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Abstract—The fine spectral information contained in hyper-
spectral images (HSI) is combined with rich spatial features to
provide feature qualities that serve as distinguishing variables
for efficient classification performance. The task’s objective is to
correctly identify and categorize several object categories in the
HSI, such as the ground, flora, water, and buildings, based on
their spectral characteristics beneficial for a variety of applications,
including mapping minerals, analyzing vegetation, and mapping
urban land use. The difficulty of learning new task-specific knowl-
edge from a limited data sample that encourages less training
has not been overcome by deep learning models. The capacity
of current models to generalize to new tasks on small datasets is
still lacking. By learning features that are transferable to facilitate
adaptation to novel tasks on small samples, metareinforcement
learning (Meta-RL) shows promise in overcoming such difficulties.
We proposed a Meta-RL model that decouples task inference to
improve metatraining and accelerate metalearning with small HSI
labeled samples for efficient classification. The model employs a
capsule network for effective cooperation between spectra and spa-
tial bands. To minimize the temporal difference error, the Apex-X
Deep Q network parameter update is used to metatrain our model.
The proposed model obtains an overall accuracy between 95.85%
and 96.78% with computational time between 3207.9 and 7487.9 s
for training and validation as well as between 21.57 and 32.98 s for
testing. The experimental results prove the competitiveness of the
proposed model to existing traditional deep learning, metalearning,
and reinforcement learning methods in both classification accuracy
and computational cost.

Index Terms—Hyperspectral image (HSI), metareinforcement
learning (Meta-RL), small sample classification.

I. INTRODUCTION

HYPERSPECTRAL image classification (HSIC) has been
very useful in remote sensing in many application fields
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due to detailed spectral and spatial information produced by the
evolving advanced hyperspectral imagers [1]. However, there
are limited labeled samples, especially in cross-domain classifi-
cation problems [2]. The application of the hyperspectral image
(HSI) is particularly complicated and challenging because of
the nonlinearity of the data and the close association between
bands. Particularly, the lack of available hyperspectral training
samples makes it difficult to increase classification accuracy. In
order to increase classification accuracy, it is therefore necessary
to fully utilize the benefits of HSI data by using algorithms
and techniques to address the issues of small training sample
sizes, high-dimensional HSI data, and effective classification
methods [3].

There are negative effects of spectral mixing on pseudolabel
generation and classifier training on small data sample classi-
fication. To reduce such negative effects, a weakly supervised
technique has been employed to use segmentation graphs and
neighborhood relationship-based algorithms [4]. A systematic
survey of deep learning algorithms employed recently, specif-
ically focusing on research conducted from 2019 upwards on
HSIC revealed that scarcity of labeled samples has a major
effect on deep learning models’ performance [5]. Fully utilizing
the rich spatial and spectral details of HSI promotes profound
high precision of small data sample classification. In view of
this, Li et al. [6] proposed a deep reinforcement learning (RL)
technique to process the spectral features, selecting the most
informative bands and using extended morphological profiles
to extract the spatial features and further classify them with a
capsule network. The result of employing RL with a capsule
network indicates their appropriateness in HSIC; however, this
is satisfactory for retrieving only discriminant and informative
target HSI features [7].

Data augmentation is a significant method widely employed
as a viable solution to small sample classification problems
specifically at the preprocessing stage. Aside from the tradi-
tional data augmentation techniques such as rotation, flipping,
introducing noise, etc., a number of new methods consisting of
CutMix, Cut-out, sample pairing, and unlabeled data utilization
have been explored [8], [9]. These methods have realized their
effectiveness with sparse data and are, therefore, ineffective
and produce low classification accuracy under extremely few
available labeled samples [8]. Enhancing data augmentation in
the HSIC, Wang et al. [8] proposed a technique with 13 aug-
mentations, including a novel rotation created for HSI patches,
that randomly chooses augmentations and their magnitudes
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for each training iteration. At the start of the preprocessing
stage, extended morphological profiles were used after principal
component analysis, and affine transformation was introduced
as a replacement for all of the geometric augmentations in order
to lower the computational cost. A study on CNN models for the
HSIC prompted a design of a model to salvage the challenges of
high computational power and optimization, Ullah et al. [10]
proposed a deep snap smooth wavelet CNN shots ensemble
for the multiresolution HSIC with significantly high accuracy
specifically solving the optimization problems in ensemble
creation to improve the classification performance. These ap-
proaches work together to reveal the promise of the HSIC,
providing ways to obtain accurate and dependable classification
results even with limited training data. However, most of these
methods are unable to create local correlations in images as well
as make accurate generalizations when there is inadequate data,
which is where metareinforcement learning (Meta-RL) shines.

It is realized that most of the existing algorithms based on
convolutional neural networks (CNNs) for small data samples in
the HSIC have mainly ignored the global spatial information and
considered only the local feature information [2]. The limitation
of higher accuracy of the HSIC with CNN models is associated
with the deficiency of discriminating spectral–spatial features
of diverse HSI cubes as well as spatially adjacent categories of
spectral similarities [11]. In dealing with the high-level com-
plexity of the HSI spectral–spatial challenge capsule networks
have been useful in small sample problems [12], [13], [14], [15].
Paoletti et al. [16] proposed a spectral–spatial capsule model that
consists of several building blocks to improve the deep CNN
classification accuracy. Improving the extraction competency
of deep CNN models on high-level spectral–spatial features, a
capsule network is constructed with a residual module for the
small sample HSIC [11].

In spite of the significant improvement on the HSIC with
capsule networks, they are challenged with parameter redun-
dancy and lack robustness. To mitigate this challenge, Peng
et al. [2] proposed a metalearning approach with a convolutional
transformer-based for the HSIC. Employing a stack of convo-
lutional blocks, Gao et al. [7] proposed a model with model-
agnostic metalearning to enhance the small-sample-based HSIC
to provide robustness.

The aforementioned CNN methods and the metalearning
methods have improved the HSIC accuracy by addressing sig-
nificant challenges. However, much is desired to improve the
performance in dealing with other challenges such as better band
selection and eliminate intractable optimization challenges. An
unsupervised deep RL is constructed to select better bands in the
HSIC [17]. Feng et al. [18] employed semisupervised deep RL to
select optimal bands for the HSIC. Also, a Meta-RL technique
that leverages a dynamic structure-aware graph convolutional
network for a shared method for value network and policy
network is proposed for small sample HSI band selection in
a supervised fashion [19].

