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ABSTRACT Traditional robotic arm path planning methods are mainly carried out in the tool center point
operation space, and frequently solve inverse kinematics problems, thus consuming a large number of
computational resources. In contrast, the use of positive kinematics for planning in joint space not only
enhances efficiency, but also provides analytic solutions with higher accuracy. In order to better cover the
environmental state space, this paper adopts the full-preserving experience preservation approach. In order to
realize fast and efficient sampling of high reward value experience, this study constructs an innovative hierar-
chical memory structure and eliminates the overfitting phenomenon that may be caused by biased sampling
through the Bias-Free strategy. Experimentally validated in the continuous path planning task of a textile
robot arm, the proposed hierarchical memory deep deterministic gradient strategy method (HM-DDPG)
demonstrates excellent performance and practicality in the textile robot arm path planning problem. This
method offers an efficient and robust solution for handling complex tasks with temporal dependencies,
paving the way for future innovations and applications in industrial fields such as textiles.

INDEX TERMS Continuous control task, deep deterministic policy gradient, path planning, positive
kinematics, hierarchical memory.

I. INTRODUCTION
The use of robotic arm in textile industry environments has
become a key technology, especially in the area of path plan-
ning. Path planning involves the generation of a trajectory
for the movement of a robotic arm from a starting point to
a target point, which is directly related to the efficiency and
safety of the operation. Effective path planning methods have
become critical as the textile industry continues to increase
the demand for high precision, high speed and complexity of
operations in complex environments.

The associate editor coordinating the review of this manuscript and

approving it for publication was Guilin Yang .

Conventional path planning methods mainly focus on Tool
Center Point (TCP) operation space and frequently solve
inverse kinematics (IK) problems, thus leading to a large
consumption of computational resources. This approach,
although effective in some cases, may encounter difficulties
in the complex and dynamic environment of textile robotic
arm. As deep reinforcement learning (DRL) has achieved
significant results in several fields, its introduction into textile
robotic arm path planning is expected to address some of the
challenges in traditional approaches, thereby improving the
overall performance of path planning. The ability of DRL to
generate more optimized paths by continuously learning and
adapting to the environment opens up new possibilities for
textile robotic arm path planning.
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Experience replay is an important component of DRL,
including experience retention and experience sampling.
Experience replay uses batch offline updates, which has
three advantages over online updates: 1) Experience reten-
tion allows experience to be learned repeatedly, avoiding
catastrophic forgetting; 2) The experience in the memory
has strong correlation in the time series, and sampling can
eliminate the correlation in the experience series and reduce
the variance of the gradient update; 3) The distribution of the
states in the memory changes with the optimization of the
strategy, and sampling can effectively smooth the data distri-
bution in the experience, avoiding the parameters from falling
into the local optimum, or even oscillating or diverging.

In path planning applications of DRL, the Experience
replay mechanism mainly involves two aspects: experi-
ence retention and experience sampling. There are two
modes of experience retention, first-in-first-out (FIFO) and
all-retention: the former deposits the interaction experiences
into a fixed-capacity experience pool and overwrites the
old data in a chronological order in order to mainly learn
the frequently occurring states under the current policy;
the latter preserves all the interaction experiences with the
environment and ensures that the distribution of the pooled
states extensively covers the environment state space, thus
increasing the diversity of the experiences. However, both
approaches face the problems of low sample utilization
and high computational overhead, which limit their appli-
cations in high computational complexity tasks. Meanwhile,
experience sampling methods include random sampling and
prioritized sampling: random sampling does not take into
account the priority of experiences, while prioritized sam-
pling selects each experience according to its priority, but
this tends to destroy the original distribution of the expe-
rience pool and increase the variance and instability of the
algorithm. Combining these factors, it becomes crucial to
design an Experience replay mechanism that can effectively
balance sample diversity, computational overhead, and algo-
rithmic stability.

And the reward setting is crucial for Agent’s exploration
in the environment. A well-set reward function can avoid
the situation where the Agent obtains sparse rewards during
exploration and fails to achieve the desired goal. For the task
of trajectory planning in the robotic arm scenario, the agent
must discover a long list of ‘‘correct’’ actions in order to
generate positive rewards, which causes very large reward
fluctuations, resulting in the learning algorithm taking a long
time to converge or even failing to converge.

