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Abstract—Electrocardiography (ECG) is a non-invasive tool for
predicting cardiovascular diseases (CVDs). Current ECG-based di-
agnosis systems show promising performance owing to the rapid de-
velopment of deep learning techniques. However, the label scarcity
problem, the co-occurrence of multiple CVDs and the poor per-
formance on unseen datasets greatly hinder the widespread ap-
plication of deep learning-based models. Addressing them in a
unified framework remains a significant challenge. To this end,
we propose a multi-label semi-supervised model (ECGMatch) to
recognize multiple CVDs simultaneously with limited supervision.
In the ECGMatch, an ECGAugment module is developed for weak

Manuscript received 16 June 2023; revised 1 November 2023; accepted 7
December 2023. Date of publication 14 December 2023; date of current version
3 April 2024. This work was supported by an NIHR Research Professorship, an
RAEng Research Chair, the InnoHK Hong Kong projects under the Hong Kong
Center for Cerebro-cardiovascular Health Engineering (COCHE), in part by the
NIHR Oxford Biomedical Research Centre (BRC), in part by the Pandemic
Sciences Institute at the University of Oxford, in part by the National Natural
Science Foundation of China under Grant 22322816, and in part by the City
University of Hong Kong Project under Grant 9610640. Recommended for
acceptance by A.N. Veeraraghavan. (Corresponding authors: Yining Dong;
Yuan-Ting Zhang.)

This work involved human subjects or animals in its research. Approval of all
ethical and experimental procedures and protocols was granted by Emory Uni-
versity, Physikalisch-Technische Bundesanstalt, Chapman University, Ningbo
First Hospital of Zhejiang University and Shaoxing People’s Hospital.

Rushuang Zhou, Zijun Liu, and Ting Xiang are with the Depart-
ment of Biomedical Engineering, City University of Hong Kong, Hong
Kong, SAR, China, and also with the Hong Kong Center for Cerebro-
Cardiovascular Health Engineering (COCHE), Hong Kong, SAR, China
(e-mail: rrushuang2-c@my.cityu.edu.hk; zijunliu4-c@my.cityu.edu.hk; txi-
ang7-c@my.cityu.edu.hk).

Lei Lu is with the Department of Engineering Science, University of Oxford,
OX1 2JD Oxford, U.K. (e-mail: lei.lu@eng.ox.ac.uk).

David A. Clifton is with the Department of Engineering Science, Univer-
sity of Oxford, OX1 2JD Oxford, U.K., and also with the Oxford-Suzhou
Institute of Advanced Research (OSCAR), Suzhou 215123, China (e-mail:
davidc@robots.ox.ac.uk).

Zhen Liang is with the School of Biomedical Engineering, Medi-
cal School, Shenzhen University, Shenzhen 518060, China (e-mail: zhen-
liang.szu@gmail.com).

Yining Dong is with the School of Data Science, City University of Hong
Kong, Hong Kong, SAR, China, and also with the Hong Kong Center for
Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, SAR,
China (e-mail: yinidong@cityu.edu.hk).

Yuan-Ting Zhang is with Micro Sensing and Imaging Technologies Limited,
Hong Kong, SAR, China, and also with Wearable Intelligent Sensing Technolo-
gies Limited, Hong Kong, SAR, China (e-mail: ytzhanghicas@gmail.com).

Code is available at https://github.com/KAZABANA/ECGMatch.
This article has supplementary downloadable material available at

https://doi.org/10.1109/TPAMI.2023.3342828, provided by the authors.
Digital Object Identifier 10.1109/TPAMI.2023.3342828

and strong ECG data augmentation, which generates diverse sam-
ples for model training. Subsequently, a hyperparameter-efficient
framework with neighbor agreement modeling and knowledge
distillation is designed for pseudo-label generation and refinement,
which mitigates the label scarcity problem. Finally, a label corre-
lation alignment module is proposed to capture the co-occurrence
information of different CVDs within labeled samples and propa-
gate this information to unlabeled samples. Extensive experiments
on four datasets and three protocols demonstrate the effectiveness
and stability of the proposed model, especially on unseen datasets.
As such, this model can pave the way for diagnostic systems that
achieve robust performance on multi-label CVDs prediction with
limited supervision.

Index Terms—Cardiovascular diseases, electrocardiograph,
multi-label learning, semi-supervised learning.

I. INTRODUCTION

CARDIOVASCULAR diseases (CVDs) have become the
world’s leading cause of morbidity and mortality in recent

years [1]. As a non-invasive test, the 12-lead electrocardiography
(ECG) is widely used for diagnosing CVDs. With the rapid de-
velopment of deep learning and artificial intelligence, AI-aided
automatic diagnosis systems have attracted considerable interest
in clinical practice. Most of these systems are designed for a
well-defined setting where the annotated samples are sufficient
and identically distributed, with each sample only belonging to
one CVDs class. Unfortunately, the complex real-world setting
differs from this ideal setting, where annotated ECG segments
are tough to collect, and multiple CVDs can be identified from
each segment. Furthermore, the real-world training and test
data may not be sampled from the same distribution, which
greatly hurts the model performance. The difference between
the real-world setting and the ideal setting restricts the clinical
applications of current systems. In a nutshell, there are three
challenges in the clinical applications of automatic diagnosis
systems: 1) Label scarcity problem. 2) Poor performance on
unseen datasets. 3) Co-occurrence of multiple CVDs.

