% AP respectively. It can be seen
that our model has a substantial performance improvement in
the field of remote sensing object detection. In summary, this
method has good detection performance among all detectors.

The experimental results of DOTA. Table VI reports the
mAP of the method and other latest object detection models,
including SCRDet [60], FAOD [61], RSDet [62], S2ANet [63],

CSL [64], CFA [65], SASM [66], DODet [68], AOPG [67].
Bold values indicate that the corresponding model achieves
the best detection performance in this type of object. It shows
our method can effectively detect the objects and achieve the
mAP of 80.5%. Analogously, our model could achieve optimal
performance in 4/15 specific object categories.

We compared our training time, detection speed, GFLOPs,
and parameter count with other models on NWPU VHR-10
datasets. The results are shown in Table VII. It can be seen that
our method obtains the best accuracy and the fastest inference
compared to other important models.And our algorithm has
the optimal complexity.

V. DISCUSSION

In this article, we propose a new one stage detection network
in complex remote sensing scenes. In response to the small
objects, an effective localization attention module is proposed,
which focuses more on channel features that are effective
for detection tasks, providing effective feature descriptions
for object detection. Its mAP achieved a 1.1% improvement
on NWPU VHR-10 dataset. Homoplastically, a strategy of
compensating for small objects is proposed, which effectively
extracts contextual information while also compensating for
identifying details and small object information, enhancing
feature representation capabilities. Its mAP achieved a 1.2%
improvement on NWPU VHR-10 dataset. Simultaneously, for
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remote sensing objects in complex backgrounds, a background
separation strategy is proposed, which can separate the fore-
ground and background, enhance the features of the objects
and reduce the noise. Its mAP achieved a 1.0% improvement
on NWPU VHR-10 dataset.

The visualization result is shown in Fig. 7, which proves
that our method is more friendly to small objects. More im-
portantly, our model can detect objects that cannot be detected
by other detection methods. It can be seen that our method
can successfully detect targets similar to the background, such
as bridge, vehicle, and baseball diamond, as well as small
targets such as basketball court and vehicle. Our method has
significantly improved the detection results on remote sensing
object datasets, with mAPs of 94.2%, 70.7%, and 80.5% on
the NWPU VHR-10, DIOR, and DOTA datasets, respectively.

VI. CONCLUSION

We propose a one-stage remote sensing object detection
algorithm for small objects and complex backgrounds. This
method uses the anchor-free detection algorithm YOLOX as
the framework. We design an effective localization attention
module, and embeds it into the backbone network to locate
channel features. This operation is effective for inspection
tasks and is well adaptable to multi-scale object sizes. Follow
that, a small object compensation strategy is proposed to
achieve the reuse and compensation of small object informa-
tion, to reduce the loss of small object information. On this
basis, a background separation strategy is also proposed to
enhance the features of interest to suppress background noise.
Under the same dataset setting, in comparison else methods,
our method has achieved superior accuracy of remote sensing
objects to a certain extent, which verifies the superiority of
this method in complex background and small objects.

In the following research, we plan to apply the existing
network to practical applications and model pruning and
quantization of the model without compromising current per-
formance.
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