Meta-RL is pointed out to have the potential of offering
improved classification performance by selecting better bands
in the HSI if combined with appropriate deep learning frame-
works [17]. Since different classes may have variable number of

varying subsets of optimal bands, determining the appropriate
band combination for each class is quite challenging, and Mou
et al. [17] suggest that a supervised deep RL will be a possible
approach to address this challenge. The learning algorithms of
the existing deep RL require the method to depend on a large
number of interactions with the environment, greatly increasing
the training cost with the change of environment [20]. There-
fore, the model has to be retrained, learning from scratch since
the initially learned optimal strategy is inapplicable in a new
environment, which is obviously very inefficient. Li et al. [3]
opine that future research on the HSIC will focus on developing
appropriate strategies for small samples, which will greatly
enhance the application of the HSI in diverse fields.

Hence, Meta-RL is proposed to aid in addressing such chal-
lenges on the HSIC with small data samples. To the best of
our knowledge, this is the first time implementing Meta-RL
incorporating capsule network and Q-learning for the HSIC.
This article proposes a Meta-RL for the small sample HSIC
with the following significant contributions.

1) Employing a capsule network to capture the specific HSI
feature bands and obtain underlying spatial hierarchical
relationships between these bands to enhance classifica-
tion performance.

2) A more robust and stable Meta-RL method that can
achieve effective corporation among HSI features with a
minimal convergence period to improve HSI small sam-
ple classification problems. This provides a direction for
further research on the small sample HSIC with Meta-RL.

3) Detailed experimental evaluation on four Chinese HSI
datasets in comparison with recent state-of-the-art tradi-
tional deep learning models, metalearning models, and
Meta-RL models on performance accuracy and computa-
tional complexity.

The rest of this article is organized as follows. We discuss
related work in Section II, and the proposed method is presented
in Section III. In Section IV, we introduce the experimental setup
and preliminary evaluation of the method. The evaluation of our
method in comparison with existing methods is discussed in
Section V. Finally, Section VI concludes this article.

II. RELATED WORK

A. Metalearning

Metalearning, also known as “learning to learn,” focuses on
training models to learn from multiple related tasks in order
to improve their generalization capabilities. Instead of training
a model on a single task, metalearning involves training it on
a distribution of tasks sampled from a larger task space. The
goal is to acquire knowledge and adapt quickly to new, unseen
tasks using a few data samples. In supervised and semisuper-
vised HSI detection and classification with deep learning in
which considerable retraining for generation in an unknown
application context, the metalearning approach is realized to be
promising.

In view of this Wang et al. [21] introduced a metalearning
model with Siamese CNN for HSI detection. Zhou et al. [22]
proposed a metalearning method for the small sample HSIC
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using an embedding module and a linear classifier as a back-
bone classification framework. Recent work on few-shot HSIC
considering the challenge of open-set recognition is a metalearn-
ing model based on the generative adversarial network [23].
Liang et al. [24] addressing the unseen aspect category of
small data samples for effective sentiment analysis, proposed
an aspect-focused episode-based metalearning model to learn to
generalize new aspects. A metalearning approach is introduced
to address the limited labeled samples of the target domain in
the HSIC [2]. The method basically employs a convolutional
transformer that uses small data sample to extract local-global
features and further introduces a domain discriminator to reduce
domain shift as well as distinguishing the source of each domain
feature.

There exist a significant number of benefits in the implemen-
tation of metalearning including improving machine learning
models and adaptation to new tasks with fewer samples. How-
ever, the time required to metalearn is considerably long [25].
There is a need to fill the long-time execution of metalearning
in research on the HSIC by enhancing the learning process to be
rapid.

B. Reinforcement Learning (RL)

RL is a type of machine learning where a model interacts with
an environment and learns to take actions to maximize a cumu-
lative reward signal. The model learns through trial and error
by receiving feedback (rewards) from the environment based
on its actions. The objective is to find a policy that maps states
to actions, optimizing for long-term rewards. RL is employed
to demonstrate an effective and efficient hyperspectral band
selection [18]. The model constructed a semisupervised CNN
introducing intraclass compactness constraint with sufficient
unlabeled samples and small labeled samples. An unsupervised
deep RL model is proposed to select bands for the HSIC [18].
The model considers HSI band selection as a Markov decision
process and builds an RL model that can intelligently select
optimal bands through learning policy with no hand engineer-
ing. Fu and Zhang [26] proposed a plug-and-play model based
on RL for HSI reconstruction to balance spatial and spectral
resolutions. The model’s parameters can be adaptively tuned to
change the denoising strength, the deep denoising network’s
penalty factor, and the iterative optimization’s terminal time
using a suitable policy network trained using deep RL. Al-
though band selection methods are improving the HSIC pro-
cess, the current RL-based methods require large amounts of
samples to learn and lack the generalization ability to a new
environment.

A survey conducted on brain-inspired algorithms employed
on remote sensing data interpretation revealed that through
interaction with the environment, RL in remote sensing chooses
consecutive actions by maximizing cumulative feature rewards.
RL can achieve relatively high accuracy without utilizing any
labeled training dataset, especially when there are only a few
labeled pixels available [27]. The classification of polarimetric
synthetic aperture radar images was proposed using an improved

deep Q-network (DQN) algorithm for few-shot remote sensing
data. By interacting with models in a greedy way, it can produce
useful data [28]. In the network, environment states and model
actions are used to refer to multilayer feature images and classifi-
cation operations, respectively. Model predictions are rewarded
under some circumstances.

A small sample set of data that has been annotated is used
to provide feedback to the model. The aforementioned models
establish the usefulness of RL in HSIC tasks, nonetheless, the
inherent challenges of sample inefficiency and exploration for
RL training requires metatraining with better models such as
capsule network to improve the training efficiency.

C. Metareinforcement Learning (Meta-RL)

Meta-RL on small sample data classification seems promising
in solving the fast adaptation on novel tasks. Nonetheless, their
capabilities are generally limited to narrow task distributions,
even though the main objective of Meta-RL is to aid in the
rapid acquisition of completely new characteristics. A survey
of Meta-RL [29] indicated the need for future research to focus
on Meta-RL on small sample data classification models feasible
for the generalization of broader task distributions. They further
proposed that a simple way to achieve such an objective is to
perform metatraining that learns an inductive bias enhancing
generalizability on a wider task distribution. Existing models
have limitations on exploration in training on a wider task
distribution and the agent may face challenges on test tasks
that are beyond the training distribution. Generalization is very
significant in an environment of such an out-of-distribution
because a Meta-RL method usually faces unexpected tasks in
practical implementations.

This article seeks to take advantage of the existing rich la-
beled HSI dataset enough for training a Meta-RL model, and
then, subject it to a novel HSI dataset for new task distribution
classification.

To improve the effectiveness of band selection in the HSI by
addressing the challenge of existing models leaving inherent
correlation and common knowledge in varying bands, Feng
et al. [19] proposed a Meta-RL technique for zero-shot band
selection of hyperspectral features. A survey of metalearning
with its incorporation of RL revealed the significance of their
application in small data sample implementations in many
fields [30].

