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Multiscale Attention Pyramid Aggregation Network

for Building Extraction From High-Resolution
Remote Sensing Images
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Abstract—With the rapid development of Earth observation
technology and deep learning, building extraction from remotely
sensed imagery based on deep convolutional neural networks has
attracted wide attention in recent years. However, due to the het-
erogeneity of building shapes and sizes and the complexity of the
surrounding objects, current building extraction methods still have
challenges in boundary accuracy and complete building extraction.
For these purposes, we proposed a low-level feature enhancement
and multiscale attention pyramid aggregation network (LFEMAP-
Net) that considers building boundary information and multiscale
feature expression to obtain higher accuracy building extraction.
First, a low-level feature enhancement model is proposed based on
the prior edge information to enhance the representation of spatial
details, effectively addressing issues related to information loss
and fuzzy boundaries. Additionally, a multiscale attention pyramid
aggregation model is developed during the decoding stage to facil-
itate the fusion of features from different scales, thereby enhanc-
ing the extraction of building features. The experimental results
on two publicly available datasets validate that LFEMAP-Net can
overcome building extraction interruptions and boundary blur in
complex scenes, and achieve boundary optimization and complete
segmentation of buildings and achieve better performance than
other advanced semantic segmentation models.

Index Terms—Building extraction, deep learning, edge extrac-
tion, feature enhancement, multiscale attention.

I. INTRODUCTION

BUILDINGS, as primary features in high-resolution remote
sensing images (HRSI), are closely related to human activ-

ities, urban development, and societal functions. Their footprint
information plays a fundamental role in comprehending the
complex interactions between human endeavors and environ-
mental influences and is an important component in applications,

Manuscript received 29 October 2023; revised 10 December 2023; accepted
20 December 2023. Date of publication 25 December 2023; date of current
version 10 January 2024. This work was supported in part by the National
Natural Science Foundation of China under Grant 42371465, in part by the
Natural Science Foundation of Jiangsu Province under Grant BK20231353, and
in part by the Natural Science Research of Jiangsu Higher Education Institutions
of China under Grant 23KJB420002. (Corresponding author: Erzhu Li.)

The authors are with the School of Geography, Geomatics and Planning,
Jiangsu Normal University, Xuzhou 221116, China (e-mail: liuy101004@
163.com; lierzhu2008@126.com; liuw@jsnu.edu.cn; lixing@jsnu.edu.cn;
zhuyuxuannjust@163.com).

Digital Object Identifier 10.1109/JSTARS.2023.3346454

including urban planning [1], land use [2], and disaster response
[3]. Over the past few decades, extracting the accurate building
footprint information from HRSI has attracted wide attention
and has obtained great progress in various applications. With the
rapid advancement of Earth observation technology, it becomes
possible to extract very detailed building footprint information,
thanks to HRSI with rich spatial and structural information.
However, in most urban areas, remote sensing ground objects
are artificial surfaces, exhibiting complex composition in HRSI.
Specifically, some buildings and other impervious surfaces share
similar spectral and spatial features, such as some city roads
and building roof, making it difficult to capture their unique
features. Furthermore, due to the variability in building sizes, the
diverse distribution of buildings, and the complex environmental
surrounding, it presents a significant challenge for accurately
building extraction task based on HRSI [4]. Thus, there exists an
exigent need to develop precise and efficient building extraction
methodologies that effectively leverage the features of HRSI to
enhance the quality of building footprint information obtained
from remotely sensed imagery in urban areas.

Since the emergence of high-resolution remote sensing tech-
nology, considerable endeavors have been committed to devel-
oping building extraction methods based on HRSI. Traditional
approaches early applied for building extraction rely on man-
ually designed features. Characterize buildings by establishing
representative architectural features from characteristics, such
as spectrum, texture, and geometry [5], [6]. However, because
of occlusion by trees, shadows, and other factors, these meth-
ods cannot fully utilize the various information available in
buildings, which limits their feature extraction capabilities. Ad-
ditionally, some researchers have developed template libraries
using prior knowledge of building shapes and, subsequently,
incorporated them into active contour models to guide the evo-
lution of segmentation curves [7]. Nevertheless, this approach
has limitations in dealing with a wide range of complex and
diverse building shapes. To this end, some works have integrated
multiple sources of GIS and auxiliary data to enrich building fea-
tures [8], [9], significantly improving the robustness of building
recognition but often come with high data costs and complex
algorithms. Therefore, these methods are still difficult to meet
research requirements [10], [11].
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In recent years, due to the continuous progress in deep
convolutional neural networks (DCNNs), a series of deep-
learning-based approaches have gained significant traction in
the remote sensing community [12], [13], [14]. Compared with
traditional methods, deep learning makes full use of multilayer
structures to extract high-level abstract features from spatial
data, thus enhancing classification and detection accuracy [15],
[16], [17]. This end-to-end deep network, which automatically
adapts its parameters to capture features, proves more efficient
than the manual design of features. Benefiting from the fully
convolutional networks (FCNs) [18], data-driven DCNNs can
automatically identify distinct objects within remotely sensed
imagery through extensive training on labeled samples. This
breakthrough enables dense predictions on large-scale remote
sensing images and provides an efficient solution for extracting
building features. For instance, Shrestha and Vanneschi [19]
improved FCN with conditional random fields for boundary
refinement, Deng et al. [20] used an encoder–decoder with
attention gates and spatial pyramids for multiscale feature cap-
ture, and Chen et al. [21] combined deeplabv3+ with dense
connections and ResNet for enhanced performance.

However, there are still challenges [22], [23], [24] in extract-
ing buildings based on DCNNs. On the one hand, the network
architectures tend to prioritize high-level semantic features, po-
tentially sacrificing the finer edge and shape details, resulting in
the loss of local detail features and edge information, leading to
blurred boundaries [25]. On the other hand, high-level semantic
features might be less responsive to background information
and target regions [10], and common downsampling operations
result in significant information loss and limit contextual infor-
mation integration.