In recent years, semi-supervised learning (SSL) has shown
great potential in addressing the label scarcity problem in clinical
applications. The main idea of the SSL models is to utilize
unlabeled samples for model training, which are easier to collect
compared with labeled samples [2], [3]. By leveraging the
abundant information within the unlabeled samples, SSL models
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often outperform fully-supervised models when the number of
labeled samples is limited [4], [5], [6]. Consequently, numerous
studies were proposed to extend the success of SSL to ECG-
based CVDs prediction. For example, Oliveira et al. applied
existing SSL models for ECG signal classification. Experiments
on the MIT-BIH database [7] demonstrated the superiority of the
SSL models compared with fully-supervised models [8]. To im-
prove the model performance on unseen datasets, Feng et al. pro-
posed a transfer learning framework to transfer the model trained
on a label-sufficient dataset to a label-scarce target dataset. Com-
prehensive results on four benchmarks demonstrated the robust-
ness of the proposed framework. At the same time, multi-label
learning sheds new light on how to detect multiple CVDs from
one ECG recording simultaneously. In contrast to single-label
learning, multi-label learning generates multiple predictions for
a given sample, with each prediction indicating whether the
sample belongs to a specific category [9]. Multi-label learning
models have the capability to detect multiple diseases from ECG
signals, while single-label models are limited to recognizing
only one disease at a time. As a result, numerous models have
been proposed to leverage multi-label learning for ECG-based
CVDs prediction. For example, Strodthoff et al. evaluated the
performance of existing models on the PTB-XL database [10],
[11] and demonstrated the feasibility of using multi-label learn-
ing models for CVDs prediction. Subsequently, Ge et al. and
Ran et al. proposed utilizing the relationship between different
cardiac diseases to enhance the model performance [12], [13].
Lai et al. realized efficient prediction of CVDs by developing
a multi-scale deep neural network that was initialized through
self-supervised pretraining [14]. More details about the exist-
ing models for ECG-based CVDs prediction are presented in
Section II.

To the best of our knowledge, no prior study has proposed and
validated a unified framework to tackle the aforementioned three
challenges simultaneously. Specifically, most previous studies
only alleviated one of the aforementioned problems without
comprehensively considering the other two challenges in CVDs
prediction. For example, many SSL-based models ignored the
co-occurrence of multiple CVDs and their performance on un-
seen datasets was not satisfying [6], [8], [15], [16], [17]. Previous
multi-label learning models could detect multiple CVDs from
ECG signals, but their effectiveness relied heavily on sufficient
labeled data and handcrafted prior knowledge [11], [12], [13].
These significant deficiencies imply that these models are still
far from being applicable in real-world scenarios. Therefore, in
this study, we propose a multi-label semi-supervised framework
(ECGMatch) that can use only 1% of the annotated samples to
achieve good results in cross-dataset multi-label CVDs predic-
tion. Here, we introduce how the proposed framework addresses
the aforementioned problem simultaneously.

First, a novel ECGAugment module is developed to alleviate
the label scarcity problem by generating diverse samples. It
exploits the intrinsic characteristics of ECG signals and dra-
matically outperforms traditional methods [8], [18]. Moreover,
we design a pseudo-label generation module that utilizes the
interaction between the student and teacher networks to generate
pseudo-labels for the unlabeled samples. Specifically, we for-
mulate the generation task as a knowledge distillation process.

During training, the teacher stores the learned knowledge in
two memory banks, and the student visits the banks to assign
pseudo-labels for the unlabeled samples using a K-Nearest
voting strategy. To mitigate the negative impact of inaccu-
rate pseudo-labels, we propose a neighbor agreement model-
ing method and develop a hyperparameter-efficient module for
refining these labels. During the K-Nearest voting process, the
degree of agreement among neighbors can be utilized to estimate
the pseudo-label confidence, which is an important indicator for
discovering trustworthy pseudo-labels. In multi-label learning,
the advantage of the proposed hyperparameter-efficient refine-
ment module is more significant as it only relies on the number
of neighbors K rather than numerous thresholds and complex
control strategies [5], [6], [15], [19].

To capture the co-occurrence of different CVDs, we introduce
a label correlation alignment module. It quantitatively estimates
the co-occurrence information using limited labeled data and
transfers this knowledge to unlabeled data. In practice, we
compute a correlation matrix to represent the co-occurrence
information, and align the matrices computed on labeled and
unlabeled data to complete a knowledge transfer process. Fi-
nally, we conduct extensive experiments on four public datasets
across three protocols. The results comprehensively validate the
superiority of the ECGMatch, especially on unseen datasets. In
summary, the main contributions and novelties are listed below.
� We proposed a robust pipeline for ECG signal augmen-

tation, which shows remarkable improvements compared
with previous methods.

� An efficient method for pseudo-label refinement is devel-
oped for multi-label learning with limited supervision. It
has fewer parameters than threshold-based methods but
shows better performance.

� A novel approach is proposed to align the label correlation
computed on labeled and unlabeled data, which provides a
reliable solution to capture the co-occurrence of multiple
CVDs.

� A unified semi-supervised framework for multi-label
CVDs prediction is proposed, which is the first one to
address three critical challenges in this area.

II. RELATED WORK

A. ECG-Based CVDs Prediction Using Deep Learning

Over the past decade, the potential and feasibility of utilizing
ECG signals to diagnose a wide spectrum of CVDs have been
demonstrated by numerous previous studies [11], [18], [20],
[21], [22], [23], [24], [25], [26], [27], [28]. With the rapid
development of deep learning techniques, many studies used
end-to-end deep learning models to achieve accurate predictions
of the CVDs. For example, Kiranyaz et al. designed a real-
time one-dimensional convolutional neural network (CNN) that
achieved superior performance in ECG-based CVDs prediction
compared with traditional models [20]. Hannun et al. conducted
a comprehensive evaluation of a deep neural network (DNN)
for ECG signal classification. The extensive results showed
that the DNN model achieved a similar diagnosis performance
to cardiologists, thus demonstrating its enormous potential in
clinical applications [22]. Subsequently, several methods were
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proposed to enhance the accuracy of the DNN model. For
example, Ribeiro et al. proposed a unidimensional residual
neural network architecture that outperformed cardiology res-
ident medical doctors in recognizing six kinds of CVDs [23].
Huang et al. introduced a novel deep reinforcement learning
framework called snippet policy network V2 (SPN-V2) for the
early prediction of CVDs based on ECG signals. Using a novel
keen-guided neuroevolution algorithm, the SPN-V2 network
achieved a stable balance between recognition accuracy and
earliness [27]. However, despite the significant advancements
in ECG-based CVDs prediction using deep learning methods in
recent years, such methods may experience a performance drop
when the number of labeled samples is limited [17].