It is realized that most existing Meta-RL techniques infer
the task objective from the new task environmental reward
function, which is impracticable in many practical applications.
A Meta-RL approach for rapid policy adaptation incorporating
preference-based feedback is developed to bridge such gap [31].
The challenge in the existing Meta-RL remains that they take
a longer time to converge with performance instability. A more
robust and stable Meta-RL method that can achieve effective
corporation among HSI features with minimal convergence
period is required to improve HSI small sample classification
problems. Inspired by [32], the problem of Meta-RL for the HSI
small sample classification is defined in the following.
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Fig. 1. Architectural framework for the proposed Meta-RL for the small sample HSIC.

The spectra-spatial feature extraction as a metatask. Given a
k-set metatraining task (consisting of different HSIs) Hmeta =
H1, . . . ,Hk, a feature extraction policy capable of fast learning
a new task is to be learned. In simple terms, the policy for
metalearning can effectively adapt to learning spectra-spatial
features of new sets of HSIs with varying conditions. Hence,
the Meta-RL, given a metatraining loss function L, parameter
representing the policy for solving a taskHi as θi, based on the
Meta-RL algorithm is formulated as

θmeta = argmin
θ

1

k

k∑

i=1

L (θiHi) , θi = �θ (Hi) . (1)

We assume that each model deals with a single image at a time
and the metatraining taskHi is expressed as a Markov decision
process with {Si,Ai,Pi, ri, πi, λi} elaborated as follows.

1) Si is the state space, where sfi ∈ Si represents the raw
observation of the model i at point f , which comprises the
current phase of feature and the number of spectra–spatial
features of images i.

2) Ai is the action space. afi ∈ Ai representing the selected
action of model i at point f . The model’s selection is at
every change of point Δf from its activated predefined
phase.

3) Pi is the transition probability given by P(sf+1
i |sfi , a

f
i )

representing the probability of arriving at the state sf+1
i

given the state sfi and the action afi .
4) ri is the reward, which rfi defines as the negative value of

the sum of the spectral and spatial features of an image i
at point f .

5) πi is the policy for feature extraction and λi is the discount
factor. The model’s goal is to learn the optimal selection
strategy given by πi (ai|si) to minimize the total expected
reward expressed as E[Σε

f=1(λi)
frfi ], where E denotes

the number of episodes.
Fig. 1 depicts the architectural framework for Meta-RL for

classifying the HSI with a small sample set.

III. PROPOSED METHOD

The proposed Meta-RL model for the HSI small sample
classification is composed of three parts: the capsule network
(CapsNet, parameterized as η), task encoder (Tenc, parameter-
ized as ϕ), and the policy learner (DQN parameterized as θ).
The CapsNet learns the adjacent HSI feature bands, whereas the
Tenc makes an inference of the task properties from the spatial
and spectral bands, and the DQN makes decision based on the
current state and the task inference output by the Tenc.

A. Capsule Network

A novel deep learning architecture called the capsule net-
work [33] aims to get over CNNs’ drawbacks, such as the
absence of explicit entity ideas and the loss of important data
during the Max-pooling. The underlying relationships between
the features are also captured via a capsule-based representation
approach. As a result, in this situation, the capsule network
performs well with fewer training samples and is more resistant
to affine changes. This is evident in the HSIC result obtained in
[33]. Hence, its adoption in this research. We employ a typical
capsule network with a multilayer capsule system that has the
ability to distinguish between objects while being trained.

A convolutional layer, a primary capsule layer, a digital cap-
sule layer, and a fully linked layer are the four component pieces
in our model. The capsule creates a vector output from the input
data. The probability of the vector’s existence is shown by its
length, and its attribute is indicated by its direction. Following
the concept in [34], the network’s -linear squashing function
determines the output vector of capsule k, given by

vk =
‖sk‖2

ε+ ‖sk‖2
sk
‖sk‖

(2)

where ε denotes a fixed size determined value, and sk can be
deduced as

sk =
∑

i

cikWikui (3)
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where ui represents the previous layer output, Wik denotes the
prediction vector weights of next layer capsule, and cik denotes
the coefficient determined by the dynamic routing process given
as

cik =
exp(bik)∑
n exp(bin)

(4)

where bik represents the long prior probability that capsule i
should be coupled to capsule k. The iteration process fulfills
the dynamic routing. A lower level capsule sends its output to
a higher level capsule with a larger scalar product between the
output vector of the higher level capsule and the input vector of
the lower level capsule. The marginal loss Lk of the capsule k
can be defined as [33]

Lk = Tkmax(0,m+ − ‖vk‖)2 + λ(1− Tk)

max(0, ‖vk‖ −m−)2 (5)

where m+ = 0.9, m− = 0.1 denotes default free parameters, λ

is a parameter guaranteeing the final convergence, and Tk = 1
if the kth class data are recognized, otherwise Tk = 0.

B. Task Encoder

The task encoder Tenc infers the task properties from the
HSI spatial and spectral bandsconsidered as constituting spatial
and spectral information signified as: vf = (ϕf , af , rf , ϕf+1),
where ϕf = CapsNet(s) representing the embedded vector
transformation from the raw state s by CapsNet, combining
the spatial and spectral bands of different classes to aid the
model’s corporation. We make the assumption that {vk}(k<f) =

(vf−K , . . . , vf−1) representing all the past K transitions until f.
The key information about the task construction must be encoded
from the inference of the task properties of the latent features
as u. The design of the task encoder embeds the feature bands
{vk}k<f into the latent features u formulated as

uf = Tenc
(
{vk}k<f

)

= Tenc
(
{(ϕk, ak, rk, ϕk+1)}k<f

)
. (6)

The design of our task encoder network Tenc requires to
consider the following two main principles.

1) The HSI data constitute complex spatial-temporal pat-
terns. The spatial relationship among the varying image
features is captured by the CapsNet and the temporal
information about the task are critical for the model.
Therefore, the Tenc is made expressive enough to capture
the temporal information.

2) The Tenc should be easily trained to enhance the efficiency
of the metatraining, eliminating computational complex-
ities. The gated recurrent unit capable of balancing rich
temporal representation and computational complexity is
employed to construct the Tenc.

The model workflow is then established as follows.
1) At each episode f, the model receives the raw state sf as

input.

2) The CapsNet transforms sf into corresponding ϕf , which
includes information about the target feature and the
neighboring feature of the HSIs.

3) Previous K spectral–spatial features are sampled from the
stack and fed to the Tenc.

4) Tenc then generate the latent feature bands u and fed into
the DQN to make decision based on sf and u.