The aim of this study is to provide a data-driven approach
to robotic arm joint space path planning. In order to achieve
fast and efficient sampling of high-reward-value experiences,
we construct an innovative hierarchical memory structure
by dividing the original memory into high-reward and low-
reward values through our hierarchical strategy, adjusting the
ratio to allow it to prioritize sampling of the high-reward
values during the initial learning, and then adjusting the
sampling ratio to achieve unbiased sampling through the

Bias-Free strategy. Further, since the state-action distribution
in the FIFOmemory approximates the state distribution in the
current strategy, which does not cover the environment state
space well and the overall explorability is weak; while the
state distribution in the full-preservation memory can cover
the environment state space better, this paper designs a strati-
fied full-preservation memory, which ensures the diversity of
experience and improves the sampling efficiency.

The main contributions of this paper are as follows:
(1) Path planning for robotic arm in conjunction with pos-

itive kinematics;
(2) A fully-preserved hierarchical memory is used to store

experience samples and classify experiences based on the
reward values in the samples, which solves the learning inef-
ficiency caused by sparse rewards;

(3) Sampling the hierarchical memory by Bias-Free strat-
egy for network parameter update of the deep strategic
gradient algorithm to avoid overfitting;

(4) Experiments are conducted in a physical simulation
scenario of a textile robotic arm, and the results show
that compared with the baseline (randomly sampled DDPG)
algorithm, the hierarchical empirical pooled deep determin-
istic gradient policy method (HM-DDPG) proposed in this
paper can achieve better experimental results, and is also
compared with the Soft Actor-Critic (SAC) and the proximal
policy optimization (PPO) algorithms are compared to further
prove the effectiveness of the proposed algorithm in this
paper.

The structure of this paper is as follows: Section II presents
a review of related studies on robotic arm trajectory planning
methods. Section III introduces the foundational knowledge
of the DDPG algorithm. Section IV defines the robotic
arm trajectory planning task. Section V provides a detailed
description of the algorithm. Section VI involves experimen-
tal validation and analysis. Finally, Section VII concludes
the paper.

II. RELATED RESEARCH
Since the last century, the research on robotic arm trajec-
tory planning has made remarkable progress. As early as in
the 1980s, scholars proposed a method of trajectory plan-
ning using the cubic polynomial method in joint space [1].
Subsequently, Lin et al. experimentally proved the effective-
ness of the cubic spline method for trajectory planning in
joint space [2]. Since then, higher-order trajectory planning
methods have emerged. For example, in 1987, Thompson and
Patel proposed a method for local modification of trajectories
using the B-spline method, which is highly efficient and
occupies less computational resources [3]. Based on this, the
development of the five-times B-spline function realizes the
control of the trajectory starting and ending velocities [4].
Up to this point, more methods for trajectory planning of

more complex robotic arm tasks have emerged. For exam-
ple, in 2017, the A∗ algorithm was used by Italian scholars
to realize the shortest path trajectory planning for a multi-
degree-of-freedom robotic arm [5]. In 2019, the improved
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A∗ algorithm was applied to the trajectory planning of a
redundant robotic arm [6]. In terms of robotic arm obsta-
cle avoidance, the Rapid-exploration Random Tree (RRT)
algorithm has been proved to be very effective [7], [8]. RRT
and its improved algorithms can be applied to the task of
robotic arm obstacle avoidance planning for a variety of
complex scenarios by exploring them in unstructured envi-
ronments. For example, in 2006, RRT combined with an
improved inverse kinematics solution method contributed
to the obstacle avoidance capability of a robotic arm in
the action space while performing the task of grasping
an object [9], and in 2020, an improved RRT method
was used for obstacle avoidance path planning of a snake
robot [10].
In recent years, DRL as a method with exploration and

learning ability, has been widely used in fields such as robotic
arm control. However, DRL algorithms have many parame-
ters and are difficult to tune [11], and there are problems such
as low efficiency, high loss, not easy to model, and difficult
to initialize the environment in physical training. There are
large differences between simulation and the real world, and
it is necessary to migrate the strategies in simulation to the
real world, which brings some challenges to the applica-
tion of reinforcement learning in the real world [12], [13].
In addition, today’s DRL algorithms generally perform path
planning for robotic arm in the operation space, which still
requires the use of corresponding inverse kinematics com-
putational methods. Today, scholars are still looking for
effective methods to solve the above problems.