B. Semi-Supervised Learning for ECG-Based CVDs
Prediction

Semi-supervised learning has achieved great success in re-
ducing the requirements on laborious annotations for model
training [4], [5], [6], [15], [29]. As a result, an increasing number
of studies have proposed using SSL to develop robust models
for ECG-based CVDs prediction with limited supervision [8],
[16], [17]. For instance, Zhai et al. proposed a semi-supervised
model to transfer knowledge learned from large datasets to small
datasets. Extensive experiments demonstrated that the perfor-
mance of the proposed model was comparable to other methods
which required numerous annotated samples [16]. Oliveira et al.
applied different SSL models for ECG-based CVDs prediction,
such as MixMatch [4] and FixMatch [5]. When only 15% of the
ECG data was labeled, the SSL models achieved comparable
prediction performance obtained by fully supervised models [8].
Motivated by the mean teacher algorithm [30], Zhang et al.
proposed the mixed mean teacher model for automatic atrial
fibrillation detection using ECG, which significantly reduced the
workload of data annotation by 98% while achieving comparable
performance as fully supervised models [17]. To address the
distribution shifts across different datasets, Feng et al. pro-
posed a SSL framework based on two complementary modules:
semantic-aware feature alignment (SAFA) and prototype-based
label propagation (PBLP) [31]. Comprehensive experiments
verified that the proposed model achieved promising perfor-
mance on target datasets using limited labeled target samples.

However, previous SSL studies for ECG-based CVDs pre-
diction have two main limitations. 1) Previous SSL studies de-
veloped single-label classification models for CVDs prediction,
which were greatly limited in clinical applications. Specifically,
they simply formulated the CVDs prediction task as a single-
label problem, where each ECG signal can only belong to one
category. However, multiple CVDs, such as atrial fibrillation
and right bundle branch block, usually co-occur in one ECG
segment [13]. This phenomenon suggests that the CVDs predic-
tion task should be formulated as a multi-label problem, where
each ECG signal belongs to multiple categories. 2) Previous
studies did not consider CVDs prediction on unseen datasets.
The training and test data in previous studies were from the
same dataset, which is often unrealistic in real-world applica-
tions. While some studies applied transfer learning to transfer
knowledge from the training datasets to unseen datasets [11],

TABLE I
FREQUENTLY USED NOTATIONS AND DESCRIPTIONS

[31], their methods still needed labeled samples from the test
dataset, which led to information leaking.

C. Multi-Label Model for ECG-Based CVDs Prediction

Many studies have investigated the feasibility of using multi-
label learning to simultaneously detect multiple arrhythmia
types from ECG signals. Strodthoff et al. proposed a pilot study
that evaluated the performance of different models for ECG-
based multi-label CVDs classification and found that ResNet
and Inception-based CNN architectures achieved the best perfor-
mance [11]. Ge et al. utilized Bayesian conditional probability to
capture the association between ECG abnormalities and used it
to guide the feature fusion of ECG-based models. Promising ex-
perimental results showed that the multi-label correlation guided
feature fusion network outperformed other competitors [12].
Ran et al. proposed a label correlation embedding guided net-
work (LCEGNet) to capture the relationship between different
ECG abnormalities and improve the model performance by
learning arrhythmia-specific features [13]. However, annotating
multi-label ECG data is prohibitively expensive, leading to
a critical bottleneck in real-world applications. This problem
highlights the need for semi-supervised learning in ECG-based
multi-label CVDs prediction, which will be investigated in our
study.

III. METHODOLOGY

A. Overview

In semi-supervised learning for multi-label CVDs prediction,
the training ECG data is divided into the labeled and unla-
beled sets, given as DB = {Xb, Yb} = {xi

b, y
i
b}NB

i=1 and DU =

{Xu,−} = {xi
u,−}NU

i=1.NB andNU are the number of samples
in DB and DU . Xb contains the labeled 12-leads ECG record-
ings, and Yb represents the corresponding multi-label ground
truth. Specifically, the c-th dimension in yib contains the ground
truth of category c, yi,cb ∈ {0, 1}. Hence, a given ECG recording
might belong to multiple categories simultaneously. To clarify
the narrative, the frequently used notations are summarized in
Table I. As shown in Fig. 1, the proposed ECGMatch includes
three modules: ECGAugment module, pseudo-label generation
and refinement module, and label correlation alignment module.
In the ECGAugment module, motivated by the weak-strong
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Fig. 1. Overall schematics of the ECGMatch. It consists of three losses and four parts. 1) Supervised training on the labeled ECG samples: the student network
Ms = {fs(·), hs(·)} outputs CVDs predictions for the labeled samplesXb and computes the supervised loss Lb in (3). 2) ECGAugment for the unlabeled samples:
apply weak and strong augmentations to the unlabeled samples Xu. 3) Pseudo-label generation and refinement: generate pseudo-labels for the unlabeled samples
using two memory banks maintained by the teacher network Mt = {ft(·), ht(·)}; refine the raw pseudo-labels based on a neighbor agreement function I(·);
computes the unsupervised loss Lu defined in (7). 4) Label correlation alignment: estimate the label correlation matrices for the labeled and unlabeled samples
and compute the loss Lf in (11).

augmentation method [5], we design a novel augmentation
pipeline by investigating the intrinsic characteristics of the
ECG signals, named as ECGAugment. In the pseudo-label
generation and refinement module, we introduce a knowl-
edge distillation method for pseudo-label generation. Then, we
propose a neighbor agreement modeling method to compute
the importance score for the pseudo labels, which can alleviate
the negative effect of the inaccurate pseudo-labels. In the label
correlation alignment module, we propose to align the label
correlation matrices computed on the labeled data and unlabeled
data by Frobenius norm regularization, which enables the model
to capture the label dependency between different CVDs. More
details about the proposed ECGMatch are presented below.

B. ECGAugment

One critical method to tackle the label scarcity problem is
efficient data augmentation [29]. Although ECG augmentation
methods have been well investigated in previous studies [17],
[32], how to properly define a weak and strong augmenta-
tion pipeline for ECG-based semi-supervised learning is still
challenging. Hence, we propose a novel augmentation pipeline
for the ECG signals by leveraging their characteristic, termed
as ECGAugment. Specifically, ‘weak’ augmentation w(·) is
defined by randomly choosing one transformation to augment
a 12-lead ECG signal x ∈ R

12×L, where L is the length of x.
1) Signal Dropout: we randomly set the ECG signal values
within a random time window to zero. Its length and location
are randomly generated from uniform distributions. This trans-
formation enables the model to handle weak signals caused by

bad contact of ECG electrodes [33]. 2) Temporal Flipping:
motivated by previous studies [18], [34], we flip the original
ECG signal along the temporal axis, which means the signal
is read in reverse. 3) Channel Reorganization: Each row of x
represents the ECG signal recorded at one lead (channel). Hence,
we randomly change the order of the row vectors in the signal
matrix x to shuffle its channel organization. 4) Random Noise:
inspired by the noise contamination technique in ECG-based
contrastive learning and adversarial learning [18], [35], we add
a Gaussian noise ε ∼ N (0, σ) to the original signal x.

