
Received 22 November 2023, accepted 19 December 2023, date of publication 22 December 2023,
date of current version 29 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3345889

Infrared Object Detection Method Based
on DBD-YOLOv8
LINGYUN SHEN 1, BAIHE LANG 2, AND ZHENGXUN SONG2,3
1Department of Electronic Engineering, Taiyuan Institute
of Technology, Taiyuan 030008, China
2School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
3Overseas Expertise Introduction Project for Discipline Innovation, Changchun University of Science and Technology, Changchun 130022, China

Corresponding authors: Lingyun Shen (shenshly@163.com) and Baihe Lang (langbh@gmail.com)

This work was supported in part by the Shanxi Province Talent Introduction Science and Technology Innovation Startup Fund, China.

ABSTRACT An innovative and improved method for infrared object detection, namely DBD-YOLOv8
(DCN-BiRA-DyHeads-YOLOv8), is presented. The inherent limitations of the YOLOv8 model in sce-
narios with a low signal-to-noise ratio and complex tasks are addressed, with a focus on improving the
multi-scale feature representation within the YOLOv8 framework and effectively filtering out irrelevant
regions. To achieve this, two crucial modules, D_C2f and D_SPPF, are integrated. Deformable convolutions
(DCN) are utilized by these modules to dynamically adjust the visual receptive fields of the network.
Furthermore, a Bi-level Routing Attention mechanism (BRA) and Dynamic Heads (DyHeads) are adapted
within the feature fusion network, refining feature maps and enhancing semantic representation through
attention mechanisms. Significant improvements are demonstrated by DBD-YOLOv8 when compared
to the YOLOv8-n\s\m\l\x series models. Notably, improved average mAP@0.5 values on benchmark
datasets, including FLIR, OTCBVS (Dataset 01), OTCBVS (Dataset 03), and VEDAI, are achieved by
DBD-YOLOv8. The corresponding values are 84.8%, 96.3%, 99.7%, and 76.0%, respectively. These results
represent increases of 7.9%, 1.5%, 0.1%, and 3.5%, respectively. Importantly, real-time requirements are
met by the model’s inference times, which measure 10.9ms, 32.0ms, 37.3ms, and 28.4ms accordingly for
the previous datasets.

INDEX TERMS Infrared object detection, deformable convolution, Bi-level routing attention, dynamic head.

I. INTRODUCTION
Infrared radiation refers to electromagnetic waves emitted
by objects at temperatures above absolute zero, with wave-
lengths ranging from 750 nm to 1 mm. Infrared imaging
offers unique advantages such as all-weather capability, good
concealment, smoke penetration, and blind-spot detection
when compared to radar and visible light imaging [1].
Infrared imaging serves as an effective complement or
alternative to active radar imaging and visible light imag-
ing, finding applications in various military and civilian
fields [2], [3].

Infrared object detection plays a crucial role in infrared
search and tracking (IRST) applications, involving the detec-
tion, recognition, and labeling of object categories in infrared
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images. Precisely and efficiently locating objects in infrared
images is essential for object detection, which serves as
a foundation for subsequent tasks like image recognition,
object segmentation, and object tracking.

Infrared images possess unique characteristics, including
low signal-to-noise ratio and limited texture and detail infor-
mation. These characteristics arise from factors affecting
infrared detectors, such as atmospheric scattering and refrac-
tion, optical defocus, background noise, clutter interference,
and detector noise. Furthermore, the demand for real-time
object detection in applications like autonomous driving and
guided tracking adds complexity to infrared object detection.
Accurately detecting and recognizing various categories of
objects, including multi-scale, occluded, and small objects
(e.g., those with a contrast ratio lower than 15%, signal-to-
noise ratio below 1.5, object size less than 0.15% of the entire
image, or fewer than 80 pixels) with limited shape and texture
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information, remains a prominent research area in infrared
object detection [4].

Infrared object detection methods can be categorized
into four types: filter-based, local information-based, data
structure-based, and deep learning-based [5]. Deep learning-
based methods, leveraging their effective feature repre-
sentation capabilities, have become the predominant trend
in infrared image object detection research [6]. Existing
deep learning-based object detection methods for infrared
images can be broadly categorized into two main approaches
based on different detection strategies: those utilizing con-
volutional neural networks (CNNs) and those employing
Transformers [7]. Additionally, there are methods that com-
bine elements of both approaches.

Within the CNN-based methods, there are two distinct cat-
egories: region proposal-based detection methods (two-stage
network algorithms) and regression-based object detection
methods (one-stage detection algorithms).

Region proposal-based methods generate candidate box
images containing potential object positions, which are then
fed into the detection network for classification and localiza-
tion. Combining shallow and deep feature maps and utilizing
multi-scale features enhances the detection accuracy. Rep-
resentative algorithms in this category include R-CNN [8],
Faster R-CNN [9], and HyperNet [10]. Regression-based
methods directly determine the object category and loca-
tion in the network architecture, simplifying the algorithms’
implementation and improving computational speed. Repre-
sentative algorithms in this category include SSD [11] and the
YOLO series [12], [13], [14].