C. Metatraining

The model gains knowledge from a variety of tasks that are
each represented by a small labeled HSI dataset during the
metatraining phase. The model is given different jobs to perform,
and throughout each one, it learns how to adapt and generalize
using only a small amount of data. The metalearner is able to
learn how to quickly adapt to new tasks with just a few instances
since it captures common information across tasks. The current
Meta-RL techniques struggle with slow adaption speeds [35]
and large computational training complexity [30]. In order to
achieve effective performance over all metaparameters (ηmeta,
ϕmeta, and θmeta), a simple multitask training strategy is used.

The training method, which completes one training at a time
for each task, reduces the average reward across all metatraining
tasks. Each task is trained across a number of episodes in order
to determine the optimal performance metrics for the subsequent
task initialization metrics. The final task completed at the conclu-
sion of training results in the metaparameters, which show that
the model extracts the experience from all metatraining tasks. As
demonstrated in this research, even though our training method
is straightforward and simple to use, nevertheless, it outperforms
more complex methods currently in use.

Inspired by [32], [36], and [37], our metatraining is performed
using Ape-X DQNs method parameters update. The DQN em-
ploys a neural network to approximate Q values and tries to
minimize the temporal difference error expressed as

L(θ, ϕ, η) = 1

|B|
∑

(ϕf ,af ,rf ,ϕf+1)∈B
(rf + λmaxQθ

(ϕf+1‖vf+1, a′)−Qθ(ϕ
f‖vf , af t))2 (7)

where (ϕf , af , rf , ϕf+1) represents transition sampled from
minibatch B and ϕ‖u represents the concatenation of the em-
bedded state ϕ and the task inference u. Furthermore, stochastic
gradient descent is used to update the parameters of the policy
as well as the task encoder given by

θ ← θ − α∇θL(θ, ϕ, η) (8)

ϕ← ϕ− β∇ϕL(θ, ϕ, η) (9)

η ← η − γ∇ηL(θ, ϕ, η). (10)

The metatraining is able to aid the model learn the spectral–
spatial features of the HSI for small sample classification.

A layer-wise input–output features is detailed as follows.
1) Input capsule: Several HSI feature bands are the input for

the capsule network. An HSI various aspects or character-
istics are represented by each band, which include infrared
bands, color channels, or other pertinent properties.
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2) Primary capsule: The main capsule layer encodes infor-
mation such as edges, textures, or color patterns unique
to each feature band by processing each HSI feature band
independently and capturing low-level properties unique
to that band.

3) Routing by agreement: The network learns how features
in one band relate to characteristics in another, capturing
spatial and hierarchical relationships. The dynamic rout-
ing method is used to connect capsules in various feature
bands.

4) Secondary capsules: Higher level features and the connec-
tions between feature bands are represented by secondary
capsules, which receive their input from the routing mech-
anism’s output. These capsules are useful for capturing
more ethereal associations, like the blending of one band’s
color pattern with another’s texture pattern.

5) Class capsules: Depending on the relationships that the
network has learned between the various bands of HSI
features, the final layer of capsules represents particular
classes or categories. Each class capsule encodes informa-
tion about the presence of particular features in combina-
tion across the bands, enabling the network to carry out
HSIC.

D. Metatesting

The metalearner is assessed on new HSI images for the
classification task when the metatraining is completed. A small
number of HSI training samples from the new task are used
by the model during metatesting to adjust its parameters to the
particular task. The objective is to evaluate the model’s general-
izability and performance on HSI tasks that were not included
in the metatraining phase. In this article, forward propagation
of the CapsNet Meta-RL model is used to update the model
by collecting transitions. To ensure that the CapsNet learns the
spatial features due to the varied feature arrangement of the
HSIs, and to retrain the CapsNet to properly adapt to the new
work environment, the update is solely applied to the DQN and
the CapsNet. On the premise that common structures of meta-
training tasks are learned and inferences are drawn from task
attributes, the task encoder did not require retraining following
the idea in [32].

Following the architecture in Fig. 1, Algorithm 1 elaborate on
the processes of the model.

IV. EXPERIMENTAL SETUP AND PRELIMINARY EVALUATION

This section establishes the evaluation parameters for the
proposed model. The focus is to realize how the model is capable
of achieving better classification accuracy and computational
efficiency on the small sample HSI through Meta-RL.

A. Setting up the Experimental Datasets and Processes

Recent remote sensing data from satellites have contributed
immensely to obtaining rich image resources for the HSIC.
This study employs the four HSI datasets with rich spatial and

Algorithm 1: Meta-RL HSIC.
Part 1: Metatraining

Input: HSI labeled source dataset, Target HSI
Output: Classified HSI
1: Input raw HSI into initial capsule
2: while Capsule layer != last fully inked layer capsule

do
3: Extract low-level features by primary capsule layer

← CapsNet(sf )
4: Extract high-level features through dynamic routing

by upper capsule layers← CapsNet(sf )
5: Reconstruct the input image from the capsule’s

output
6: Return relevant features ϕf

7: end while
8: do
9: Infer task properties from HSI features by Tenc using

(6)
10: Initialize parameters
11: η ← feature bands
12: ϕ← spatial and spectral bands of task properties
13: θ ← Current state and the task inference output
14: Approximate Q values using (7)
15: Update policy parameter using (8)
16: Update task encoder parameter using (9)
Part 2: Metatesting

Input: HSI unlabeled samples, HSI small labeled samples
17: while Capsule layer != final capsule
18: Extract low-level features by primary capsule layer

CapsNet(sf )
19: Extract high-level features through dynamic

routing by upper capsule layers CapsNet(sf )
20: Reconstruct the input image from the capsule’s

output
21: Return relevant features ϕ
22: end while
23: Update CapsNet by forward propagation with

transitions
24: Update DQN
25: while final episode not completed
26: Return classified HSI

spectral information, the Huan Jing-1 Hyperspectral Image (HJ-
1 A HSI), the Gaofen-5 Advanced Hyperspectral Image (GF-5
AHSI), the Zhuhai-1 Orbita Hyperspectral Satellites (OHS HSI),
and the Ziyuan-1 02D Hyperspectral Image (ZY-1 02D HIS).
Table I presents general background specifications of the sensors
for the datasets.

Furthermore, a brief description of the datasets is presented
for more clarity as follows.