Motivated by the RandAugment technique for image aug-
mentation [36], we define the ’strong’ augmentation g(·) by
randomly selecting T ≤ 4 transformations to perturb the in-
put signal x. Specifically, a transformation queue is randomly
generated and transformations within the queue are applied
one after another. For a random queue {2, 1, 3}, we succes-
sively apply Temporal Flipping, Signal Dropout, and Channel
Reorganization to the input signal. Compared with traditional
sequential perturbations which fix the number and the order
of transformations [8], [18], the proposed method dramatically
increases the diversity of the augmented samples by introducing
extra randomness, which greatly increases the model perfor-
mance [29], [36].

C. Pseudo-Label Generation for Multi-Label Learning

The key to robust semi-supervised learning is accurate
pseudo-label generation, which has been demonstrated by many
previous studies [4], [5], [6], [37], [38], [39]. However, previous
studies mainly consider a single-label condition, where each
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sample belongs to one category only. In contrast, we focus on a
multi-label condition in this study, where each sample belongs
to multiple categories simultaneously. Here, we generate the
pseudo-labels using a knowledge distillation method. Specifi-
cally, we introduce a teacher model Mt = {ft(·), ht(·)} and a
student model Ms = {fs(·), hs(·)}, where f(·) is a feature ex-
tractor and h(·) is a multi-label classifier. As shown in Fig. 1, we
first apply the weak augmentationw(·) and the strong augmenta-
tion g(·) to the unlabeled ECG recordings xu, respectively. The
teacher model extracts deep features zu,t = ft(w(xu)) from the
weak-augmented signals w(xu) and outputs the corresponding
predictions pu,t = sigmoid(ht(zu,t)). Then we store them in
two memory banks (feature bank Z = {znu,t}NU

n=1 and prediction

bank P = {pnu,t}NU
n=1), NU is the number of samples in DU .

Note that Z and P are updated on the fly with the current mini-
batch. In this study, pnu,t = [pn,1u,t , . . ., p

n,c
u,t ] is a C dimensional

vector where the c-th element represents the prediction of class
c, pn,cu,t ∈ [0, 1]. During training, the student model extracts a
feature vector ziu,s = fs(w(x

i
u)) from a given unlabeled sample

xi
u and assigns a pseudo-label (ŷiu) for it using a widely used soft

voting method [38]. Specifically, ŷiu is computed by integrating
the predictions of its K-Nearest neighbors {zku,t}Kk=1 in the
feature bank Z, given as

ŷiu =
1

K

K∑
k=1

pku,t, (1)

where pku,t is the prediction of zku,t, which is the k-th nearest
neighbor of the feature vector ziu,s in the feature bank Z, K
is the number of neighbors. {pku,t}Kk=1 is acquired by visiting
the prediction bank P . To conduct the knowledge distillation
process, we minimized the binary cross entropy loss between the
prediction of the student model and the pseudo-label ŷiu given by
the prediction bank. Motivated by the weak-strong consistency
regularization method [5], we apply a strong augmentation
g(·) to the unlabeled sample xi

u and compute the correspond-
ing student prediction by qiu,s = sigmoid(hs(z

′
u,s)), z

′
u,s =

fs(g(x
i
u)). Then we compute the binary cross entropy loss

between the pseudo-labels and the student predictions of the
unlabeled samples, defined as

Lu = − 1

BuC

Bu∑
i=1

C∑
c=1

(1− ŷi,cu ) log(1− qi,cu,s) + ŷi,cu log qi,cu,s,

(2)
where C is the number of categories in the dataset, and Bu is the
number of unlabeled samples in the current mini-batch. Using
the ground truth of the labeled samples in the mini-batch, we
compute the supervised binary cross-entropy loss, defined as

Lb = − 1

BC

B∑
i=1

C∑
c=1

(1− yi,cb ) log(1−pi,cb,s)+yi,cb log pi,cb,s, (3)

where B is the number of labeled samples in the current mini-
batch, pi,cb,s = sigmoid(hs(fs(w(x

i
b)))) is the prediction given

by the student model and yi,cb ∈ {0, 1} is the corresponding
ground truth. Combing (2) and (3), we compute the overall loss

for semi-supervised multi-label classification, defined as

L = Lb + λLu, (4)

where λ is a hyperparameter controlling the weight ofLu. Before
pseudo-label generation, the teacher model Mt is pre-trained on
the labeled dataset DB using the (3). Then in the knowledge dis-
tillation process, the student model Ms is updated by stochastic
gradient descent to minimize (4). To stabilize the maintained
feature bank Z and the prediction bank P , the parameters θt of
the teacher model Mt are updated by the momentum moving
average of the parameters θs of the student model [38], [40],
defined as

θt = mθt + (1−m)θs, (5)

where m is a momentum hyperparameter.

D. Pseudo-Label Refinement Based on Neighbor Agreement
Modeling

Inaccurate pseudo-labels can hurt the model performance in
semi-supervised learning. Consequently, the generated pseudo-
labels ŷu should be further refined to avoid this problem. Pre-
vious studies [5], [6] utilized fixed or dynamic thresholds to
remove the pseudo-labels with low confidence. However, it is
difficult to set up separate optimized thresholds for different cat-
egories in multi-label classification. Moreover, designing update
strategies for dynamic thresholds needs numerous hyperparam-
eters [15], [37]. Hence, we proposed a novel pseudo-label refine-
ment method based on neighbors agreement modeling (NAM).
It refines the raw pseudo-labels ŷu by computing their neighbor
agreement based on a neighbor agreement function I(·) and then
adjusts their importance in the loss propagation. Compared with
traditional threshold-based refinement method [5], [6], [41],
NAM replaces the threshold control process with an importance
weighting process, which is more hyperparameter-efficient in
semi-supervised multi-label classification.