In recent years, Transformer-based object detection meth-
ods have gained substantial traction due to the remarkable
performance of self-attention mechanisms in capturing long-
range information and enabling global modeling of object
features. This has led to an increased exploration of the Trans-
former model’s potential application in computer vision,
including object detection [7]. Prominent examples of this
exploration include MMViT [15] and RIFormer [16], which
have leveraged Transformer-based architectures to facilitate
the development of end-to-end approaches that strike a bal-
ance between accuracy and computational cost. Thesemodels
have achieved significant breakthroughs in object detection
by introducing improvements to the backbone network [15],
[16] and novel detection heads [17], [18]. Notably, DETR
(DEtection TRansformer) [18] has emerged as a pioneering
visual model that applied the Transformer to object detection,
paving the way for further research and advancements in the
field.

The YOLO series has gained popularity in object detec-
tion research due to its excellent performance in terms of
generalization, real-time processing, lightweight design, and
scalability. Efforts have focused on combining methods such
as global perception andmulti-scale feature fusion to enhance
feature extraction and classification capabilities, addressing
the challenge of semantic feature extraction versus object
scale to improve algorithm interpretability [19].

In this study, we propose enhancements to the YOLOv8
algorithm as the basis for our model. In the backbone net-
work, we improve the extraction of multi-scale features for
irregular and occluded objects by integrating a Deformable
Convolution Network (DCN v2) [20], [21], [22]. To enhance
the detection accuracy of occluded objects and small objects,
we have replaced the convolutional units in CBS with
DCNv2, thereby improving the second and third layers, C2f,
of the backbone network, which correspond to the feature
maps of layers P3 and P4. Additionally, we have improved
the convolutional layers in SPPF by incorporating DCNv2.
The introduction of DCNv2 serves the purpose of adap-
tively adjusting the receptive field to accommodate target
deformations and thereby ensuring an enhanced detection
accuracy for occluded objects and small objects. Addi-
tionally, we introduce a Bi-level Routing Attention (BRA)
mechanism [23] that selectively filters out irrelevant regions
in the feature map while retaining highly relevant regions.
This approach enhances the model’s ability to learn multi-
scale features and improves computational efficiency. In the
feature fusion network, we utilize DyHeads, which inte-
grates attention mechanisms to enhance feature semantics.
DyHeads employs a unified approach that incorporates scale
awareness, spatial awareness, and task awareness, leading
to improved focus and generalization performance of the
model [24].

The DBD-YOLOv8 model demonstrates a significant
improvement in the detection accuracy of infrared targets,
particularly in scenarios with multiple objects, including
occluded and small targets. Importantly, these improvements
in detection accuracy are achieved without a significant
increase in model inference time, ensuring the model remains
suitable for real-time detection requirements.

II. RELATED WORK
In the realm of infrared object detection, the fundamental
aspect of object detection algorithms revolves around three
key components: feature extraction, feature fusion, and the
integration of various feature processing techniques. These
elements work in unison to enhance the capabilities of feature
extraction and classification.

A. FEATURE EXTRACTION
In scenarios involving non-cooperative objects or sensitive
applications with limited datasets, the common approach is
to enhance algorithm generalization to address the problem of
model overfitting caused by small sample sizes. The design of
the backbone network aims to effectively extract and facilitate
the subsequent fusion of multi-scale features. Network archi-
tectures like CSPDarkNet and Transformer have successfully
improved detection performance. However, excessively com-
plex structures can lead to increased model complexity.

DETR architecture consists of a backbone network,
a Transformer encoder, and a Transformer decoder. The
backbone network, commonly based on CNN [25], [26] or
Transformer [15], [16] models, extracts image features. The
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Transformer encoder integrates multi-scale information [27]
and re-encodes image features to enhance relevant informa-
tion while suppressing irrelevant details. The Transformer
decoder utilizes query vectors to aggregate features related
to the objects within the image [28], extracting relevant
object information for detection. However, it is important
to note that the Transformer encoder in DETR has certain
limitations. From an encoding perspective, the Transformer
encoder redundantly re-encodes highly encoded image fea-
tures, resulting in functional repetition within the network.
From a feature fusion standpoint, although the Transformer
encoder successfully fuses multi-scale features, its multi-
layered hierarchical structure and large parameter size sig-
nificantly increase the complexity of network optimization.
Consequently, the model convergence speed is slowed down,
necessitating substantial computational resources. Thus, the
effectiveness of the Transformer encoder does not align with
its significant computational cost. To overcome these limita-
tions, alternative approaches are being explored to improve
the efficiency and effectiveness of feature encoding and
fusion in the context of the Transformer model [29], [30].
Despite the exceptional detection accuracy of Transformer-

based methods, they come with high computational costs
and inadequate convergence speed. Additionally, the unique
characteristics of infrared and remote sensing images, such
as small object scales and diverse categories, limit the
advantages of Transformer in the context of infrared object
detection.

The YOLOv8 backbone network is based on the
CSPDarkNet-53 network structure. To mitigate the issue of
losing low-level details due to the overshadowing of shallow
detail features by deep semantic features in complex back-
ground feature fusion, contextual aggregation is introduced
between the backbone network and the feature extraction
network. This integration enhances feature fusion and spatial
interaction capabilities [31]. When detecting small objects,
a combination of shallow position information and deep
semantic information is utilized to strengthen feature fusion
capabilities [32]. For the detection of multi-scale, dense, and
occluded objects, several techniques have been proposed.
These techniques include iterative feature extraction using
the backbone network [33], fusion with attention mecha-
nisms [34], optimization of attention featuremaps using Long
Short-Term Memory (LSTM) to enhance feature extraction
capabilities [35], and the utilization ofmulti-scale context and
enhanced channel attention to improve the representation of
object features in complex backgrounds [36].
To avoid the loss of fine-grained details caused by deep

convolution iterations, dilated convolutions can be employed
to maintain higher resolution and larger receptive fields [37].
Deformable convolutions can be used to adaptively adjust the
network’s visual receptive fields [38].