To overcome the above shortcomings, some building extrac-
tion methods based on encoder–decoder architectures have been
proposed [26], [27], [28]. They have effectively reduced network
parameters and promoted the fusion of multiscale features by
incorporating residual concepts and pyramid pooling. However,
the use of simple skip-layer connections for encoder–decoder
models can simultaneously increase contextual information and
low-level feature transfer [29]. It may lead to inadequate feature
representation. Furthermore, it brings challenges in detecting
smaller objects in extremely high-resolution images due to
the use of dilated convolutions with different dilation rates.
Some other approaches [30], [31], [32] have also aimed to
enhance network extraction performance through the integra-
tion of multiscale input architectures. However, these methods
significantly increase the computational complexity and bring
difficulties to practical applications [11]. To this end, a series of
attention methods have been developed [33], [34], [35]. These
methods optimize features from both spatial and channel per-
spectives, leveraging intraclass similarity to improve the overall
feature integrity [36], [37], [38], [39]. This not only enhances
the network’s ability to handle complex scenes but also reduces
the computational complexity associated with multiscale input
architectures and feature fusion techniques, making them more
suitable for practical applications. Meanwhile, multimodal ap-
proaches for cross-city semantic segmentation have opened up
new avenues for building extraction [40].

The fusion of contextual information is acknowledged as
indispensable in building extraction based on HRSI. But, the
incorporation of boundary information is also important in
semantic segmentation. Due to complex shapes and diverse
lighting conditions, the boundaries of semantic objects often
exhibit considerable ambiguity, which is a huge challenge to
accurate segmentation. To address this issue, several enhanced
building extraction networks have been proposed [41], [42],
integrating edge detection mechanisms. These innovative ap-
proaches enhance the capacity to handle intricate building edges
while maintaining relatively smoother building footprint bound-
aries through the introduction of constraint terms. Nevertheless,
the inclusion of supplementary edge networks often leads to
a huge computation burden. Recent studies [43], [44], [45]
have integrated structural information about buildings into the
workflow by leveraging prior knowledge of building shapes
and implementing postprocessing techniques, which have
yielded promising outcomes [46]. Moreover, the structural prior
information module is combined to refine the building bound-
aries [47], combined with feature map refinement during train-
ing [48], and has contributed to more robust edge detection
results.

Although the existing methods have made improvements
in determining building boundaries and segmenting building
types, these still struggle to resolve internal inconsistencies
and discontinuities in building extraction based on HRSI due
to the building of distributed discretely, complex character-
istics, and vary in scale. Besides, for the blurred difference
between the foreground and background in some complex
scenes, pixels with similar colors and spatial distances can
easily be misjudged as homogeneous pixels, which leads to
blurred boundaries. To solve these problems, we combine the
priori edge information and propose a low-level feature enhance-
ment and multiscale attention pyramid aggregation network
(LFEMAP-Net) based on the low-level feature enhancement
model (LFEM) and the multiscale attention pyramid aggre-
gation model (MAPM) for detailed building footprint from
HRSI.

The main contributions of this work include the following.
1) This work proposes a novel segmentation architecture,

named LFEMAP-Net, characterized by multiscale inte-
gration and edge fusion, to achieve the refined extraction
of buildings in HRSI.

2) We develop the LFEM by designing a bilateral fusion
method to effectively combine prior edges to enhance the
expression of network spatial details and provide more
details for the decoding results.

3) We proposed MAPM to effectively focus on building fea-
ture representations across different scales by building a
multiscale mixing attention (MMA) mechanism. Enhance
the model’s ability to aggregate information across levels.

The rest of this article is organized as follows. Section II
presents the proposed LFEMAP-Net and its detailed architec-
ture. Section III includes the descriptions of the dataset, exper-
imental setups, evaluation metrics, as well as detailed analysis
and discussions of experimental results. Finally, Section IV
concludes this article.
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Fig. 1. LFEMAP-Net network architecture.

II. METHODOLOGY

A. Overall Framework

For the DCNNs’ models, features extracted from deeper lay-
ers have a higher level of abstraction, while shallow features
contain rich spatial details. Semantic segmentation networks
usually use convolutional network models as encoders. As the
number of network layers increases, spatial detail information
will inevitably be lost, resulting in incomplete content expres-
sion or inaccurate segmentation edges during the decoding stage.
Most semantic segmentation networks either directly connect
multiscale feature maps and decode them into prediction maps
or use skip connections to supplement scale features. Although
these methods can enhance the feature expression ability of con-
tent, they cannot effectively retain accurate edge information.
Therefore, LFEMAP-Net based on low-level feature enhance-
ment and multiscale attention pyramid aggregation is designed
in this work, as shown in Fig. 1 and Table I. It can integrate
both high-level and low-level feature information to construct
contextual semantic features and leverage prior edge information
to enhance the low-level features associated with objects’ edges.
First, MAPM is proposed to maximize the utilization of features
at various levels and enhance the model’s ability to aggregate
information. Moreover, we develop the LFEM to further refine
boundaries by using prior edge information, enabling the ex-
traction of more discriminative spatial details. Finally, the bidi-
rectional aggregation method [49] is employed to fuse feature
representations from both parts. This guidance manner enables
efficient communication between both branches, integrating rich
high-level semantic information for buildings with spatial detail
features to obtain the robust building extraction results.