Recall that we have generated the raw pseudo-label ŷiu for
the unlabeled sample xi

u by averaging the prediction pku,t of its
K-Nearest neighbors ( (1)). Here, we sum up the neighbors’ pre-
dictions pk,cu,t ∈ [0, 1] and apply a neighbor agreement function
I(·) to compute the neighbor agreement of the pseudo-label ŷiu
on the c-th category.

αi,c
u = I

(
K∑

k=1

pk,cu,t

)
=

∣∣∣∣∣ 2K
K∑

k=1

pk,cu,t − 1

∣∣∣∣∣ , (6)

where K is the number of nearest neighbors. αi,c
u ∈ [0, 1] is the

neighbor agreement which can also be regarded as the model
confidence on the pseudo-label ŷiu. Combing the (6) and (2), we
can rewrite the unsupervised binary cross entropy loss as

Lu = − 1

BuC

Bu∑
i=1

C∑
c=1

αi,c
u [(1− ŷi,cu ) log(1− qi,cu,s)

+ ŷi,cu log qi,cu,s], (7)
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where αi,c
u controls the weight of the ŷi,cu in loss computation.

Specifically, the (6) allocates high weights (αi,c
u ≈ 1) to the

pseudo-labels with high agreement on neighbors’ prediction
(
∑K

k=1 p
k,c
u,t ≈ K or 0). Note that the label refinement process of

the NAM module is only related to one hyperparameterK, which
is the number of nearest neighbors. On the contrary, previous
threshold-based methods need to set up fixed or dynamic thresh-
olds for C independent categories in multi-label classification,
which is less efficient in hyperparameters grid searching than the
proposed NAM module. In addition, threshold-based methods
typically discard pseudo-labels whose confidences are lower
than the pre-defined thresholds. The selection of the thresholds
is sensitive to the class distribution in training datasets [5], [42],
which can result in suboptimal generalization performance when
applied to the unseen dataset with a different class distribution.
In contrast, the proposed NAM employs a soft method that
adjusts the importance of the generated pseudo-labels rather
than directly rejecting them. It is less sensitive to the class dis-
tribution in the training data compared with the threshold-based
methods [15] and can enhance the model performance on the
unseen dataset.

E. Label Correlation Alignment

The co-occurrence of CVDs leads to a strong relationship
between different categories, which should be considered to
achieve better prediction performance in multi-label classifica-
tion [43], [44]. Previous studies focused on the label dependency
within the labeled samples and utilized the semantic relationship
between different categories to guide the model training [45],
[46], [47]. However, it is hard to define the relationship among
various CVDs without sufficient prior knowledge. On the other
hand, ignoring the label dependency within the large-scale un-
labeled samples results in information waste [46], [48]. Hence,
we propose jointly capturing the label dependency within the
labeled and unlabeled samples by computing two label cor-
relation matrices (Rb and Ru). In practice, Rb is calculated
using the labeled samples while Ru is estimated using the
unlabeled samples. The computation process does not need extra
prior information like the word-embedding correlation between
different labels [46]. Then we minimize the discrepancy between
the Rb and Ru to align the label dependencies computed by
the labeled and unlabeled samples, which enhances the model
performance in multi-label classification.

Firstly, we introduce how to compute the label corre-
lation matrix Rb based on the labeled sample set DB =
{Xb, Yb}. Yb = [y1b ; y

2
b ; . . .; y

NB

b ] is a NB × C label matrix,
where C is the number of categories. The label correlation
r̂c1,c2 ∈ [0, 1] between classes c1 and c2 can be estimated by
the similarity between the label sequences (yc1 , yc2 ) on the
two classes, where yc1 = [y1,c1b ; y2,c1b , . . ., yNB ,c1

b ] and yc2 =

[y1,c2b ; y2,c2b , . . ., yNB ,c2
b ]. We find that cosine similarity is more

efficient for label correlation analysis than other metrics such
as the Pearson coefficient. As shown in (8), with binarized
labels yc1 and yc2 , it estimates the conditional probabilities
between the classes c1 and c2 without being influenced by the

class distributions of different datasets. The proof of (8) and
detailed analysis of different similarity metrics can be found in
Appendix B, available online. Based on the cosine similarity,
the correlation r̂c1,c2 is computed as

r̂c1,c2 =
yTc1yc2

‖yc1‖ ‖yc2‖
≈
√

P (c1=1|c2=1)P (c2=1|c1=1),

(8)
And the label correlation matrix Rb can be computed by

Rb =

⎡
⎢⎢⎢⎢⎣
r̂1,1 r̂1,2 · · · r̂1,C

r̂2,1 r̂2,2 · · · r̂2,C
...

...
. . .

...

r̂C,1 r̂C,2 · · · r̂C,C

⎤
⎥⎥⎥⎥⎦ = N(Y )TN(Y ), (9)

where N(Y ) is a normalization function which normalizes the
column vectors of Y to unit vectors. For the unlabeled sample,
we estimate the label correlation matrix Ru using the model
prediction Pu output by the student network Ms. To improve
the robustness of the estimated Ru, we simultaneously use the
strongly-augmented and weakly-augmented samples to increase
the sample size for computation. Hence, Ru is estimated as

Ru = N(Pu)
TN(Pu), Pu =

[
q1u,s; p

1
u,s; . . .; q

Bu
u,s; p

Bu
u,s

]
,
(10)

where Pu is a 2Bu × C matrix containing the student
predictions of the strongly and weakly augmented
unlabeled samples (g(xu) and w(xu)), and Bu is the
number of unlabeled samples in the current mini-batch.
Specifically, qiu,s = sigmoid(hs(fs(g(x

i
u)))) and piu,s =

sigmoid(hs(fs(w(x
i
u)))). The label correlation matrices

represent the dependency and the semantic relationship
between different CVDs, which should be consistent across
the labeled and unlabeled data. Consequently, we minimize
the discrepancy between the Ru and Rb using Frobenius norm
regularization, defined as

Lf = ‖Rb −Ru‖F , (11)

where ‖ · ‖F represents the Frobenius norm of a given matrix.
Finally, we formulate the final loss of the proposed ECGMatch
by combing the supervised multi-label classification loss (3),
the importance weighted unsupervised multi-label classification
loss (7) and the label correlation alignment loss (11)

L = Lb + λuLu + λfLf , (12)

where λu and λf are two hyperparameters controlling the impor-
tance of different objective functions. We present the complete
algorithm for ECGMatch in Algorithm 1.