B. FEATURE FUSION
Research on feature fusion primarily focuses on efficiently
integrating multiple features and combining methods for

multi-feature fusion to enhance feature extraction and clas-
sification capabilities. Attention mechanisms dynamically
learn feature weights or attention distribution based on con-
text and task requirements, enabling adaptive focus on key
features.

There are various attention mechanisms and feature fusion
methods, including spatial attention mechanisms, channel
attention mechanisms, channel-spatial mixed attention mech-
anisms, and self-attention mechanisms. Among these, the
channel-spatial mixed attention model combines the advan-
tages of channel attention and spatial attention. It adaptively
refines and maps important channels and spatial regions for
feature extraction, attention weighting, and fusion, resulting
in more reliable attention information and comprehensive
feature representation.

While Convolutional Block Attention Module (CBAM)
[39] and Bottleneck Attention (BAM) [40] utilize channel
and spatial attention mechanisms to capture feature repre-
sentations across different dimensions, enhancing network
expressiveness and robustness, they suffer from high com-
putational complexity, excessive focus on local features,
and limitations in model generalization. On the other hand,
Shuffle Attention Net (SA-Net) leverages the idea of fea-
ture separation and interaction to accurately comprehend
relationships between image features. However, it needs to
address the issue of information loss during information
exchange and recombination. Efficient Pyramid Split Atten-
tion (ESPA) employs a spatial pyramid attention mechanism
to handle multi-scale visual information and improve feature
representation. However, it comes with high computational
complexity and significant training and tuning costs.

Multi-Head Self-Attention (MHSA) improves model per-
formance by increasing the number of attention heads [41],
but this introduces scalability issues, particularly in terms of
computational and spatial complexity.

In addition, feature pyramid networks are used to extract
multi-scale features of different objects [42], and loss func-
tions are optimized [43]. The anchor-free mechanism is
employed to address the difficulties of imbalanced positive
and negative samples and hyperparameter tuning [44]. Fur-
thermore, improvements have been made to enhance position
regression accuracy [45] and computational speed [46] in the
Non-Maximum Suppression (NMS) algorithm.

III. IMPROVEMENT FOR DBD-YOLOv8 MODEL
Compared to previous versions of YOLO, YOLOv8 demon-
strates significant improvements in both accuracy and speed.
YOLOv8 provides different-sized models, namely n/s/m/l/x
scales, based on different scaling factors to accommodate
various scene requirements. The depth and width factors of
the models vary, where larger models yield better detection
performance but slower inference speed. The YOLOv8 net-
work architecture consists of three main parts: the Backbone
layer, Neck layer, and Head layer. This design allows each
branch of the backbone network, neck, and head to focus on
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FIGURE 1. The network architecture diagram of YOLOv8 and the schematic illustration of its main constituent module details.

its respective task, thereby improving the overall accuracy of
the model.

The YOLOv8 Backbone network comprises three mod-
ules: CBS, C2f, and SPPF. The CBS module consists of
convolution (Conv), batch normalization (BN), and Sigmoid
Linear Unit (SiLu) activation function. The C2f module
adopts the Cross Stage Partial (CSP) structure, where the out-
put of the first CBSmodule is split into two channel branches.
One branch concatenates n residual blocks of BottleNeck,
while the other branch performs additive concatenation with
the first branch, resulting in feature extraction.

The Spatial Pyramid Pooling Fast (SPPF) employs three
pooling layers with the same kernel size (5 × 5) to reduce
computation while enhancing feature extraction efficiency.
Through the fusion of local and global features, the SPPF
enhances the network’s receptive field and achieves multi-
scale feature fusion through concatenation, contributing to
improved object detection.

The Backbone is primarily used for feature extraction.
YOLOv8 enhances the capability of feature representation
through the lightweight c2f module. The channel numbers are
altered through splitting and concatenation operations based
on the scaling factors, reducing computational complexity
and model capacity. The SPPF layer is added at the end to
increase the receptive field and capture features at different
levels in the scene.

The Neck is mainly responsible for feature fusion and
adopts the Dual-Stream Feature Pyramid Network (FPN)
structure, combining the Feature Pyramid Network (FPN)
and Path Aggregation Network (PAN). It fuses the semantic
and spatial information of multi-scale feature maps. As the
image passes through deep networks, the receptive field and

semantic features strengthen, but the resolution decreases,
making it challenging to capture features of small objects.
FPN utilizes a top-down (upsampling) approach to transmit
deep semantic features to shallow layers and performs ten-
sor concatenation with the same-sized feature maps from
the backbone network, enhancing the detection performance
of small objects. PAN utilizes a bottom-up (downsampling)
approach to transmit shallow-level color, edge, contour, and
spatial features to deep layers while performing tensor con-
catenation with the feature maps from FPN. This achieves
comprehensive fusion of multi-scale features, compensating
for feature loss caused by deepening the network and enrich-
ing feature granularity information.