B. Multiscale Attention Pyramid Aggregation Model

In semantic segmentation, encoders are usually used to gen-
erate feature maps at different scales. Their amalgamation

TABLE I
ARCHITECTURE OF BACKBONE NETWORK IN ENCODING PATH

facilitates a more comprehensive capture of global and local
context information [50], [51]. Nevertheless, simply concate-
nating the low-level and high-level features may lead to the
underutilization of features across each scale. The lowest resolu-
tion branch output features of some popular backbone networks
[52], [53], [54] contain the strongest semantic representation.
However, the currently popular approach is to construct the fea-
ture maps of different dimensions from the lowest scale upward
and then fuse them together [55], [56]. This process may not
effectively propagate semantic information into higher resolu-
tion branches. In addition, generating high-resolution prediction
maps through commonly used bilinear upsampling methods may
result in the loss of irregular edge detail information. To this end,
we propose MAPM, which can be viewed in Fig. 2. The module
effectively exploits the spatial and channel dependencies within
features across multiple scales to enhance semantic expression.
It simultaneously integrates multiple-scale feature maps to form
a robust and comprehensive feature representation. The MAPM
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Fig. 2. Structure of MAPM.

process can be expressed as follows:

FMi =

{
MMA(Fi) i = 1
MMA(Fi + FMi−1) 2 ≤ i ≤ 4

(1)

F = Catd (ϕ1×1 (FMi)) (2)

where Fi denotes the output at the i layer, FMi stands the
output processed by the MMA mechanism, ϕ1×1 represents a
convolution operation using a 1×1 kernel, and Catd denotes the
concatenation operation. The MMA module cleverly combines
multiple-scale spatial and channel attention mechanisms to ex-
tract features more comprehensively from HRSI, thus improving
the model’s feature representation capabilities.

In order to better aggregate semantic features from high
to low layer-by-layer, we have devised an MMA module for
optimal utilization of contextual information. Furthermore, it
allows the integration of building features with different scales of
information. As indicated in Fig. 3, for an input F ∈ RC×H×W ,
we initially construct a multiscale channel attention mechanism
by utilizing different-sized pooling windows, followed by con-
catenation and fusion, resulting in a multiscale channel atten-
tion result FC with dimensions of C/2×H×W. Subsequently,
multiscale spatial attention is designed using different-sized
convolution kernels, yielding multiscale spatial attention output
FS . To enrich the feature representation further, we integrate the
input feature map features into FS . Finally, the original image is
elementwise added to FS for fusion, resulting in a feature map
with dimensions of C/2×H×W. The combination of multiscale
channel attention and multiscale spatial attention effectively
integrates spatial and channel features, resulting in improved
semantic segmentation accuracy, which can be expressed as
follows:

FMMA = ϕ1×1 (F ) + Fs (3)

Fs = Catd {ϕ1×1 (F ) , ϕ3×3 (Fc × (S3×3 (Fc))) ,

ϕ3×3 (Fc× (S5×5 (Fc))) , ϕ3×3 (Fc × (S7×7 (Fc)))}
(4)

Fc = Catd {ϕ1×1 (F )× (Pglobal (F )) , ϕ1×1 (F )

× (P3×3 (F )) , ϕ1×1 (F )× (P5×5 (F ))} (5)

where ϕ represents the convolution operation, P is the channel
attention operation of different pooling windows, S represents
the spatial attention operations at different convolution scales,

and FMMA stands for the feature map output from the MMA
module.

C. LEFM

We employ the structured forest (SF) combined with the
adaptive morphological reconstruction (AMR) for prior edge
extraction. SFs [57] use a structured learning method that can
fully learn edge features by continuously predicting local seg-
mentation masks for image patches. Specifically, the decision
trees are trained to classify image patches as edge or nonedge.
For each decision tree, the optimal segmentation parameters
are determined based on the principle of maximum information
gain.

Given an image x ∈ X and its corresponding classification
result y ∈ Y , the optimization objective function is given as
follows:

h (x, θj) = [x (k) < γ] ∈ {0, 1} (6)

where θj is the optimal separation parameter, k represents the
quantization feature of x, and γ stands for the threshold value
of the quantization feature.

At the output stage, the classification result y ∈ Y of the
decision forest is mapped into labels, and Euclidean distance is
used to measure whether the image patches with similar labels
belong to the same segmentation. The measured results serve as
a benchmark for both training and testing.

To mitigate the impact of potential noisy pixels in edge
information and optimize subsequent processing, a multiscale
and multistructural AMR method [58] is employed to effectively
eliminate redundant information in the image and enhance the
quality of prior edge.

Given an SF result g, the AMR is performed as follows:

σ (g,m, n) = maxm≤i≤n

{
CR(g)Si

}
(7)

where CR is the morphological closing reconstruction, Si rep-
resents the multiple groups of structural elements, and the scale
of structural elements is i(1 ≤ i ≤ n, i ∈ N+). σ is the AMR
operator, which increases with the size of the structural element,
and the start and end of the structural element scale selection are
represented by m and n. In this study, we set m and n to 1 and
10, respectively.

Fig. 4 presents the results of edge extraction from remote
sensing images. Compared with other methods, SF combined
with AMR comprehensively represents the information on ob-
ject boundaries, leading to more robust edge detection results.

To fully leverage the extracted prior edge information, we
develop a dual-branch fusion strategy to enhance the network’s
spatial information representation and improve its boundary dis-
crimination capability. Fig. 5 shows the specific implementation
details of the proposed dual-branch fusion strategy. For an input
imageXL, where the prior edges are represented asXE , the final
output for detail feature representation is obtained as follows:

XLi = FL(XL(i−1)) + TE−L(FE(XE(i−1))) (8)

XEi = FE(XE(i−1)) + TL−E(FL(XL(i−1))) (9)

Xd = ϕ1×1(XLi +XEi) (10)
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Fig. 3. Structure of MMA.

Fig. 4. Edge detection results.

Fig. 5. Dual-branch fusion strategy.

where FL and FE correspond to the sequences of residual basic
blocks with low resolution and prior edges, TE−L and TL−E

refer to the low-to-edge and edge-to-low transformer, and Xd

represents the final detail branch output.

D. Loss Function

The loss function is composed of four components: the final
output loss (L1), pyramid aggregation output loss (L2), low-level
feature enhancement loss (L3), and edge loss (L4). The total loss

can be defined as follows:

Loss = L1 + αL2 + βL3 + L4 (11)

where α and β are the hyperparameters that control the weight-
ing between these losses. In this article, it is set to 0.4.