IV. EXPERIMENTS AND DATASETS

A. Public ECG Databases

To evaluate the performance of the proposed ECGMatch
model, we conduct experiments on four well-known pub-
lic databases released on the PhysioNet website: The Geor-
gia 12-lead ECG Challenge (G12EC) Database [49], the
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Algorithm 1: ECGMatch Algorithm.
Input:

- Label dataset DB = {Xb, Yb} = {xi
b, y

i
b}NB

i=1 and unlabeled dataset DU = {Xu,−} = {xi
u,−}NU

i=1;
- Student model Ms and teacher model Mt; Feature bank Z and prediction bank P ; Batch size B

Output:Trained student model Ms;
1: pretrain the teacher model using (3) and DB ; compute the label correlation matrix Rb using (9);
2: for 1 to Epoch do
3: for 1 to iteration do //iteration = NB

B
## Mini-batch sampling and ECGAugment ##

4: sample labeled data {xb, yb} from DB ;
5: sample unlabeled data {xu,−} from DU ;
6: apply ECGAugment to xb and xu;
7: compute the supervised loss Lb using {xb, yb} and (3);

## Pseudo-label generation ##
8: update the feature and prediction banks using xu and Mt;
9: generate pseudo-labels ŷu for xu using (1);

## Pseudo-label refinement ##
10: compute the neighbor agreement αu of ŷu using (6);
11: compute the unsupervised loss Lu using (7)

## Label correlation alignment ##
12: compute the label correlation matrix Ru using (10);
13: compute the loss Lf using (11); compute the final loss L using (12);
14: update network Ms by minimizing L and stochastic gradient descent; update network Mt using (5).
15: end for
16: apply an early-stop strategy to avoid overfitting;
17: end for

Physikalisch-Technische Bundesanstalt (PTB-XL) database
[10], the Chapman-Shaoxing databases [50] and the Ningbo
databases [51]. The G12EC database contains 10,344 available
ECG recordings, each lasting between 5 and 10 seconds long
with a sampling frequency of 500 Hz. The PTB-XL database
contains 22,353 available ECG recordings and each recording is
around 10 seconds long at a sampling frequency of 500 Hz. The
Chapman-Shaoxing database consists of ECG recordings from
10,646 subjects, while the Ningbo database contains 40258 ECG
recordings. Each recording is sampled at 500 Hz, with a duration
of 10 seconds. Unfortunately, the aforementioned databases
employed different label annotation schemes and contained
different kinds of CVDs, which led to a substantial category gap
across databases. As a detailed discussion about the category gap
problem is beyond the scope of our study, we simply addressed
this issue by using a consistent label annotation scheme to
re-annotate the databases. In summary, we re-annotated the ECG
signals from the datasets by categorizing them into five classes
(Abnormal Rhythms, ST/T Abnormalities, Conduction Distur-
bance, Other Abnormalities, and Normal Signals). Note that the
ECG signals might belong to two or more categories simulta-
neously. Details about the annotation scheme can be found in
Appendix A, available online. To preprocess the signals, we first
normalized the length of the raw signals into 6144 samples in the
time domain by zero-padding. Next, we applied a bandpass filter
(1.0-47.0 Hz) to eliminate noise components within the raw ECG
recordings. Finally, the signals were normalized using z-score
normalization.

B. Implementation Details

In our implementation, we use the Attention-based Convo-
lutional Neural Network [52] as the feature extractor f(·) in
Fig. 1, where the dimension of the output feature z is 128.
The classifier h(·) is designed as 128 neurons (input layer)-128
neurons (hidden layer 1)-5 neurons (output layer)-Sigmoid ac-
tivation. The teacher network Mt = {ft, ht} is pre-trained on
the labeled sample set DB , and the parameters of the student
network Ms = {fs, hs} are initialized with those of Mt. In
the semi-supervised training process, the parameters of Mt are
updated by (5), with a momentum of 0.999. We use the standard
stochastic gradient descent (SGD) optimizer with a momentum
of 0.9 for parameter optimization. The initial learning rate is
set to 3e-2 with an exponential learning rate decay schedule as
η = η0

(1+γe/E)−p , where η0 is the initial learning rate, e is the
current training step and E = 5000 is the max training step. In
each mini-batch, the number of labeled samples B is 64 and the
number of unlabeled samples Bu is 448. The weights λu and λf

in (12) are searched within the range of [0,1.6] with a step of
0.4.

C. Experimental Protocols for Model Evaluation

To assess the robustness of the proposed model on multi-label
CVDs classification, we propose three distinct protocols for
model evaluation when taking into account various clinical
applications. 1) Within-dataset protocol. For model training
and evaluation, the training, validation, and testing data are
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TABLE II
COMPARISON RESULTS BETWEEN ECGMATCH AND THE STATE-OF-THE-ART MODELS USING THE WITHIN-DATASET PROTOCOL

randomly sampled from one dataset in a ratio of 0.8 : 0.1 : 0.1.
Then, we split the training data into labeled and unlabeled data
in a ratio of 0.05 : 0.95. Finally, the average performance and
standard deviations of four datasets are computed across three
random seeds. 2) Mix-dataset protocols. In this scenario, we
randomly sample the training, validation, and testing data from
four datasets simultaneously in a ratio of 0.8 : 0.1 : 0.1. The
training data is split into labeled and unlabeled data in a ratio of
0.01 : 0.99. The average performance and standard deviations are
calculated across three random seeds. This protocol considers
a multi-center setting, where the training data contains samples
from different datasets (centers). 3) Cross-dataset protocols.
To evaluate the model performance on the unseen testing dataset
(s), we use three datasets for model training and validation and
reserve the remaining one for testing. For example, we can
reserve the G12EC dataset as the unseen test set and sample the
training (90%) and validation data (10%) from the remaining
three datasets (PTB-XL, Chapman, Ningbo). Only 1% of the
training data is labeled, while the remaining 99% is unlabeled.
We repeat the evaluation process until each dataset is used once
as the unseen test set and report the average performance and
standard deviations across three random seeds. This protocol
serves as an external validation of the proposed model, which
evaluates the model’s generalization ability across different in-
dependent datasets.