The Head utilizes the Decoupled Head to separate localiza-
tion and classification into two branches. It predicts objects
of small, medium, and large scales based on the fused P3,
P4, and P5 feature maps, respectively. YOLOv8 employs an
Anchor-Free framework, directly predicting bounding boxes
within the grid, which avoids the need for initializing anchor
box sizes and the computational overhead of NMS, thereby
improving object localization efficiency.

The network structure of YOLOv8 and its module details
are depicted in Figure 1.

The objective of this study is to propose enhancements to
the YOLOv8 algorithm to improve the detection accuracy
of occluded and small objects in infrared target scenarios
without compromising real-time detection requirements.

The proposed enhancements include integrating a
Deformable Convolution Network (DCNv2) in the backbone
network to extract multi-scale features for irregular and
occluded objects. The convolutional units in CBS and SPPF
are replaced with DCNv2 to improve the detection accuracy
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FIGURE 2. The network framework scheme of the DBD-YOLOv8 model.

of occluded and small objects. A BRA mechanism is intro-
duced to filter out irrelevant regions and enhance the model’s
ability to learn multi-scale features. DyHeads is utilized in
the feature fusion network to enhance feature semantics. The
proposed enhancements effectively improve the detection
accuracy of occluded and small objects in infrared target
scenarios, making theDBD-YOLOv8model suitable for real-
time detection requirements.

The enhanced network architecture of the DBD-YOLOv8
model is illustrated in Figure 2, showcasing its refined
structure.

A. D_C2f AND D_SPPF MODULE
Due to the diverse nature of infrared objects, which exhibit
complexity in terms of size, shape, position, and orientation,
standard convolution operations often struggle to accurately
capture the precise location of objects or only capture partial
information. This limitation is particularly evident in detect-
ing occluded and small objects, which are susceptible to noise
and interference.

In the backbone network of YOLOv8, the visual layer
features encompass rich spatial information but may lack
semantic information, which limits their effectiveness. Addi-
tionally, fixed standard convolution kernels lack flexibility,
resulting in limited receptive fields. Consequently, the net-
work is prone to missed detections or false detections
when encountering multi-scale objects, occluded objects,
or small objects. To overcome this issue, the introduction of
deformable convolutional networks in the visual layer can
enhance feature representation [47].

By introducing DCN v2 in the C2f and SPPF network
structures, we have reconfigured the YOLOv8 algorithm
to improve its detection capability. While the DCN itself
does not significantly increase the number of parameters and

FIGURE 3. The structure of the D_C2f and D_SPPF module.

FLOPs in the model, the stacking of multiple DCN layers can
lead to increased inference time in practical applications.

Experimental results demonstrate that using DCNs gener-
ally enhances network performance. However, it is important
to note that excessive use of DCN layers does not necessarily
improve network performance; instead, it may reduce net-
work speed and increase parameter tuning costs [48].
To address these challenges, we conducted experiments

to evaluate detection accuracy and inference speed. Through
this process, we found that replacing the second and third
C2f modules in the backbone network with D_C2f modules,
as well as replacing SPPF with D_SPPF, yields the optimal
optimization results. Specifically, we employed deformable
convolutions in the detection layers P3, P4, and SPPF. This
modification enables the network to adaptively adjust its
receptive field during the model sampling process, aligning
better with the shapes and sizes of objects and enhancing its
robustness. Furthermore, during the model’s prediction and
regression process, the algorithm can adjust the regression
parameters of predicted bounding boxes, further improving
the model’s ability to express features related to multi-scale
objects, occlusions, and small objects. Figure 3 provides a
comprehensive visualization of the detailed module struc-
tures of D_C2f and D_SPPF.

During regression prediction, the D_C2f module adjusts
the regression parameters of bounding boxes, thereby
enhancing the model’s feature representation capability for
objects of different scales, occluded objects, and small
objects. This improvement results in increased completeness
of information for the objects under test. The D_C2f module
achieves this enhancement by stacking multiple deformable
convolution modules, which not only extract diversified and
multi-scale feature information from objects but also expand
the network’s receptive field while reducing the number of
parameters.
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FIGURE 4. Sampling comparison between standard convolution and
deformable convolution.

In the feature fusion stage, the D_SPPF module enhances
the network model’s geometric modeling capability, allowing
it to focus on object areas and adapt to object deforma-
tions and scale changes. This capability enables the network
to capture features at different levels in the scene, thereby
increasing the receptive field.

The purpose of employing the DCN module is to enhance
themodel’s ability to extract invariant features. DCN achieves
this by learning an offset for each sampling point of the
convolution kernel, enabling it to adapt to the geometric shape
of the object. By learning different optimal convolution kernel
structures based on diverse object data, DCN strengthens the
feature extraction capability for infrared objects at various
scales. For a visual comparison between standard convolution
and deformable convolution sampling, refer to Figure 4.

Deformable convolution is an extension of standard con-
volution that introduces offset values to the sampling points.
Let x represent the input feature map and y denote the output
feature map. N and n represent the total number of sampling
points and the enumeration of these points, respectively. After
sampling the input feature map x, the center sampling point
is denoted as p0, and pn represents the offset of p0 within
the convolution kernel range. This offset is a constant value
that assists the model in learning biases, thereby enhancing
accuracy and stability.