We employ cross-entropy loss with online hard example min-
ing (LOHEM) for L1, L2, and L3, while binary cross-entropy loss
(LBCE) is used for edge loss L4. ForN samples, where yi denotes
the actual category label and pi stands the predicted probability
by the model for the ith sample, then the OHEM cross-entropy
loss can be mathematically expressed as follows:

LOHEM =
1

K

K∑
i = 1

CE (pi, yi) (12)

where K is the number of difficult examples to mine, which
usually selects samples with wrong predictions or the largest
loss, and CE(pi, yi) represents the cross-entropy loss.

The L4 loss can be expressed as follows:

LBCE = − 1

N

N∑
i = 0

[yi log (pi) + (1− yi) log (1− pi)] . (13)

III. EXPERIMENTS AND DISCUSSION

A. Dataset

In this study, two publicly available datasets, including WHU
building dataset [59] and Massachusetts building dataset [60],
were chosen as the experimental data to test the proposed
method.

The WHU building dataset consists of both aerial and satellite
data. For our study, we specifically use aerial imagery, which
consists of approximately 220 000 independent buildings in
Christchurch, New Zealand. And offers imagery with a ground
resolution of 0.3 m over an area of 450 km2. The dataset is
divided into training set, verification set, and test set, contain-
ing 4736, 1036, and 2416 images, respectively. Each image
and its corresponding label are cropped to the dimensions of
512 × 512 pixels. We employed the default dataset division for
our experiments.
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Fig. 6. Images and labels from the WHU dataset and Massachusetts dataset. The two columns on the left are WHU dataset, and the two columns on the right are
Massachusetts dataset.

The Massachusetts building dataset comprises 151 aerial im-
ages from the Boston area, each with an image resolution of
1500 × 1500 pixels. Covering a vast area of approximately
340 km2, this dataset offers a spatial resolution of 1 m. It is
partitioned into training, validation, and test subsets, consisting
of 137, 4, and 10 images, respectively. In our experiments, we
resized the dataset to 512 × 512 pixels with a 12-pixel overlap,
following the default dataset partitioning.

Fig. 6 shows that the sample images along with their corre-
sponding building labels are presented for the WHU and Mas-
sachusetts datasets. The WHU dataset contains high-resolution
aerial images that can reveal more detailed representations due to
their higher resolution, while the Massachusetts dataset presents
challenges with its lower resolution. Moreover, both two datasets
exhibit significant variations in building scales, which effec-
tively illustrate the practicality and efficacy of our approach in
accurately delineating fine-grained building boundaries across
various scales.

B. Implementation Details

All experiments are conducted on Windows 10 with PyTorch
1.12 framework based on Python 3.8. NVIDIA GeForce RTX
3060 GPU for 100 epochs on both two datasets. In addition,
the Adam optimizer is employed with an initial learning rate of
0.01 and dynamically adjusted based on the validation accuracy.
All compared approaches use the same batch size of 2 and data
augmentation, including random scaling, rotation, and flipping.

C. Evaluation Metrics

To effectively assess and compare the models’ performance,
four commonly used semantic segmentation metrics were

employed: Precision (P), Recall (R), Intersection over Union
(IoU), and F1-score (F1). Precision measures the proportion
of correctly predicted pixels out of the total. Recall signifies
the ratio of predicted pixels to the overall count. The F1-score
combines both recall and precision, providing a balanced assess-
ment of the model’s segmentation performance. Meanwhile, IoU
provides a clear indication of the proportion of pixel overlap be-
tween the predicted and ground truth masks. The mathematical
expressions are given as follows:

P = TP/ (TP + FP) (14)

R = TP/ (TP + FN) (15)

IoU = TP/ (TP + FP + FN) (16)

F1 = (2× P ×R) / (P +R) (17)

where TP,TN,FP, and FN represent the numbers of true posi-
tive, true negative, false positive, and false negative for pixels.

D. Result and Discussion

1) Ablation Experiments: To demonstrate the effectiveness
of different components within LFEMAP-Net, we conducted ab-
lation experiments using ConvNext-B combining feature pyra-
mid networks [55] for scale fusion as the baseline on both the
WHU and Massachusetts building dataset. In these experiments,
we employed P, R, IoU, and F1 scores to evaluate the distinct ef-
fects of various modules within LFEMAP-Net through selective
exclusion or deactivation.

Fig. 7 presents representative visual results, illustrating varia-
tions in building extraction outcomes across different scenarios
when the base network is combined with different modules.
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Fig. 7. Building extraction results of different module combinations.

TABLE II
ABLATION EXPERIMENTS OF THE NETWORK STRUCTURE BASED ON WHU DATASET

While the base network exhibits good architectural segmenta-
tion capabilities, there is room for improvement in boundary
delineation and extraction completeness. In the fourth column,
Base+MAPM demonstrates more complete building shapes
through multiscale learning. The addition of LFEM to the
base network emphasizes building boundaries. Finally, in the
sixth column, LFEMAP-Net synthesizes the advantages of both
modules, resulting in more complete and accurately delineated
building extractions.

Tables II and III indicate that the module we designed
significantly improved the performance of the network model.

These supplementary modules demonstrated variable levels
of the advantageous outcomes. First, optimizing the multi-
scale attention pyramid aggregation architecture based on the
ConvNext-B, denoted as ConvNext-B+MAPM, led to an in-
crease in IoU of 1.54% and 2.18%, F1 of 0.86% and 1.5%,
Precision of 0.94% and 0.49%, and Recall of 0.99% and 2.39%,
respectively. This demonstrates that the MAPM can effectively
leverage feature representation at different scales to enhance
semantic expression, resulting in more robust extraction results.