1) The HJ-1 A/B data are attained from the website of the
China Centre for Resources Satellite Data and Application
(CRESDA). The images are considered level-2 products,
which is obtained after a systematic geometric calibration.
The HJ-1 A satellite was on September 6, 2008, covers
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TABLE I
GENERAL BACKGROUND SPECIFICATIONS OF THE DATASET SENSORS

115 spectral bands with a range of 0.45–0.95 μm. It is
indicated that the HJ-1 A hyperspectral imager is able to
revisit a single area on earth every 4 days in a solar syn-
chronous orbit [38]. Applications of HJ-1 A hyperspectral
data include crop phenology mapping, determination of
chlorophyll concentration in water, and other water and
agricultural applications [39].

2) The GF-5 HSI data represent the first comprehensive
hyperspectral data with a spatial resolution of 30 m from a
Chinese observation satellite. There are two land imagers
with four atmospheric sounders composed in six payloads
of the GF-5 having a full spectral range coverage of land
and atmosphere simultaneously. A scene is chosen from
HSI data produced by the infrared hyperspectral camera
for visible short waves. After atmospheric and radiation
correction, from the original data, the range of visible light
to near-infrared spectrum is selected. The image size is
200 x 200 with the scene covering 150 spectral bands
within the range of 0.4–2.5 μm. The data constituting six
ground-truth classes consist of 2 216 labeled samples. The
data were retrieved from the CRESDA.

3) The Zhuhai Orbita Aerospace Science and Technology
Company Limited (Orbita) designed the OHS dataset. On
April 26, 2018, the first set of four OHSs was launched,
and September 19, 2019, dated the second batch. There
are eight satellites in the Orbita hyperspectral remote
sensing satellite constellation network in China with a
strong capacity to obtain hyperspectral remote sensing
data. It is indicated that each of the OHS satellites’ orbits
is sun-synchronous at 500-km mean altitude with 98o

inclination and has a lifespan of more than 5 years. A dual-
frequency Global Navigation Satellite System receiver
measures each OHS satellite’s position in its orbit, having
the support of the global positioning system (GPS) and
Beidu, with a combined constellation revisit of 5 days [40].

4) According to [41], the ZY-1-02D satellite is the first
civilian service hyperspectral. It was launched on Septem-
ber 12, 2019, and composed of two payload types, an
advanced hyperspectral imager sensor and a visible and
near-infrared camera. The real Zi Yuan (ZY)-1-02D HSI
data was obtained on December 5, 2019. It has an image
size of 1400 x 900 x 166 with a spatial resolution of 30 m
and 166 bands. Upon preprocessing, 137 bands were used
due to the elimination of uncalibrated and noisy bands.
The spatial registration of the ZY-1-02D image was done
by employing the GF-5 data as the reference image.

In each of the datasets for training and testing, a random
splitting of each class was adopted in a ratio of 70% training
and 30% testing. All the images were initially resized to obtain
256 × 256 identical sizes and employed CapsNet to directly
extract the features. Each image feature dimension remained as
512 × 8 × 8 producing a total of 32 768.

On the experimental processes, all the algorithmic procedures
were constructed and implemented using Python with accom-
panying libraries running on a laptop computer with Intel(R)
Core(TM) i7-9750H CPU at 2.60 GHz, 16.0-GB RAM, 64-
bit operating system with x64-based processor and NVIDIA
GEFORCE GTX. Initially, the learning rate and iterations were
varied (from 0.01 and 100, respectively) to ascertain a balanced
training pattern which confirmed 0.001 and 2000 as feasible
learning rates and iterations, respectively. Generally, we em-
ployed hyperparameter settings as 128 parallel actors and batch
size, exploration parameters ranging from 0.03 to 0.4, s discount
factor of 0.002–0.5, and a learning rate for the Q-network of
0.002–0.5 with an update interval of five episodes. The steps
per environment update were considered to be 4 with model
save interval at every ten epochs.

B. Preliminary Evaluation of Meta-RL Model for the HSI
Small Sample Set

We evaluate the model on the four datasets to determine
the accuracy of small data samples with varying epochs and
different number of training samples. To train our proposed
model, we choose 100 epochs, a patch size of 7 x 7, and a
convolution kernel size of 1 x 1 as hyperparameters. Fig. 3
displays the training curves, which are made up of test loss
and test accuracy. Fig. 2 depicts the outcome of the model’s
performance on different number of training samples.

It is revealed that the model generally produces better perfor-
mance on all four datasets. On the HJ-1 A HSI, GF-5 AHSI, and
OHS HSI, the loss was stable after the 80th epoch as compared to
the ZY-1 02D, which stabilized after the 50th epoch, although a
considerably low loss was obtained on all the datasets. This may
be due to the rich information in all the HSI and the capability of
Meta-RL to overcome the nonlinearity of the data and the close
association among bands even under small training samples.

The high accuracy result with the accompanying less loss
produced by our model on all the datasets also indicates that
our model can function well in classifying HSI and has the
potential to do well even in cross-domain environments with
small data samples under supervised learning. The model is,
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Fig. 2. OA of the proposed model on different training data samples on
datasets.

therefore, evaluated on varying data samples to ascertain its
effectiveness on small data samples. The performance on each
dataset in reference to a varying number of training samples is
presented in Fig. 2.

It can be inferred that the model performs steadily well on
the GF-5 AHSI dataset, however, the highest accuracy result is
obtained on the ZY-1 02D HSI when the sample size is beyond
20. The performance pattern on GF-5 AHSI and the HJ-1 A
HSI are quite similar, while that of OHS HSI follows a similar
pattern with ZY-1 02D HIS, nonetheless, the model performs
quite lower on the OHS HSI. These similarities may be as a result
of the similarities in feature patterns among all the datasets.
We, therefore, benchmark our model with existing state-of-the-
art techniques that have common implementation algorithmic
techniques presented in Section V.

V. ABLATION STUDY OF CLASSIFICATION PERFORMANCE ON

THE DATASETS

Aiming at evaluating the model’s classification performance
on the HJ-1 A, GF-5, OHS, and ZY-1 02D datasets on small
sample HSIC, the ablation study is conducted with traditional
CNN methods, metalearning methods, and metareinforcement
methods. The comparison uses three measurement scales: over-
all accuracy (OA) and average accuracy (AA), which are ex-
pressed as percentages, and the Matthew correlation coefficient
(MCC), which is expressed as an absolute value. The MCC
is a contingency matrix approach to generating the Pearson
product moment correlation coefficient for finding the difference
between anticipated and actual values [42]. It is claimed to
be extremely suitable for classification problems relating to
unbalanced datasets. A bold typeface is used to denote the top
outcomes for each metric reported in the tests, and the average
results are presented. Ten tests are run on each of these to
rule out any results that might be unstable owing to random
selection during metatraining [43], and the average results are
then recorded.