In deformable convolution, each position p0 introduces
an offset value {1pn|n = 1, 2, · · · ,N }. The feature matrix
outputted by DCN v1 [20] is as follows:

y(p0) =

∑
p0∈R

w(pn) · x(p0 + pn + 1pn) (1)

In this context, w(pn) represents the weight assigned to the
position pn, while x(pn) denotes the pixel value of the input
feature map at position pn. The variable 1pn represents the
offset at position pn. Since 1pn is typically a decimal value,
x (p0 + pn + 1pn) may not correspond to an existing point
on the feature map, making it unsuitable for direct sampling.
Therefore, DCN v1 utilizes bilinear interpolation to achieve
the desired offset effect.

While DCN v1 effectively fits small objects by introducing
the offset module, it also introduces excessive and irrelevant
context information. This additional context may include
irrelevant background information, which can interfere with

feature extraction by the model. Building upon DCN v1,
DCN v2 not only learns the offset of sampling points but
also the modulation of each sampling point. It introduces
a modulation scalar 1mn to suppress irrelevant background
information, enabling the model to reduce the interference
from irrelevant regions during feature learning. The modula-
tion scalar1mn ∈ [0, 1] differentiates whether the introduced
region is the region of interest. If a sampling point’s region is
not of interest, the weight can be learned as 0. The feature
matrix outputted by DCN v2 [21] is as follows:

y (p0) =

∑
pn∈R

w (pn) · x (p0 + pn + 1pn) · 1mn (2)

In DCN v1, the introduced offset aims to identify the
region where relevant information is located. In DCN v2,
the introduced modulation is used to assign weights to the
identified positions. These two aspects ensure the accurate
extraction of valuable information.

B. Bi-LEVEL ROUTING ATTENTION MECHANISM
The attention mechanism in this study aims to emulate the
selective perceptionmechanism observed in the human visual
system. To leverage the advantages of both channel attention
and spatial attention, we propose the Channel and Spatial
Mixed Attention (CSMA) mechanism. This approach adap-
tively selects critical channels and spatial regions, combines
the channel and spatial attention weights, and generates a
mixed feature vector. By considering the interactive relation-
ship between input data in channel and spatial dimensions,
our mechanism provides more comprehensive and reliable
attention information.

To further enhance the model’s performance, we introduce
the Multi-Head Self-Attention (MHSA) technique, which
increases the number of attention heads. However, this
improvement introduces scalability concerns, particularly in
terms of computational and spatial complexity. To address
these issues, we employ the Bi-Level Routing Attention
(BRA) approach. BRA facilitates the extraction of attention
weights between feature maps of different scales, resulting in
a hierarchical channel attention vector. Subsequently, these
vectors are recalibrated and used to weight the correspond-
ing feature maps. The output is a multi-scale feature map
that contains richer and more detailed feature information,
as illustrated in Figure 5.

First, the input feature map X ∈ RH×W×C is partitioned
into non-overlapping regions of size s × s, which are then

mapped to region-level feature vectors X r ∈ RS2×HW
S2

×C .

The query, key, and value tensor Q,K ,V ∈ RS2×HW
S2

×C are
obtained through linear projections [23].

Q = X rW q, K = X rW k , V = X rW v (3)

Here, the weights W q, W k , W v
∈ RC×C correspond to

the projection of the query, key, and value, respectively.
Next, an adjacency matrix is constructed using a directed

graph to determine the relationships between different keys
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FIGURE 5. BRA Module process mechanism diagram.

and values. By performing region-level averaging on Q and
K , Qr , K r

∈ RS2×C is obtained. The adjacency matrix
of the region-to-region association graph is calculated by
multiplying Qr with the transpose of K r .

Ar = Qr (K r )T ∈ RS2×S2 (4)

To identify the most relevant regions, a top-k operation is
performed row-wise, resulting in a routing index matrix.

I r = topindex(Ar ) ∈ RS2×k (5)

Consequently, the i-th row of I r contains the indices of the
k most relevant regions to the i-th region.

Finally, the key tensor and value tensor of the region index
matrix are collected, as shown in Equation 6 [23].K g

= gather(K , I r ) ∈ RS2× kHW
S2

×C

V g
= gather(V , I r ) ∈ RS2× kHW

S2
×C

(6)

This collection facilitates the generation of fine-grained
Token-to-Token attention.

O = Attention(Q, K g, V g) + LCE(V ) (7)

To enhance the local context, we employ the Local Context
Enhancement (LCE) function [49], which utilizes deep con-
volution with a kernel size of 5.

The detailed structure of the BiRA module is illustrated in
Figure 6.

C. DYHEADS MODULE
The YOLOv8 model has only three detection heads, which
may lead to missed or false detections when detecting
occluded or small objects. Since the output of the YOLOv8
backbone network is a three-dimensional tensor with dimen-
sions of width × height × channels, we propose to incor-
porate a dynamic detection head called Dynamic Head
(DyHeads). This additional head aims to unify scale-aware
attention, spatial-aware attention, and task-aware attention,
enabling the integration of attention mechanisms on specific
dimensions of the feature tensor. By doing so, we can effec-
tively enhance themodel’s performance in detecting occluded
and small objects.

FIGURE 6. The structure of the BiRA module.

FIGURE 7. The dynamic head module.