Mahmood et al. in 2018, while studying the problem of
continuous control of robotic arm, proposed the promis-
ing application of model-free reinforcement learning [14]
and used various algorithms including Trust Region Pol-
icy Optimization (TRPO) [15], Proximal Policy Optimiza-
tion (PPO) [16], Soft Q-learning [17], and Deep Determinis-
tic Policy Gradient (DDPG) [18]. They successfully realized
the motion control of a 6-DOF robotic arm and conducted
two types of experiments for the above four methods: 1) con-
trolling some of the joints of the robotic arm to make the end
of the robotic arm reach the target point, and 2) controlling
all six joints to make the end of the robotic arm reach the
target point. The results show that the fewer the controllable
degrees of freedom, the better the learning results of the DRL
algorithm. In other words, the more complex and structured
the robotic arm’s degrees of freedom are, the less likely the
DRL algorithm is to learn an appropriate strategy.

DRL has also been studied in flexible robot control prob-
lems. For example, in 2021, American scholars [19] used
five state-of-the-art DRL algorithms, including TRPO, PPO,
DDPG, Twin Delayed DDPG (TD3) [20], and Soft Actor-
Critic (SAC) [21], on the Elastica robot to successfully realize
the soft robot control of the soft robot. The research team
designed four scenarios to discuss the application of DRL to
the distributed dynamic control of soft robots. The algorithms
were able to reach convergence after 10 million training
sessions.

Overall, DRLwith its mechanism of exploration and learn-
ing, offers a wide range of applications for solving various
problems such as robotic arm control. However, current
research still faces some challenges, such as the large num-
ber of parameters, the difficulty of tuning parameters, and
the problem of attrition in physical training. Future research
needs to continue to explore effective methods to address
these issues so that DRL can realize greater potential in
practical applications. In addition, combiningDRLwith other
advanced algorithms to improve the control performance of
robotic arm in complex scenarios will be an important direc-
tion for future research.

III. BASIC GENERAL KNOWLEDGE
A. MARKOV DECISION PROCESS
Markov decision process (MDP) is the cornerstone of
reinforcement learning, in which the interaction between
reinforcement learning and optimal policy solving can be
expressed in the form of probabilistic and mathematical
formulas. MDP is a mathematical model of a sequential
decision-making process, which can be represented by a
quintuple (S,A,P, r, γ ) The policy of the MDP model π is
a state-to-action mapping that gives a probability distribution
for each action in the set of actions based on the current state.

The Agent interacts with the environment according to
its policy, generating a series of interaction sequences. The
Agent then gathers experience from the interaction sequences
and uses this experience to optimize its strategy with the goal
of maximizing the expectation of cumulative returns, i.e.,

R =

T∑
t=0

γ tr t (1)

where r is the reward value at round t , and γ represents the
impact of future present decisions, i.e., the attenuation factor
of the reward at each step that determines the long term of the
gaze. After many iterations, the intelligent body can learn the
optimal strategy to accomplish the corresponding tasks.

B. EXPERIENCE REPLAY
It is well known that DRL updates the policy network and
the value network based on experiences collected from the
environment. However, this process faces two main prob-
lems: first, the experiences are discarded as soon as they are
used, which leads to their inefficient utilization; second, there
are non-smooth distributions and strong correlations between
the experiences, which make it difficult for the algorithms to
converge stably during the training process.

To solve these problems, Mnih et al. introduced an expe-
rience replay mechanism in the DRL algorithm [22]. The
experience transitions collected by the Agent are not directly
used for training, but are stored in an experience buffer. Then,
a certain number of experience transitions are extracted from
the experience buffer for training by random sampling. The
advantage of this approach is that the correlation between the
experience transitions is eliminated, resulting in a smoother
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distribution of the data, which improves the efficiency of the
utilization of the experience transitions.

C. DDPG ALGORITHM
The DDPG algorithm [18] is based on an Actor-Critic archi-
tecture that parameterizes a Critic function, respectively
Q(s, a) and an Actor function µ(s|θ). The structure of the
DDPG network is shown in Fig. 1, where first, actions are
selected and rewarded through the policy network and trans-
ferred to the next state through state transfer. Second, the
experience tuple is saved in the Experience replay buffer.
Third, the experience is extracted from the Experience replay
buffer for training. Fourth, the Q network is updated. Finally,
the strategy network is updated.

FIGURE 1. DDPG algorithmic framework [18].

The Critic network is used to represent the distribution of
values of the action space in the state space and its parameters
are updated using the Q-learning algorithm. The loss function
and parameter updating process for the actor network is as
follows:

J (w) = minEπ

[
1
2
(r + γQ

(
s′, a′

)
− Q (s, a))2

]
(2)

∇wJ (w) = Eπ

[(
r + γQ

(
s′, a′

)
− Q (s, a)

)
∇wQ (s, a)

]
(3)

w = w+ δw∇wJ (w) (4)

The Actor network deterministically maps the current state
to a specific operation that updates its parameters using
a deterministic policy gradient algorithm. The process of
updating the parameters of the Actor function is as follows.