ConvNext-B+LFEM, which incorporates prior edge-
enhanced low-level features, increased IoU by 1.05% and 1.8%,
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TABLE III
ABLATION EXPERIMENTS OF THE NETWORK STRUCTURE BASED ON MASSACHUSETTS DATASET

TABLE IV
COMPARATIVE EXPERIMENTS OF THE NETWORK BASED ON A DIFFERENT BACKBONE

F1 by 0.59% and 1.24%, Precision by 0.71% and 1.21%, and
Recall by 0.45% and 1.26%. The optimization effect was most
significant on the Massachusetts dataset, presenting that our
proposed model exhibits powerful extraction capabilities for
small, densely distributed buildings.

We also conducted comparative experiments using different
backbone [54], [61] networks on the Massachusetts dataset. In
Table IV, our method consistently demonstrated superior perfor-
mance with various backbone networks, achieving an average
improvement of 2.41% in IoU, 1.65% in F1, 0.98% in Precision,
and 2.24% in Recall across all metrics.

2) Comparison With Other Methods: So far, many advanced
semantic segmentation methods have been proposed, such as
the U-Net [62], DeepLabV3+ [63], PSPNet [64], HRNetv2 [61],
MaskFormer [65], Mask2Former [66], MAP-Net [67], MSL-Net
[68], BOMSC-Net [69], MAFF-HRNet [70], MBR-HRNet [71],
and D-LinkNet [21]. Experiments both on the two datasets were
conducted to evaluate our LFEMAP-Net, and compared it with
these state-of-the-art semantic segmentation approaches, both
qualitatively and quantitatively, to validate its performance in
building semantic segmentation.

Fig. 8 presents the visual results of our LFEMAP-Net and
other common semantic segmentation methods on the WHU

dataset. In this comparison, eight representative images were
selected to conduct experiments with UNet, DeepLabV3+,
PSPNet, HRNetv2, Mask2former, and our LFEMAP-Net. As
shown in Fig. 8, when dealing with buildings in complex scenes,
our LFEMAP-Net outperforms other tested methods. It produces
a more complete building boundary, and it is more sensitive to the
scale of both small and large buildings. In the first four rows of
Fig. 8, LFMAP-Net significantly reduces misclassification and
omissions of other interfering objects, providing more accurate
and detailed descriptions of buildings with complex boundary
contours. It can accurately distinguish between buildings and
background, even in cases where building boundaries are chal-
lenging to delineate. The last four rows depict buildings with
lower foreground–background contrast and significant scale
variations, and LFEMAP-Net can still effectively distinguish
buildings from the background.

Leveraging its multiscale advantages, it comprehensively cap-
tures information about buildings of different sizes and accu-
rately infers their complete shapes.

Quantitative evaluation results are presented in Table V.
For a more comprehensive evaluation of the proposed method,
this study further compared building segmentation performance
with the latest research, including MAP-Net, MSL-Net, and
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Fig. 8. Visualize results on the WHU aerial building dataset.

BOMSC-Net. LFMAP-Net-L and LFMAP-Net-XL are exten-
sions with increased channel numbers. This enhancement aims
to strengthen the model’s ability to capture complex features
and patterns, ensuring robust performance in highly intricate
environments. The rows and columns represent different test
methods and evaluation metrics, respectively.

LFMAP-Net achieved the highest precision with 91.09% IoU,
95.34% F1, 95.81% Precision, and 94.86% Recall across all
metrics. Additionally, when we employed a backbone model,

ConvNext-XL, with a larger number of channels, it achieved
an accuracy of 91.48% IoU, 95.55% F1, 95.65% Precision,
and 95.45% Recall with training for 100 epochs, proving the
effectiveness of the proposed method.

To further assess LFEMAP-Net’s generalization performance
in extracting buildings across different datasets, multiple com-
parative experiments were also carried out on the challenging
Massachusetts Dataset. As shown in Fig. 9, due to the lim-
ited spatial resolution, building boundary delineation is often
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TABLE V
QUANTITATIVE EVALUATION ON THE WHU AERIAL BUILDING DATASET

Fig. 9. Visualize results on the Massachusetts building dataset.
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TABLE VI
QUANTITATIVE EVALUATION ON THE MASSACHUSETTS BUILDING DATASET

TABLE VII
QUANTITATIVE EVALUATION OF PARAMETERS OF DIFFERENT MAIN MODULES

unclear; thus, segmenting small buildings is challenging. Vari-
ations in building roof materials and the presence of partial
shadows contribute significantly to the challenge of achieving
complete building extraction. Compared with other semantic
segmentation methods, LFEMAP-Net is capable of achiev-
ing more complete building extraction while preserving well-
defined boundaries. Fig. 9 presents results for large-scale and
small-scale buildings in complex environments. The segmenta-
tion results demonstrate that LFEMAP-Net performs better in
the challenging scene, resulting in fewer omissions and mis-
classifications for both large and small buildings, and accu-
rately extracts the outlines of small buildings. Moreover, recent
reports were also referenced on MBR-HRNet, MAFF-HRNet,
and D-LinkNet for quantitative evaluation in Table VI. Rows
represent evaluation metric results for different methods, while
columns represent evaluation metrics. In quantitative compar-
isons, LFEMAP-Net continues to achieve the best performance,
demonstrating the advantages of our proposed method in scale
learning and building edge optimization, achieving fine-grained
building segmentation.

3) Parameter Analysis: In this study, we conducted a com-
prehensive analysis of model parameters for different main
modules to holistically assess the complexity of our model.
Specifically, we evaluated the model complexity by calcu-
lating the parameters of LFEMAP-Net with various config-
urations, including the base network, base network+LFEM,
base network+MAPM, and base network+LFEM+MAPM
(LFEMAP-Net). Table VII reveals that incorporating LFEM
into the base network results in a marginal parameter increase
of 5.404 (M). On the other hand, introducing MAPM leads to

a more substantial parameter augmentation of 27.015 (M). In
comparison, LFEM contributes relatively fewer parameters to
LFEMAP-Net. The MAPM module, emphasizing scale charac-
teristics and integrating mixing attention across multiple scales,
significantly amplifies the model’s parameter count.