Object detection heads aim to enhance the classification
and localization of objects. To further improve the han-
dling of high-resolution multi-scale semantic information
generated by YOLOv8, we employ the Dynamic Head. The
rescaled feature pyramid, which can be represented as a four-
dimensional tensor, is denoted as F ∈ RL×H×W×C , where
L represents the number of levels in the pyramid, and H , W ,
and C represent the height, width, and number of channels of
intermediate-level features, respectively. The structure of the
dynamic head is illustrated in Figure 7.

Furthermore, we define S = H×W and reshape the tensor
into a three-dimensional tensor, F ∈ RL×S×C . The dynamic
head unifies object detection head methods from three
dimensions: scale-awareness (Level-wise), spatial-awareness
(Spatial-wise), and task-awareness (Channel-wise), by utiliz-
ing an attention mechanism.

Despite its name, the dynamic head plays a role similar
to a neck, strengthening the semantic features. To achieve
this, DyHeads employs a separated attention mechanism that
sequentially applies three attention mechanisms, with each
one focusing on a specific dimension [24]:

W (F) = πC (πS (πL(F) · F) · F) · F (8)

Among them, πL(·), πS (·), and πC (·) are three sepa-
rate attention functions applied to dimensions L, S, and C ,
respectively.
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To dynamically fuse features from different scales based on
their semantic importance, we introduce the scale-awareness
attention mechanism, denoted as attention function πL(·).

πL(F) · F = σ

f
 1
SC

∑
S,C

F

 · F (9)

where σ (x) = max(0,min(1, x+1
2 )) represents the hard-

sigmoid function, while f (·) corresponds to the linear trans-
formation achieved through a 1 × 1 convolution.
The spatial-awareness attention mechanism initially incor-

porates sparsity in attention learning through the use of DCN
v2. Subsequently, it aggregates features from different levels
at the same spatial position.

πS (F) · F =
1
L

L∑
l=1

K∑
k=1

wl,k · F(l; pk + 1pk ; c) · 1mk

(10)

The task-awareness attention mechanism dynamically
enables and disables feature channels to accommodate dif-
ferent tasks.

πC (F) · F = max(α1(F) · Fc + β1(F), α2(F)

· Fc + β2(F))

(11)

where θ (·) = [α1, α2, β1, β2]T represents a hyperfunction
utilized for learning the control activation threshold, whileFc
denotes the feature slice corresponding to the c-th channel.

These three types of attention can be sequentially applied
to detection heads to enhance the algorithm’s ability to detect
occlusions and small objects. As the number of stacking
increases, the dynamic head achieves higher precision.

Inspired by the dynamic head, a DyHeads was designed
to enhance the effectiveness of object detection by combin-
ing the infrared object detection characteristics of YOLOv8.
Since πS (·) bears resemblance to deformable convolution
modules, spatial-awareness has already been improved in
the backbone network enhancements through the use of
deformable convolutions. To strike a balance between accu-
racy, complexity, and inference speed, while reducing model
parameters and computational requirements, only scale-
aware and task-aware attention mechanisms are employed
to enhance the perception ability of the detection head.
In our algorithm, we integrated four dynamic head blocks
(DyHeads) with m=4. The schematic diagram of the
DyHeads module is depicted in Figure 8.

IV. EXPERIMENTS AND RESULTS ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
The experiments were conducted on a mobile service plat-
form equipped with a GeForce RTX 4060 GPU and an Intel
i9-13900HX CPU. The runtime environment utilized CUDA
Toolkit 11.7, while the deep learning framework employed
was PyTorch 1.13.1.

FIGURE 8. The structure of the DyHeads module.

B. DATASETS
Experimental benchmarks for model training and test-
ing were chosen from several infrared datasets, namely
FLIR [50], OTCBVS (Dataset 01) [51], OTCBVS (Dataset
03) [51], and VEDAI [52].

The FLIR dataset comprises 14,452 labeled thermal
infrared images captured in various scenarios, encompassing
applications such as security surveillance, industrial inspec-
tion, drones, and autonomous driving. It consists of three
classes: person, bicycle, and car. To conduct the experiments,
a random sampling approach was employed, resulting in a
training set of 8,862 images, a validation set of 976 images,
and a test set of 390 images.

From the OTCBVS dataset, two subsets were cho-
sen. Dataset 01 contains 284 infrared images with person
objects, while Dataset 03 consists of 17,089 infrared images
featuring both person and car objects. Each subset was
divided into training, validation, and test sets using an 8:1:1
ratio.

The VEDAI dataset contains 1,250 pairs of co-registered
visible and near-infrared aerial images with a resolution
of 1024 × 1024. It encompasses nine object categories,
including airplanes, ships, various vehicles, and bicycles.
On average, each image contains 5.5 vehicle objects, which
account for only 0.7% of the total image pixels. This dataset
presents challenges such as small and multiple objects, vari-
ations in orientation, lighting conditions, shadows, specular
reflections, and occlusions. For the experiments, a random
sampling method was employed, resulting in a training set of
1,000 images, a validation set of 125 images, and a test set of
125 images.

C. EVALUATION METRICS
The model’s performance was evaluated using precision (P),
recall (R), and mean average precision (mAP) metrics.

1) PRECISION
Precision refers to the probability of correctly predicting
positive samples among the predicted positive samples.

P =
TP

TP+ FP
(12)

where TP represents the number of true positive samples
predicted as positive and FP represents the number of false
positive samples predicted as positive.
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TABLE 1. Model training hyperparameter settings.