We evaluate the performance of various models using multi-
ple multi-label metrics including ranking loss, hamming loss,

coverage, mean average precision (MAP), macro AUC and
marco-Gbeta. It is important to note that lower values of ranking
loss, hamming loss and coverage indicate better performance,
while lower values of MAP, macro AUC and marco-Gbeta score
mean worse performance. More details about these metrics can
be found in [53]. The following section presents a comparison
between the proposed ECGMatch and the existing literature
based on the three experimental protocols and six evaluation
metrics mentioned above. As there is limited research on the
application of SSL for ECG-based multi-label classification,
we replicated several state-of-the-art (SOTA) models that were
originally implemented for image or text classification: Mix-
Match [4], FixMatch [5], FlexMatch [6], DST [54], Percent-
Match [41], SoftMatch [15], UPS [19]. We ensure consistency
across all compared models by employing identical backbones
and augmentation strategies (ECGAugment). We also use the
same set of common hyperparameters, such as learning rate
and batch size. For the model-specific parameters such as the
sharpen-temperature in FixMatch [5], we utilize the optimal
settings recommended by the referenced studies.

V. RESULTS AND DISCUSSION

A. Comparisons With State-of-The-Art Methods

The performance of different models on different protocols
is presented in Tables II, III, and IV. The results show that
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TABLE III
COMPARISON RESULTS BETWEEN ECGMATCH AND THE STATE-OF-THE-ART MODELS USING THE CROSS-DATASET PROTOCOL

TABLE IV
COMPARISON RESULTS BETWEEN ECGMATCH AND THE STATE-OF-THE-ART MODELS USING THE MIX-DATASET PROTOCOL

ECGMatch achieves the leading performance in all experi-
mental protocols, which demonstrates its superiority. For ex-
ample, the averaged performance of the ECGMatch is better
than the threshold-based SOTA models, such as FixMatch [5],
FlexMatch [6], DST [54], especially when the test data comes
from an unseen dataset. Specifically, the performance difference
between the ECGMatch and the other models in the cross-
dataset protocol is more distinct than that in the within-dataset
and mix-dataset protocols. This phenomenon suggests that the
NAM module is more efficient for pseudo-label refinement
in multi-label classification than fixed or dynamic threshold
strategies, especially on unseen datasets. Additionally, we notice
that the ECGMatch achieves better performance than Percent-
Match [41] and UPS [19], which are the latest models designed
for semi-supervised multi-label learning. This observation in-
dicates that capturing label relationships within the labeled
and unlabeled samples benefits multi-label classification, while
this property is ignored in the above two competitors. More
details about the contributions of each component are listed

in the next sub-section. In summary, the noteworthy improve-
ments in different protocols demonstrate the potential of the
proposed ECGMatch to be implemented in various clinical
applications.

B. Ablation Study

In order to quantitatively assess the contribution of different
modules in the ECGMatch, we successively remove one of them
and evaluate the model performance using the three established
protocols. Tables V, VI, and VII report the ablation studies on
different experimental protocols. 1) When the pseudo-label gen-
eration module is removed (λu = 0, (12)), the performance of
the proposed model decreases in all the experimental protocols,
which demonstrates the advantages of introducing pseudo-labels
for semi-supervised learning. For example, in the within-dataset
protocols (Table V), the hamming loss on the Chapman dataset
increases from 0.139 ± 0.002 to 0.163 ± 0.009 while the MAP
decreases from 0.775 ± 0.014 to 0.761 ± 0.010. Notably, as the
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TABLE V
ABLATION STUDY OF THE PROPOSED ECGMATCH (WITHIN-DATASET PROTOCOL)

parameter λu is set to zero, the following refinement module is
also disabled. 2) The significant negative effect of removing the
pseudo-label refinement module is observed in the results. In
the cross-dataset protocol (Table VI), the hamming loss on the
Chapman dataset increases from 0.219± 0.003 to 0.242± 0.007
while the MAP drops from 0.748 ± 0.004 to 0.732 ± 0.006.
This phenomenon indicates that increasing the importance of the
trust-worthy pseudo-labels in loss computation greatly enhances
the model performance. 3) Comparing the results with and
without the label correlation alignment module (λf = 0, (12)),
a significant performance drop is observed when the module is
removed. In the mix-dataset protocols (Table VII), the hamming
loss increases from 0.270 ± 0.001 to 0.282 ± 0.010 while
the MAP decreases from 0.658 ± 0.006 to 0.640 ± 0.010.
This phenomenon demonstrates the benefits of capturing the
correlation between different categories, which has also been
reported in other multi-label learning studies [43], [44], [46].

C. Comparison of Different Augmentation Strategies

In this section, we further investigate the effectiveness of
the ECGAugment module in ECG signal augmentation. Using
the aforementioned protocols, we compare the performance
of the ECGAugment with the fixed sequential perturbations
proposed in previous studies [18], [34]. Following their setups,
we apply two successive Gaussian perturbations to the ECG
recordings from a mini-batch for strong augmentation and a

single Gaussian perturbation for weak augmentation. The av-
eraged performance across four datasets is shown in Fig. 2,
where an obvious performance enhancement attributed to the
ECGAugment could be observed from the performance of dif-
ferent models. For the evaluation metrics where smaller is better,
the blue zones (ECGAugment) in the radar charts are surrounded
by the red zones (fixed sequential perturbations). Conversely,
for the metrics where greater is better, the blue zones cover the
red zones. These phenomena demonstrate the superiority of the
proposed ECGAugment in the downstream classification tasks.
In other words, it increases the sample diversity by enhancing
the randomness in data augmentation, which can improve the
model performance [29], [36], [55].