A. Experimental Evaluation of HSIC Performance on Deep
CNN Methods

Six existing traditional deep CNN learning methods for the
HSIC are compared with the Meta-RL model. The comparison
considered three methods that are based on CNN variance,
including Deep Cube CNN with random forest (DCNR) for
HSIC [44]. A spatial–spectral split attention residual networks
(S3ARN) for the HSIC fusing features extracted from multire-
ceptive fields using split attention strategy consisting of bottle-
neck residual blocks [44]. Multimodal attention-aware CNNs for
the classification of hyperspectral and LiDAR data [45] (referred
to in this article as MAACNN). Since our model incorporates
a capsule network, we compared it with three capsule network-
based methods. Capsule networks for the HSIC, which builds on
Hinton’s capsule network for a CNN model extension in refining
capsule unit concept as spectral–spatial units [16] (referred in
this article as CapsCNN). Cascade residual capsule network
for the HSIC (CRCN) employs residual module to address the
spectral similarity of HSI cubes of adjacent spatial categories
and capsule network for objects spatial context orientation rep-
resentation characterization [11]. A multiscale residual capsule
network for the HSIC with small training samples (referred:
MR-CapsNet) [33].

Second, our model is compared with metalearning-based
state-of-the-art methods to investigate the performance in re-
alizing the superiority of fusing metalearning with RL over only
metalearning: using model-agnostic metalearning (MAML)
with a CNN for small sample HSIC that deals with the classifi-
cation of cross-data small samples on the same HSI and cross-
scene small samples among varying HSI [7]; a spectral–spatial
distribution consistent (SSDC) network based on metalearning
for the cross-domain HSIC [46]; a Bayesian (BMFSC) per-
spective that considers the HSI few-shot classification task as
a hierarchical probabilistic inference and gives a thorough met-
alearning probabilistic inference procedure [47]; a cross-domain
few-shot HSIC system based on causal metatransfer learning
(CMTL) combines causal learning, metalearning, and transfer
learning [48]; metatransfer learning for few-shot HSIC (referred
in this article as MTL), which builds a linear classifier and an
embedding module-based classification model [22]; and convo-
lutional transformer-based few-shot learning for cross-domain
HSIC (CTFSL) addresses the problem of small sample learning
in a metalearning paradigm [2] .

We finally compare with two RL with no metalearning and
Meta-RL methods. Deep RL for band selection in the HSIC
(referred in this article as DRLBS) [17], and deep RL forsemisu-
pervised hyperspectral band selection (represented as RLSBS-
A) [18]. MR-Selection: A Meta-RL approach for zero-shot
hyperspectral band selection (referred in this article as MRS)
is considered for the HSIC [19].

Generally, deep CNN models perform well in classifying
the HSI as a result of their effectiveness in directly extracting
high-level features [44]. The rich features of the datasets used
have contributed to the significant performance of the evaluated
models in this study, which can be realized in Table II and
Figs. 4–7. It can be observed that the deep CNN algorithms that
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Fig. 3. Test loss and test accuracy of proposed method on datasets. (a) HJ-1A. (b) GF-5. (c) OHS. (d) ZY-1 02D.

TABLE II
COMPARISON OF SMALL SAMPLE HSIC WITH CNN-BASED METHODS

incorporate capsule networks are a little superior to those that do
not. It has been identified that CNN models are unable to capture
some pixels when trained with random sampling rather than on
active learning [49]. This indicates that capsule networks are
able to extract a substantial amount of hidden semantic details

without equally treating all bands and neighboring pixels of
the HSI the same due to the multiscale convolution in capsule
networks. The capsule network-based methods take advantage
of increasing classification accuracy between 2% and 4% over
the noncapsule network-based methods.
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Fig. 4. Visual effects of classification models on the HJ-1 A HSI dataset.

Fig. 5. Visual effects of classification models on GF-5 AHSI dataset.

Fig. 6. Visual effects of classification models on the OHS HSI dataset.

Fig. 7. Visual effects of classification models on the ZY-1 02D HSI dataset.

Table I revealed that DCNR, among all the methods under
consideration, produced the least classification performance (for
all three metrics, OA, AA, and MCC). On the other hand,
our method, Meta-RL, proved superior to all the methods, and
this may be due to the ability of metalearning, which aids
in retrieving both local and global spatial information among
features with small labeled samples, while the other methods are
statistical feature extraction-based retrieving typically only local
feature information [2]. Fig. 4 demonstrates the visual effects of
the various models on the HJ-1 A HSI dataset.

It can be observed that the Meta-RL is able to classify most of
the features as compared to all the other methods since its overall
visual effects are close to the ground truth. The traditional CNN
method classifies most of the water, buildings, and farmlands
that are scattered as forest at areas where the forest feature seems
to dominate. Fig. 5 presents the visual effects of classification
models on the GF-5 AHSI dataset.

The visual effects of the classification models on the GF-5
AHSI dataset are not different from the HJ-1 A HSI dataset.

This is because the characteristics of the two datasets are not
much different. They have most features scattered, with a few
that are clustered. However, the scattered features are dominant
in the GF-5 AHSI compared to the HJ-1 A HSI dataset. It
can be observed from all the models’ output that Bare rock
seems to appear clustered as compared to the scattered nature in
the ground truth, nonetheless, Meta-RL presents less clustering
effect and is able to distinguish most of the scattered features
than all the other methods. Similar visual effects are realized in
the visual effects of the models in Fig. 6 on the OHS HSI dataset.

The output on the Agricultural and shrubland, with scattering
effects on the ground truth, seem to be clustered in all the seven
classification models with Meta-RL having comparatively min-
imal clusters. The impervious surface having dominance seems
to override most of the scattered features of lakes, ponds, shrub-
land, and woodland, however, rivers seem to be more obvious in
all the outputs of the classification features. This suggests that
the models are able to classify features with continuous effects
better than scattered ones. Fig. 7 shows the visual effects of the
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TABLE III
COMPARISON OF METALEARNING METHODS ON THE SMALL SAMPLE HSIC

Fig. 8. Visual effects of metalearning classification models on the HJ-1 A HSI dataset.

classification models on the ZY-1 02D HSI dataset, which has
slightly different characteristics with more clusters than scatters.

Unlike the Meta-RL model, the other seven models produce
visual results of overriding reed salt fields dominant areas over
all the other features that are scattered in such areas. Another
significant output defect of the other methods compared to Meta-
RL is the road features being overshadowed by the paddy fields.
This follows the same limitations of the models’ inability to
distinguish scattered features from dominant clustered features.

B. Comparison of the Small Sample HSIC With
Metalearning Methods

Existing metalearning models employed for the HSIC are
compared with our model to ascertain the superiority of incor-
porating RL into metalearning procedures. Table III depicts the
classification results of the various methods on the four selected
datasets.