2) RECALL
Recall represents the probability of correctly predicting pos-
itive samples among all the predicted samples.

R =
TP

TP+ FN
(13)

FN represents the number of false negative samples pre-
dicted as negative.

3) mAP
mAP (meanAverage Precision) is themean value of precision
for all detection categories. It is calculated using the following
formula:

mAP =

∑N
0 APn
N

(14)

where N represents the total number of classes. APn refers
to the average precision of class n, which is calculated as
the area under the Precision-Recall curve. The mean Average
Precision (mAP) is denoted as mAP@0.5, representing the
average accuracy value when the IoU parameter threshold is
set to 0.5. Furthermore, mAP@0.5:0.95 is utilized to indicate
a range of IoU parameter thresholds from 0.5 to 0.95, with a
step size of 0.05.

D. HYPERPARAMETER SETTINGS
To optimize the model’s performance during the training
process, a learning rate decay method was employed. This
method involved adjusting the model’s parameters update
speed using an initial learning rate (lr0). Additionally, a learn-
ing rate coefficient (lrf) was utilized to control the decay of
the learning rate over the course of training. The final learning
rate was determined by multiplying the initial learning rate
with the coefficient. To ensure sufficient training steps, the
iteration was set to 200. Throughout the training, the learning
rate gradually decreased, promoting model stability, facil-
itating smooth convergence, and minimizing fluctuation to
achieve the optimal solution. Table 1 illustrates the hyperpa-
rameter configurations employed during model training.

To assess the impact of target classes on detection out-
comes, we conducted object detection and recognition tests
on the YOLOv8-based improved model, DBD-YOLOv8n,
using the FLIR validation dataset. Figure 9 presents the con-
fusion matrix depicting the distribution of target classes in the
DBD-YOLOv8n model. Additionally, Figure 10 displays the
precision-recall (P-R) curve.

FIGURE 9. Confusion matrix of target class distribution (FLIR).

FIGURE 10. Precision-recall curve (FLIR).

E. ABLATION EXPERIMENTS
A series of ablative experiments were conducted on the FLIR,
OTCBVS (Dataset 01), OTCBVS (Dataset 03), and VEDAI
infrared datasets to evaluate the impact of the improved
modules in the DBD-YOLOv8 model on the performance
of infrared object detection. To compare the visual detec-
tion results between the original YOLOv8n model and the
improvedDBD-YOLOv8nmodel, the same set of imageswas
used for object detection experiments.

Table 2 summarizes the ablative experiment results
for FLIR, OTCBVS (Dataset 01 and 03), and VEDAI.
Based on the results in Table 2, the YOLOv8n+DCN
model shows improvements in precision (P), recall (R),
and mean average precision mAP@0.5 compared to the
YOLOv8n baseline model. Specifically, on the FLIR,
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FIGURE 11. Comparison of object detection results on FLIR test sets between YOLOv8n and DBD-YOLOv8n.

OTCBVS (Dataset 01), OTCBVS (Dataset 03), and VEDAI
test sets, the YOLOv8n+DCN model achieves a P increase
of 2.2%, 1.4%, 1.2%, and 1.7% respectively. The corre-
sponding R increases are 1.5%, 0.7%, 0.6%, and 1.0%,
while the mAP@0.5 increases are 4.8%, 0.6%, 0.3%, and
2.3%. These results suggest that integrating DCN into the
backbone network allows for adaptive adjustment of the net-
work’s visual receptive field, better accommodating object
shapes and sizes, reducing environmental noise effects, and
effectively improving the representation capability of multi-
scale, occluded, and small objects in infrared images, thereby
enhancing detection accuracy.

The introduction of BiRA between the backbone network
and the feature fusion network leads to significant improve-
ments in P, R, and mAP@0.5 on the FLIR, OTCBVS (Dataset
01), OTCBVS (Dataset 03), and VEDAI test sets, despite a
slight increase in parameter count. The mAP@0.5 reaches
73.5%, 91.3%, 96.8%, and 69.8%. These findings suggest
that BiRA refines the feature maps by capturing multi-scale
feature information and enhances the feature learning capa-
bility, thereby improving the overall detection accuracy of the
network.

The addition of Dyheads to the feature fusion net-
work in the YOLOv8n+Dyheads model further improves
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FIGURE 12. Comparison of object detection results on OTCBVS (Dataset 01) Test Sets between YOLOv8n and DBD-YOLOv8n.

TABLE 2. Results of ablation experiment.

the mAP@0.5 on the FLIR, OTCBVS (Dataset 01),
OTCBVS (Dataset 03), and VEDAI test sets, reaching74.0%,
91.2%, 96.2%, and 70.0% respectively. This indicates that
Dyheads, combined with attention mechanisms, strengthen
the semantic representation of features, leading to improved

training effectiveness and detection performance of the
model.

Finally, the DCN-improved D_C2f, D_SPPF, and BiRA
modules are combined, the DBD-YOLOv8n model achieves
the highest mAP@0.5 performance on the FLIR, OTCBVS
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FIGURE 13. Comparison of object detection results on OTCBVS (Dataset 03) Test Sets between YOLOv8n and DBD-YOLOv8n.

(Dataset 01), OTCBVS (Dataset 03), and VEDAI test sets,
with values of 81.6%, 94.0%, 99.6%, and 72.8% respec-
tively. The inference times were recorded as 6.2ms, 16.5ms,
19.3ms, and 12.3ms respectively, demonstrating the real-
time capability of the proposed object detection system to
meet the requirements of dynamic detection scenarios. This
indicates that each module contributes independently to the
performance.