IV. CONCLUSION

In this study, an improved building extraction approach
(LEFMAP-Net) for HRSI has been presented to address the lim-
itations of current methods in boundary accuracy and complete
building extraction. Specifically, in order to get more accurate
contours, we proposed LFEM, a novel approach incorporating
prior edge information through bilateral fusion, which considers
more spatial detail information by fusion of prior edge, thereby
refining the building boundary details. Moreover, we develop
MAPM. Through the designed MMA mechanism, MAPM can
effectively capture multiscale and multilevel features and solve
the problem of incomplete building extraction and missed de-
tection of small buildings. Experimental results on two publicly
available datasets validate the effectiveness of LFEMAP-Net,
showcasing its capacity to improve the building boundary and
multiscale feature integration. Even in the challenging scene,
LFEMAP-Net can make full use of prior edges and multiscale
information, extract more accurate building boundaries, and
achieve more complete building extraction results.

REFERENCES

[1] G. Wu et al., “Automatic building segmentation of aerial imagery using
multi-constraint fully convolutional networks,” Remote Sens., vol. 10,
no. 3, Mar. 2018, Art. no. 407.



LIU et al.: LFEMAP-NET FOR BUILDING EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES 2729

[2] D. Wierzbicki, O. Matuk, and E. Bielecka, “Polish cadastre modernization
with remotely extracted buildings from high-resolution aerial orthoim-
agery and airborne LiDAR,” Remote Sens., vol. 13, no. 4, Feb. 2021,
Art. no. 611.

[3] Y. Wang, L. Cui, C. Zhang, W. Chen, Y. Xu, and Q. Zhang, “A two-
stage seismic damage assessment method for small, dense, and imbal-
anced buildings in remote sensing images,” Remote Sens., vol. 14, no. 4,
Feb. 2022, Art. no. 1012.

[4] C. Qiu et al., “Transferring transformer-based models for cross-area build-
ing extraction from remote sensing images,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 15, pp. 4104–4116, 2022.

[5] L. Gu, Q. Cao, and R. Ren, “Building extraction method based on the
spectral index for high-resolution remote sensing images over urban areas,”
J. Appl. Remote Sens., vol. 12, no. 4, Nov. 5, 2018, Art. no. 045501.

[6] M. Awrangjeb, C. Zhang, and C. S. Fraser, “Improved building detection
using texture information,” Int. Arch. Photogramm., Remote Sens. Spatial
Inf. Sci., vol. 38, pp. 143–148, 2013.

[7] L. Wang et al., “Active contours driven by edge entropy fitting energy for
image segmentation,” Signal Process., vol. 149, pp. 27–35, Aug. 2018.

[8] Z. Zhang, W. Guo, M. Li, and W. Yu, “GIS-supervised building extrac-
tion with label noise-adaptive fully convolutional neural network,” IEEE
Geosci. Remote Sens. Lett., vol. 17, no. 12, pp. 2135–2139, Dec. 2020.

[9] D. Chai, “A probabilistic framework for building extraction from airborne
color image and DSM,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 10, no. 3, pp. 948–959, Mar. 2017.

[10] Y. Liu et al., “ARC-net: An efficient network for building extraction from
high-resolution aerial images,” IEEE Access, vol. 8, pp. 154997–155010,
2020.

[11] S. Li, T. Bao, H. Liu, R. Deng, and H. Zhang, “Multilevel feature aggre-
gated network with instance contrastive learning constraint for building
extraction,” Remote Sens., vol. 15, no. 10, May 2023, Art. no. 2585.

[12] M. Zhang, G. Zheng, Z. Jiang, Q. Zhu, L. Wang, and Q. Guan, “Local-
aware coupled network for hyperspectral image super-resolution,” GISci.
Remote Sens., vol. 60, no. 1, Dec. 2023, Art. no. 2233725.

[13] B. Liu, A. Yu, X. Zuo, R. Wang, C. Qiu, and X. Yu, “Deep hierarchical
transformer for change detection in high-resolution remote sensing im-
ages,” Eur. J. Remote Sens., vol. 56, no. 1, Dec. 2023, Art. no. 2196641.

[14] B. Liu, S. Du, L. Bai, S. Ouyang, H. Wang, and X. Zhang, “Water extraction
from optical high-resolution remote sensing imagery: A multi-scale feature
extraction network with contrastive learning,” GISci. Remote Sens., vol. 60,
no. 1, Dec. 2023, Art. no. 2166396.

[15] D. Hong et al., “More diverse means better: Multimodal deep learning
meets remote-sensing imagery classification,” IEEE Trans. Geosci. Re-
mote Sens., vol. 59, no. 5, pp. 4340–4354, May 2021.

[16] C. Li, B. Zhang, D. Hong, J. Yao, and J. Chanussot, “LRR-Net: An in-
terpretable deep unfolding network for hyperspectral anomaly detection,”
IEEE Trans. Geosci. Remote Sens., vol. 61, 2023, Art. no. 5513412.

[17] D. Hong et al., “SpectralGPT: Spectral foundation model,” 2023,
arXiv:2311.07113.

[18] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3431–3440.

[19] S. Shrestha and L. Vanneschi, “Improved fully convolutional network with
conditional random fields for building extraction,” Remote Sens., vol. 10,
no. 7, Jul. 2018, Art. no. 1135.

[20] W. Deng, Q. Shi, and J. Li, “Attention-gate-based encoder-decoder net-
work for automatical building extraction,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 14, pp. 2611–2620, 2021.

[21] M. Chen et al., “DR-net: An improved network for building extraction
from high resolution remote sensing image,” Remote Sens., vol. 13, no. 2,
Jan. 2021, Art. no. 294.