Unlike the traditional deep CNN approaches and the capsule
network-based techniques, the metalearning methods provide
quite higher classification performance, about 2%–3% overall,
and an AA difference. The improvement is basically due to
the reliability of metalearning models obtaining metaknowl-
edge from similar tasks without suffering from point estimation
uncertainties with small training samples [47], as well as the
generalizability capabilities over other models [22]. Also, met-
alearning models have the ability to retrieve both discriminant
and nondiscriminant in addition to informative features from
target HSI [7]. The model with the least classification accuracy is
found to be CMTL with the highest overall percentage accuracy
of 93.83 GF-5 AHSI and least percentage accuracy of 88.83
on the HJ-1 A HSI. The MAMAL, SSDC, BMFSC, MTL, and
CTFSL produced overall percentage accuracy between 90% and
95% on all the datasets under consideration. However, Meta-RL
that surpasses all the models in terms of percentage accuracy

produces about 2% higher on all the datasets. In general, all the
models performed comparatively well on the GF-5 AHSI and
the OHS HSI datasets than the HJ-1 A HSI and the ZY-1 02D
HSI datasets. Figs. 8–11 present the visual classification output
of the various metalearning approaches in comparison with our
method on the four datasets.

It is obvious from the visual effects from Fig. 8 that Meta-
RL produces an effective classification output of the features
in the HJ-1 A HSI dataset than the benchmarked metalearning
methods in this study. The Meta-RL model visual result is very
close to the ground truth, being able to discriminate most of the
scattered building, farmland, and water features as compared to
the other seven models, which cluster most of them or override
the dominant forest features on the others.

On the GF-5AHSI dataset, the visual effects in Fig. 9 indicate
that the CTFSL and the Meta-RL produced less scattering feature
accuracy than the other methods in reference to the bare rock.
On the other hand, all the models produce similar cluster effects
on the crops, forest, and water. The paddy field seems to have
shown the best feature classification, which may be attributed
to the continuous feature representation on the dataset exhibited
on the ground truth.

In the case of the OHS HSI dataset, all the metalearning
approaches produce significant accurate visual effects compared
to the ground truth. The only obvious variation is realized in
the output of shrubland and woodland where few clusters are
represented over the scattered features as shown in Fig. 10.

There is a significant improvement in the representation of
road on the ZY-1 02D HSI dataset in Fig. 11 by the metalearning
models compared to the traditional CNN approaches observed
in Fig. 7. Nonetheless, the Meta-RL model achieved better
road feature representation than the other metalearning models
on the ZY-1 02D HSI dataset. This may be attributed to the
effectiveness of RL on preserving the original HSI information
while reducing the redundancy among spectral bands [17].
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Fig. 9. Visual effects of metalearning classification models on the GF-5 AHSI dataset.

Fig. 10. Visual effects of metalearning classification models on the OHS HSI dataset.

Fig. 11. Visual effects of metalearning classification models on the ZY-1 02D HSI dataset.

TABLE IV
COMPARISON OF RL AND META-RL METHODS ON THE SMALL SAMPLE HSIC

C. Comparison of Small Sample HSIC With RL and
Meta-RL Methods

We consider two RL and Meta-RL approaches that have been
employed in the HSIC in comparison with our proposed method.
The results in Table IV indicate that RL and Meta-RL techniques
are able to classify HSI much better than the traditional CNN
methods as well as metalearning models.

It is worth noting that among the RL and Meta-RL methods
under consideration in this study, DRLBS produced the lowest
accuracy results with 93.66% AA as the highest compared to
the other three that produced both overall and AA beyond 95%
. The MRS method achieved the highest results of 97.24 AA
on the OHS HSI dataset, while RLSBS-A led the classification
accuracy on the HJ-1 A HIS dataset on OA and AA but declined
in MCC. Although our Meta-RL performed poorly in relation to

the MRS and RLSBS-A methods on the two datasets, it proved
superior to them on the GF-5 AHSI and the ZY-1 02D HSI
datasets. This could be associated with the ability of the capsule
network to effectively retrieve spectral patterns obtained at vary-
ing hierarchy levels composed as spectral-feature capsules and
taking into consideration the relative spectral pattern locations
and properties [14]. Figs. 12 –15 depict the visual effects of
the RL and Meta-RL methods on the employed datasets.

It is obvious from the visual output in Fig. 12 that, with the
exception of DRLBS, which shows some overriding clusters
of forest on the other features, RLSBS-A, MRS, and Meta-RL
produced results that are closer to the ground truth. Some few
clusters are produced for scattered farmland features for all the
models but much more significant on the DRLBS than the others
on the HJ-1 HSI HSI dataset.

All the RL and Meta-RL on the GF-5 AHSI produced bet-
ter visual output on artificial surface, paddy fields, and water,
irrespective of the numerous scatterings on the ground truth, as
evident in Fig. 13. However, significant clusters are produced
on bear rock, a little on forest, and very few on crops. This
indicates that RL and Meta-RL can perform well and achieve
optimal classification results on this dataset with few fine-tuning
processes.

The visual effects on the OHS HSI for the various Meta-RL
models do not produce much variations compared to the ground
truth. A few misclassifications are realized in the agricultural
and shrubland features shown in Fig. 14.

There are quite a few overshadows of paddy fields on the
road in the visual output of all the RL and Met-RL models on
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Fig. 12. Visual effects of RL and Meta-RL classification models on the HJ-1 HSI dataset.

Fig. 13. Visual effects of RL and Meta-RL classification models on the GF-5 AHSI dataset.

Fig. 14. Visual effects of RL and Meta-RL classification models on the OHS HSI dataset.

Fig. 15. Visual effects of RL and Meta-RL classification models on the ZY-1-02D HSI dataset.

the ZY-1-02D HSI dataset; however, the Meta-RL model shows
a significant difference in such output depicted in Fig. 15. It is,
therefore, obvious that our model is more competitive on the four
datasets than the other approaches and will be more appropriate
for practical HSI small data sample classification problems. It
has proven better classification results and accurate visual maps
on all the datasets. It is evident that the rich abilities of the
capsule network, metalearning, and RL techniques combined

are able to provide optimal classification by overcoming the
drawbacks of the existing models as well as applying them
individually.

D. Time Complexity Comparison of the Various Models

System acceptability highly depends on two major complexi-
ties: the functional complexity, which could be considered as the
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TABLE V
COMPARISON OF TIME COMPLEXITIES OF THE VARIOUS METHODS

performance accuracy, and the time complexity. In this section,
we evaluate the training together with validation (T+V) time, and
testing time of the various models on the four datasets. Table V
shows the results of the varying execution times of the models
under consideration in this research.