F. EXPERIMENTAL RESULTS COMPARISON WITH
DIFFERENT MODELS
To quantitatively analyze the object detection performance of
the DBD-YOLOv8 model, we conducted training and testing
comparisons on publicly available datasets, namely FLIR,

OTCBVS (Dataset 01), OTCBVS (Dataset 03), and VEDAI.
We compared the DBD-YOLOv8 series models with popular
object detection models, including Faster R-CNN, YOLOv3,
and YOLOv5. The experimental results are presented in
Table 3.

The object detection results on FLIR, OTCBVS
(Dataset 01), OTCBVS (Dataset 03), and VEDAI Test Sets
were compared between YOLOv8n and DBD-YOLOv8n,
as presented in Figures 11 to 14. The results clearly
demonstrate that the DBD-YOLOv8n model exhibits sig-
nificant enhancements over the original model. Specifically,
it effectively reduces false detections and missed detections,
thereby improving the detection performance for multi-scale
occluded objects and small objects.
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FIGURE 14. Comparison of object detection results on VEDAI test sets between YOLOv8n and DBD-YOLOv8n.

Compared to Faster R-CNN, YOLOv3, and YOLOv5n, the
DBD-YOLOv8 model achieves improved average precision

(mAP@0.5) for all object categories. The DBD-YOLOv8
model, which incorporates improvements such as DCN, the
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TABLE 3. Experimental results of different object detection methods on the RSOD, NWPU VHR-10, DIOR, and VEDAI datasets.

added BiRA module, and the Dyheads module, exhibits
significant performance advancements compared to the
YOLOv8 series models (YOLOv8-n\s\m\l\x). On the FLIR,
OTCBVS (Dataset 01), OTCBVS (Dataset 03), and VEDAI
test sets, the average mAP@0.5 increases by 7.9%, 1.5%,
0.1%, and 3.5%, respectively, reaching 84.8%, 96.3%, 99.7%,
and 76.0%. The average inference times are 10.9ms, 32.0ms,
37.3ms, and 28.4ms (equivalent to 92fps, 31fps, 27fps, and
35fps). Although there is a slight increase in the number
of parameters, resulting in a partial loss of inference time,
the model’s average inference time still meets the real-time
detection requirements.

V. CONCLUSION
To address the challenges associated with low signal-
to-noise ratio and insufficient texture details in infrared
images, we propose an enhanced version of the YOLOv8
base series (YOLOv8-n\s\m\l\x) specifically designed for
infrared object detection tasks. Our approach aims to improve
the accuracy of detecting multi-scale, occluded, and small
objects.

Our approach introduces two keymodules: the DCN-based
D_C2f and D_SPPF modules, which replace the C2f and
SPPF modules of the backbone network. These modules
utilize deformable convolutions to replace the feature maps of
layers P3, P4, and SPPF. By dynamically adjusting the convo-
lution kernel shape and adapting the network’s receptive field
based on the object’s position, our model improves its abil-
ity to focus on object regions, capture object deformations,
and handle scale variations. As a result, our model exhibits
enhanced capabilities in representing multi-scale features.

Additionally, we introduce the BiRA module, which
incorporates a dual-route attention mechanism between the
backbone and neck networks. This module extracts attention
weights for feature maps of different scales and hierarchi-
cal channel attention vectors, correcting and weighting the
feature maps to generate richer and more refined multi-scale
feature maps. This enhancement strengthens the model’s fea-
ture learning capabilities.

To further enhance the semantic representation of fea-
tures and improve object detection and localization accuracy,
we introduce the Dyheads module within the neck network.
This module integrates attention mechanisms that promote
scale-awareness (Level-wise), spatial awareness (Spatial-
wise), and task awareness (Channel-wise). By combining
these different awareness aspects, our model achieves a more
robust semantic representation of features.

Our proposed method for infrared object detection, called
DBD-YOLOv8, significantly enhances the model’s fea-
ture representation capabilities for detecting multi-scale,
occluded, and small objects. It also improves the model’s
ability to learn and fuse multi-scale features. Although this
enhancement slightly increases model complexity and incurs
a minor sacrifice in inference time, it leads to a notable
improvement in the average detection accuracy. Experimen-
tal results validate the effectiveness and applicability of the
DBD-YOLOv8 model in infrared object detection.

In our forthcoming research, our primary objective is to
explore more efficient methods for extracting and fusing
object information. Our aim is to develop a robust detection
model specifically tailored for identifying infrared objects
within intricate backgrounds, leveraging their spatiotemporal
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features. A particular focus of our investigation is the inte-
gration of cutting-edge Transformer models into the realm of
object detection. We draw inspiration from the Transformer
model’s remarkable ability to capture long-range depen-
dencies and dynamically aggregate spatial information. Our
intention is to address inherent limitations associated with
fixed receptive fields observed in YOLO, as well as potential
overlooked dependencies between objects. To achieve this,
we plan to incorporate both the Vision Transformer (ViT)
and the bi-directional feature pyramid network (BiFPN)
architecture into our research framework. This integration is
anticipated to significantly enhance the model’s proficiency
in handling intricate backgrounds and augment object detec-
tion performance.
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