[22] L. Luo, P. Li, and X. Yan, “Deep learning-based building extraction
from remote sensing images: A comprehensive review,” Energies, vol. 14,
no. 23, Dec. 2021, Art. no. 7982.

[23] J. Chen et al., “DASNet: Dual attentive fully convolutional Siamese
networks for change detection in high-resolution satellite images,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 1194–1206,
2021.

[24] Z. Zhang and Y. Wang, “JointNet: A common neural network for road
and building extraction,” Remote Sens., vol. 11, no. 6, Mar. 2, 2019,
Art. no. 696.

[25] M. Guo, H. Liu, Y. Xu, and Y. Huang, “Building extraction based on U-net
with an attention block and multiple losses,” Remote Sens., vol. 12, no. 9,
May 2020, Art. no. 1400.

[26] Q. Tian, Y. Zhao, Y. Li, J. Chen, X. Chen, and K. Qin, “Multiscale building
extraction with refined attention pyramid networks,” IEEE Geosci. Remote
Sens. Lett., vol. 19, 2022, Art. no. 8011305.

[27] H. Wang and F. Miao, “Building extraction from remote sensing images
using deep residual U-net,” Eur. J. Remote Sens., vol. 55, no. 1, pp. 71–85,
Dec. 31, 2022.

[28] W. Qiu, L. Gu, F. Gao, and T. Jiang, “Building extraction from very
high-resolution remote sensing images using refine-UNet,” IEEE Geosci.
Remote Sens. Lett., vol. 20, 2023, Art. no. 6002905.

[29] X. Dai, M. Xia, L. Weng, K. Hu, H. Lin, and M. Qian, “Multiscale
location attention network for building and water segmentation of re-
mote sensing image,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023,
Art. no. 5609519.

[30] L. Li, J. Liang, M. Weng, and H. Zhu, “A multiple-feature reuse network
to extract buildings from remote sensing imagery,” Remote Sens., vol. 10,
no. 9, Sep. 2018, Art. no. 1350.

[31] G. Sun, H. Huang, A. Zhang, F. Li, H. Zhao, and H. Fu, “Fusion
of multiscale convolutional neural networks for building extraction in
very high-resolution images,” Remote Sens., vol. 11, no. 3, Feb. 2019,
Art. no. 227.

[32] S. Ji, S. Wei, and M. Lu, “A scale robust convolutional neural network
for automatic building extraction from aerial and satellite imagery,” Int. J.
Remote Sens., vol. 40, no. 9, pp. 3308–3322, May 3, 2019.

[33] J. Cai and Y. Chen, “MHA-net: Multipath hybrid attention network for
building footprint extraction from high-resolution remote sensing im-
agery,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 5807–5817, 2021.

[34] M. Yu, X. Chen, W. Zhang, and Y. Liu, “AGs-UNet: Building extraction
model for high resolution remote sensing images based on Attention Gates
U network,” Sensors, vol. 22, no. 8, Apr. 2022, Art. no. 2932.

[35] D. Zhao, H. Zhao, R. Guan, and C. Yang, “Efficient building extraction
for high spatial resolution images based on dual attention network,” Int. J.
Comput. Commun. Control, vol. 16, no. 4, Aug. 2021, Art. no. 4245.

[36] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7794–7803.

[37] J. Fu et al., “Dual attention network for scene segmentation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3146–3154.

[38] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7132–7141.

[39] X. Jin, Y. Xie, X.-S. Wei, B.-R. Zhao, Z.-M. Chen, and X. Tan, “Delving
deep into spatial pooling for squeeze-and-excitation networks,” Pattern
Recognit., vol. 121, 2022, Art. no. 108159.

[40] D. Hong et al., “Cross-city matters: A multimodal remote sensing bench-
mark dataset for cross-city semantic segmentation using high-resolution
domain adaptation networks,” Remote Sens. Environ., vol. 299, 2023,
Art. no. 113856.

[41] H. Jung, H.-S. Choi, and M. Kang, “Boundary enhancement semantic
segmentation for building extraction from remote sensed image,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5215512.

[42] Z. Jiang, Z. Chen, K. Ji, and J. Yang, “Semantic segmentation network
combined with edge detection for building extraction in remote sensing
images,” in Proc. Int. Symp. Multispect. Image Process. Pattern Recognit.,
2020, pp. 60–65.

[43] D. Marmanis, K. Schindler, J. D. Wegner, S. Galliani, M. Datcu, and U.
Stilla, “Classification with an edge: Improving semantic with boundary
detection,” ISPRS J. Photogramm. Remote Sens., vol. 135, pp. 158–172,
Jan. 2018.

[44] K. Zhao, J. Kang, J. Jung, and G. Sohn, “Building extraction from satel-
lite images using mask R-CNN with building boundary regularization,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2018,
pp. 242–2424.

[45] H. Guo, B. Du, L. Zhang, and X. Su, “A coarse-to-fine boundary refinement
network for building footprint extraction from remote sensing imagery,”
ISPRS J. Photogramm. Remote Sens., vol. 183, pp. 240–252, 2022.

[46] J. X. Chang, X. J. Gao, Y. W. Yang, and N. Wang, “Object-oriented
building contour optimization methodology for image classification results
via generalized gradient vector flow snake model,” Remote Sens., vol. 13,
no. 12, Jun. 2021, Art. no. 2406.

[47] C. Liao et al., “Joint learning of contour and structure for boundary-
preserved building extraction,” Remote Sens., vol. 13, no. 6, 2021,
Art. no. 1049.

[48] Y. Quan et al., “Building extraction from remote sensing images with DoG
as prior constraint,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 15, pp. 6559–6570, 2022.



2730 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[49] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, “Bisenet v2: Bilateral
network with guided aggregation for real-time semantic segmentation,”
Int. J. Comput. Vis., vol. 129, pp. 3051–3068, 2021.