D. Statistical Analysis

To statistically analyze the performance difference between
the ECGMatch and other SOTA models, a commonly used
Friedman test and the post-hoc Bonferroni-Dunn test are em-
ployed. Following the pipeline of the aforementioned tests [56],
we use the performance of different models in the within-dataset
protocol and cross-dataset protocol for comparison. Table VIII
presents the Friedman statistics FF and the associated criti-
cal value for each metric (comparing models k = 8, datasets
N = 4). Based on the results (FF>3.2590), we can reject the
null hypothesis that the compared models show no significant
difference in performance at a 0.05 significance level. Then



ZHOU et al.: SEMI-SUPERVISED LEARNING FOR MULTI-LABEL CARDIOVASCULAR DISEASES PREDICTION: A MULTI-DATASET STUDY 3315

TABLE VI
ABLATION STUDY OF THE PROPOSED ECGMATCH (CROSS-DATASET PROTOCOL)

TABLE VII
ABLATION STUDY OF THE PROPOSED ECGMATCH (MIX-DATASET PROTOCOLS)

TABLE VIII
FRIEDMAN STATISTICS FF FOR EACH METRIC AND THE CRITICAL VALUE AT 0.05 SIGNIFICANCE LEVEL (THE NUMBER OF COMPARING MODELS k = 8 AND

DATASETS N = 4)

the post-hoc Bonferroni-Dunn test are applied to describe the
performance gap between the control model (ECGMatch) and
the other models. For each evaluation metric, we calculate the
average rank of all the models across four datasets and determine
the rank differences between the control model and the compared
models. Note that the top-performing model is assigned a rank

of 1, and the second-best model gets a rank of 2, and so on.
The control model (ECGMatch) is significantly better than the
compared model if their rank difference is larger than one critical
difference (CD=4.6592 in our experiment). Fig. 3 presents the
mean rank of different models on different evaluation metrics.
It is evident that the proposed ECGMatch ranks the best in
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Fig. 2. Performance comparison of two augmentation pipelines using radar charts. The vertices of the red zone denote the performance of the model with the
fixed sequential perturbations, while the vertices of the blue zone represent the performance of the model with the proposed ECGAugment.

Fig. 3. Comparison of ECGMatch against other compared models based on the Bonferroni-Dunn test (cross-dataset protocol). ECGMatch is deemed to have a
significantly better performance than one compared model if their average ranks differ by at least one critical difference = 4.6592, as denoted by the intersection
of the bar with the black lines.

terms of all the metrics and outperforms some competitors at
a 0.05 significance level, such as MixMatch [4], DST [54] and
SoftMatch [15]. In summary, these statistical results demonstrate
the superiority of the proposed ECGMatch.

E. Sensitivity Analysis

In this section, we use a grid-search method to investigate the
impact of varying hyperparameters on the performance of the
proposed model. For simplicity, we only focus on two critical
hyperparameters λu and λf in (12). Specifically, λu controls
the weight of the unsupervised binary cross entropy loss Lu,
while λf controls the weight of the label correlation alignment
loss Lf . In the grid search process, we adjust the values of
the hyperparameters and use different evaluation protocols to

evaluate the average model performance across four datasets.
First, we fix λu at 0.8 and adjust λf from 0 to 1.6 in steps
of 0.4. Then, we fix λf at 0.8 and adjust λu in the same
manner. As illustrated in Fig. 4, the performance of the proposed
ECGMatch in each evaluation metric is relatively insensitive
to the changes of the two hyperparameters, which suggests its
stability in clinical applications.

F. Effect of the Ratio of Labeled Samples

The performance of SSL models is influenced by the ratio of
labeled samples to the total number of training samples [4], [5],
[6]. We adjust the ratio during model training and investigate
whether ECGMatch can reduce the need for labeled samples
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Fig. 4. Average model performance in different protocols under varying hyperparameters.

compared to other models. For simplicity, we present the exper-
iment results of the cross-dataset protocol in Fig. 5. The results
of the other protocols can be found in Appendix D, available
online. Comparing the model performance under ratios 0.05
and 0.01, we can observe that ECGMatch achieves compara-
ble performance to other models across all six metrics while
reducing the required number of labeled samples by 5%. This
phenomenon validates the efficiency of the proposed ECGMatch
in reducing the requirement for human annotations during model
training.

G. Effect of Different Annotation Schemes

In this section, we conduct experiments using another anno-
tation scheme to further validate the superior performance of the
ECGMatch. Specifically, the scheme from the PTB-XL database
is employed for model training and evaluation. The scheme cate-
gorizes CVDs into four super-classes: Conduction Disturbance,

ST/T Abnormalities, Myocardial Infarction and Hypertrophy.
The recordings with sinus rhythm are classified as normal
recordings. Given that Myocardial Infarction and Hypertrophy
are predominantly present in the PTB-XL database [10], [49],
we conduct the within-dataset protocol to evaluate the model
performance on the database and present the results in Table.
IX. It can be observed that the proposed ECGMatch achieves
superior performance compared with the state-of-the-art models.
For example, ECGMatch increases the MAP from 0.688± 0.007
to 0.705 ± 0.002 and decreases the Ranking loss from 0.144 ±
0.007 to 0.130 ± 0.003. In Appendix E, available online, we
report the experiment results on the annotation scheme adopted
by Cinc2020/2021 challenges [49], [57], where the proposed
ECGMatch consistently performs better than other models.
Based on the aforementioned experiments, we can conclude that
the proposed ECGMatch achieves superior performance across
various annotation schemes, which demonstrates its robustness
in different CVDs prediction tasks.
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Fig. 5. Performance comparison of different models under various labeled sample ratios (cross-dataset protocol).

TABLE IX
COMPARISON RESULTS BETWEEN ECGMATCH AND THE STATE-OF-THE-ART MODELS USING THE WITHIN-DATASET PROTOCOL, UNDER THE ANNOTATION

SCHEME OF PTB-XL

VI. CONCLUSION

In this study, we point out three important real-world chal-
lenges in ECG-based CVDs prediction: 1) Label scarcity prob-
lem. 2) Poor performance on unseen datasets. 3) Co-occurrence
of multiple CVDs. To address the challenges simultaneously,
we propose a novel framework (ECGMatch) that combines
data augmentation, pseudo-label learning, and label correlation
alignment modules to formulate a unified framework. Further,
we re-annotate four public datasets and propose three practical
experimental protocols to conduct a multi-dataset evaluation of
the proposed model. Extensive experiments on three protocols
and four datasets convincingly demonstrated the superiority of
the proposed model against other SOTA models. We believe the
proposed ECGMatch can provide a reliable baseline for future
research on ECG-based CVDs prediction. However, the class
imbalance problem in the ECG datasets continues to pose a
significant challenge. Therefore, we advocate for future research
on this ongoing issue.
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