It can be realized from Table V that fundamentally, the tradi-
tional deep CNN models have comparatively less computational
cost in training, validation, and testing. This is because of the
optimization concepts incorporated in the CNN methods making
them robust in classification problems [50], [51].

By describing the input data at a high level of abstraction and
modeling the HSI features as a set of canonical spectral–spatial
patterns and their accompanying instantiation parameters, the
capsule network-based models are able to reduce the compu-
tational cost. This is accomplished via the capsule network’s
discovery of more informative features, which reduces the com-
plexity of the design and improves convergence [16].

Metalearning and Meta-RL models recorded comparatively
higher computation time than the other models. However, the
highest computational costs are found on the Meta-RL models.
The high computational cost of metalearning and Meta-RL may
be attributed to the increased structural complexities that may
have inherent CNN and the accompanying metalearning, RL,
and metareinforcement structures.

Considering the system capacity employed for the evaluation
of these methods in this study, it can be said that the computa-
tional costs may be admissible, although deeper research into
their implementation can provide better results. The average
minimal time consumed by the models on training and validation
on all the datasets is 2485.4 s obtained on the HJ-AI HSI
dataset, whereas that of testing is 18.99 obtained on the ZY-1

02D HSI dataset. The lowest average computational times were
on the traditional deep CNN models. Conversely, the highest
computational times were recorded on the metareinforcement
models with the highest average time of 7489.5 s for training and
validation, and 32.7 s for testing time. Specifically, the analysis
on the computational complexity of the methods on each dataset
reveals the following.

1) On the HJ-1 A HSI, the DCNR model showed the least
training and testing time of 1868.3 s and MR-CapsNet
realized the least testing time of 16.57 s among the CNN-
based methods. These results may be attributed to the fact
that the DCNR has low architectural complexity since it
employs a random forest classifier simplifying the model’s
architecture. The time efficiency of the CapsNet for testing
may be as a result of the specialized nature of the network
redefining the capsule units as spectra–spatial units easily
adapting to new features of HSI data. The metalearning
models realized CTFSL as the most computationally ef-
ficient with training and validation time of 3249.6 s and
MTL leading with 20.64 s on the accounts of testing time,
which can be attributed to the use of a linear classifier.
Supposedly, CTFSL’s reduced time complexity may be the
ability of the convolutional transformer network to quickly
extract local-global features to realize fast convergence.
With respect to the RL and Meta-RL models, MRS showed
the least computational cost of 3657.2 s on training and
validation as well as testing time of 20.83 s. It is worth
noting that the MRS employed a two-stage optimizer for
the model, which may have contributed to the reduced
exploration and exploitation time of the model. Although
our model could not surpass the compared method on
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computational efficiency on the HJ-1 A HSI dataset, the
results obtained are below the overall average time com-
plexities.

2) On the GF-5 AHSI dataset, MR-CapsNet maintains the
lead on both training and validation as well as testing
of 4087.7 and 13.12 s, respectively. The BMFSC model
performed better than all the other models on training and
validation consuming 4920.4 s, possibly due to the effec-
tiveness of the variational inference approach, whereas the
CTFSL maintained a lead on the testing time of 21.72 s.
The proposed Meta-RL performed creditably on training
and validation with 6745.4 s and achieved the most effi-
cient testing time with 32.98 s on the RL and Meta-RL
models. This can be attributed to the task encoder’s ability
to metatrain and test well by balancing rich temporal
representation in the GF-5 AHSI data that enhanced the
reduction of computational complexity.

3) Considering the computation performances of the meth-
ods on the OHS HSI dataset, MR-CapsNet proved superior
with 3731.7 s on training and validation, while CRCN
had the least time on testing with 21.59 s, which may
be due to the effective separability of spectral similarities
of spatially adjacent categories, and then, deal effectively
with new diverse spatial context information. The CTFSL
model maintains superiority on the metalearning models
with 5558.8 s on training and validation. However, our
Meta-RL had the best testing results of 28.97 s. On account
of RL and Meta-RL methods, the MRS model obtained the
most effective training and validation computational time
as well as testing time, 7408.8 and 26.96 s, respectively.

4) The ZY-1 02D HSI dataset that recorded the least com-
putation complexity among all the methods showed the
S3ARN as the effective method among the CNN-based
methods with 1368.3 training and validation time, whereas
the CRCN proved better with a testing time of 14.81 s. The
effectiveness of the S3ARN method on this dataset may
be attributed to the strategy employed to fuse extracted
features from multireceptive fields, which may character-
ize the ZY-1 02D HSI dataset, thereby, simultaneously
suppressing unnecessary bands and concentrating on use-
ful bands and adjacent pixels to speed up training. The
CTFSL method consumed the least computational time on
both training and validation and testing with 3145.2 and
20.51 s, respectively. The MRS method maintained the
least consumer of training and validation time of 3020.8 s
among the RL and Meta-RL models, while the least testing
time on this dataset came from our Meta-RL model.

The computational complexity results suggest that the MRS
method is significantly effective in reducing the time constraint
on the classification models. However, our method performed
competitively well on the account that it outperformed some of
the models and the average results on all the datasets indicate
higher values than our model. Hence, the competitively higher
classification results promote our model to be useful in practical
implementations. The promising computational output of the
capsule network-based models suggests the effectiveness of their
implementation. It is therefore worth noting that an appropriate

structuring and fine tuning of Meta-RL with capsule network
structure will improve not only classification accuracy but also
computational efficiency.

VI. CONCLUSION

In this research, we have explored the benefits of supervised
learning, metalearning, and RL combined in the potent method
known as supervised Meta-RL. Models are given the capacity to
learn from sparse data, change their behavior fast in response to
new tasks, and enhance performance, which makes it extremely
applicable in a variety of real-world applications. For the purpose
of classifying HSIs, the integration of supervised Meta-RL with
a mix of capsule networks, deep Q-learning, and task encoder
networks, we employed exhibits promising potential. By utiliz-
ing the advantages of each component, this novel method has
improved the classification of hyperspectral data’s accuracy and
effectiveness.

Further analysis of the model on computational complexity
reveals less training and validation as well as testing time than the
overall average time of all the benchmarked models in this study
and proved competitive, especially on the testing time. This
model could help with more precise and reliable classification
of HSIs by learning effectively from small amounts of labeled
data and applying knowledge across tasks, opening up new
opportunities for applications in a variety of fields like remote
sensing, agriculture, and environmental monitoring.

Validating the efficacy of this technique across various
datasets and real-world circumstances will require additional
study and experimentation. It is also worth emphasizing that
further research will consider other appropriate techniques that
will improve the classification accuracy and reduce the compu-
tational complexity such as reducing the network structure by
introducing orthogonality to ensure the viability of Meta-RL in
resource constraint real-time implementations.
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