[50] X. Chen, C. Qiu, W. Guo, A. Yu, X. Tong, and M. Schmitt, “Multiscale
feature learning by transformer for building extraction from satellite
images,” IEEE Geosci. Remote Sens. Lett., vol. 19, 2022, Art. no. 2503605.

[51] Z. Wang, N. Xu, B. H. Wang, Y. H. Liu, and S. W. Zhang, “Urban building
extraction from high-resolution remote sensing imagery based on multi-
scale recurrent conditional generative adversarial network,” GISci. Remote
Sens., vol. 59, no. 1, pp. 861–884, Dec. 31, 2022.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[53] H. Zhang et al., “ResNeSt: Split-attention networks,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops, 2022, pp. 2735–2745.

[54] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convNet for the 2020s,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2022, pp. 11966–11976.

[55] A. Kirillov, R. Girshick, K. He, and P. Dollár, “Panoptic feature pyramid
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 6392–6401.

[56] S. Seong and J. Choi, “Semantic segmentation of urban buildings using a
high-resolution network (HRNet) with channel and spatial attention gates,”
Remote Sens., vol. 13, no. 16, Aug. 2021, Art. no. 3087.

[57] P. Dollár and C. L. Zitnick, “Fast edge detection using structured forests,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 8, pp. 1558–1570,
Aug. 2015.

[58] Y. Liu, E. Li, S. Wang, Y. Zhu, and W. Zhu, “Superpixel segmentation
of high-resolution remote sensing image based on feature reconstruction
method by salient edges,” J. Appl. Remote Sens., vol. 17, no. 2, 2023,
Art. no. 026516.

[59] S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource
building extraction from an open aerial and satellite imagery data set,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574–586, Jan. 2019.

[60] V. Mnih, Machine Learning for Aerial Image Labeling. Toronto, ON,
Canada: Univ. of Toronto, 2013.

[61] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation
learning for human pose estimation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 5686–5696.

[62] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. 18th Int. Conf. Med. Image
Comput. Comput.-Assisted Intervention, 2015, pp. 234–241.

[63] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.

[64] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 6230–6239.

[65] B. Cheng, A. Schwing, and A. Kirillov, “Per-pixel classification is not all
you need for semantic segmentation,” in Proc. Adv. Neural Inf. Process.
Syst., 2021, vol. 34, pp. 17864–17875.

[66] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar, “Masked-
attention mask transformer for universal image segmentation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 1280–1289.

[67] Q. Zhu, C. Liao, H. Hu, X. Mei, and H. Li, “MAP-Net: Multiple attend-
ing path neural network for building footprint extraction from remote
sensed imagery,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 7,
pp. 6169–6181, Jul. 2021.

[68] Y. Qiu, F. Wu, J. C. Yin, C. Y. Liu, X. Y. Gong, and A. D. Wang, “MSL-Net:
An efficient network for building extraction from aerial imagery,” Remote
Sens., vol. 14, no. 16, Aug. 2022, Art. no. 3914.

[69] Y. Zhou et al., “BOMSC-net: Boundary optimization and multi-scale
context awareness based building extraction from high-resolution remote
sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5618617.

[70] Z. H. Che et al., “MAFF-HRNet: Multi-attention feature fusion HRNet for
building segmentation in remote sensing images,” Remote Sens., vol. 15,
no. 5, Mar. 2023, Art. no. 1382.

[71] G. D. Yan, H. T. Jing, H. Li, H. C. Guo, and S. He, “Enhancing building
segmentation in remote sensing images: Advanced multi-scale boundary
refinement with MBR-HRNet,” Remote Sens., vol. 15, no. 15, Aug. 2023,
Art. no. 3766.

Yu Liu received the B.S. degree in electrical engi-
neering and automation from the School of Xuhai,
China University of Mining and Technology, Xuzhou,
China, in 2019. He is currently working toward the
M.S. degree in electronic information with the School
of Geography, Geomatics and Planning, Jiangsu Nor-
mal University, Xuzhou, China.

His research interests include remote sensing im-
age processing, semantic segmentation, and deep
learning.

Erzhu Li received the M.S. degree in photogramme-
try and remote sensing from the China University of
Mining and Technology, Xuzhou, China, in 2014, and
the Ph.D. degree in cartography and geographic in-
formation system from Nanjing University, Nanjing,
China, in 2017.

He is currently an Associate Professor with the
School of Geography, Geomatics and Planning,
Jiangsu Normal University, Xuzhou, China. His re-
search interests include high-resolution image pro-
cessing and computer vision in urban remote sensing.

Wei Liu received the M.S. and Ph.D. degrees in
cartography and geographic information engineering
from the China University of Mining and Technology,
Xuzhou, China, in 2007 and 2010, respectively.

He is currently an Associate Professor with the
School of Geography, Geomatics and Planning,
Jiangsu Normal University, Xuzhou, China. His re-
search interests include spatial data quality checking,
high-resolution remote sensing image processing,
and GIS development and applications.

Xing Li received the M.S. degree in cartography and
geographic information engineering from the Shan-
dong University of Science and Technology, Qingdao,
China, in 2006, and the Ph.D. degree in physical geog-
raphy from East China Normal University, Shanghai,
China, in 2010.

He is currently a Professor with the School of
Geography, Geomatics and Planning, Jiangsu Normal
University, Xuzhou, China. His research interests in-
clude high-resolution image processing and computer
vision in environmental remote sensing applications.

Yuxuan Zhu received the B.S. degree in detection
guidance and control technology from the School of
Electronic Engineering and Optoelectronics Technol-
ogy, Nanjing University of Science and Technology,
Nanjing, China, in 2020. He is currently working to-
ward the M.S. degree in photogrammetry and remote
sensing with the School of Geography, Geomatics and
Planning, Jiangsu Normal University, Xuzhou, China.

His research interests include remote sensing im-
age processing, object detection, and deep learning.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