J (θ) = maxEπ [Q (s, µθ (s))] (5)

∇θJ (θ) = Eπ

[
[∇aQ (s, a)]a=µθ (s) ∇θµθ (s)

]
(6)

θ = θ + δθ∇θJ (θ ) (7)

The target network is updated by replicating the original
network, which contains the delay factor ϕ:

w′
= ϕw′

+ (1 − ϕ)w′ (8)

θ ′
= ϕθ ′

+ (1 − ϕ) θ ′ (9)

Since the actor function represents a deterministic strategy,
the Agent will only take certain actions based on the current
strategy when interacting with the environment, which will
inevitably lead to insufficient exploration of the environment.

Often, one improves the exploratory power of an actor
model by adding Ornstein-Uhlenbeck (OU) noise to the orig-
inal action. OU noise can be used to simulate time-dependent
noise data as follows:

dxt = θou
(
µou

− xt
)
dt + σ out dWt (10)

where xt is the noisy data to be generated, and µou is the
expected value of the random variable, and Wt is the ran-
dom variable generated by the Wiener process, which can be
replaced by a simple random function. θou and µou are the
parameters in the stochastic process, given before the exper-
iment. The pseudo-code of DDPG is shown in TABLE 1:

IV. ROBOTIC ARM TRAJECTORY PLANNING
TASK DEFINITION
The goal of the trajectory planning task of the robotic arm
is to obtain an optimal policy, denoted as π∗, by which
this strategy can generate more appropriate path solutions
in various tasks involving path planning (e.g., grasping an
object up and placing it at a certain place). Such tasks have
a Markovian nature and can be solved by DRL, and at the
same time, this Markovian nature simplifies the modeling
and solving of the problem, which enables DRL algorithms
to efficiently learn and generate optimal trajectory planning
policies. In practice, in order to use DRL algorithms for robot
trajectory planning, it is first necessary to determine the input
information required by the algorithms, i.e., state values and
action values.

To ensure that the DRL algorithm is applicable to different
robots and end-effector, the intelligences need to acquire the
following key information when observing the environment:
1) the state of the robot’s joint corners; 2) the state of the
end-effector; and 3) the relative relationship between the
end-effector TCPs and the target object, including informa-
tion on the position and attitude. In this model, the state st is
defined as:

st= [TCP,A, S,Done] (11)

where TCP =
[
Tx ,Ty,Tz

]
is the absolute position of the end-

effector (global coordinate system).A is a vector consisting of
each joint angle Ai of the robotic arm at the current moment t .
S = [1x, 1y, 1z, 1α,1β, 1γ ] represents the position and
attitude offset between the end-effector and the target loca-
tion. Done is a Boolean-type value that takes the value of 1 if
the end-effector has arrived at the target object, and 0 if it still
has not.
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TABLE 1. Implementation of DDPG algorithm.

In order to adapt to different robots and end-effector, the
actions in the DRL algorithm at is defined as the amount
of translation and rotation of the end-effector that is used
to adjust the position and attitude of the robot to achieve a
specific task or reach a goal. It is defined as:

at=[δx, δy, δz, δα, δβ, δγ ] (12)

where δx, δy, δz represent the distance moved from the center
point of the tool in the Cartesian 3D coordinate system, and
δα, δβ, δγ denote the amount of change in the Tait-Bryan
angle, respectively. The process of trajectory generation,
although it is possible to derive actions from trajectory

changes at the end of the robot, this approach is still accompa-
nied by two main challenges. First, by means of Eq. (12) the
guided actions induce a continuous evolution of the position
and attitude of the TCP at the robot’s end to form a smooth
motion path. This strategy allows the intelligence to plan
the task path independently, but relies on a complex inverse
kinematics solution when transforming the Operation Space
into the Joint Space. For robots with six degrees of freedom
or less, mapping the planned trajectory to continuous joint
angle variations is difficult; and when dealing with redundant
robots, the inverse kinematics solutionwill become extremely
cumbersome. Second, the approach of using direct rotation of
the end TCP to plan the pose may suffer from Gimbal Lock
phenomenon, which results in the loss of rotational flexibility
in a certain direction.

In order to construct the planning of the robot’s task trajec-
tory based on positive kinematics, in this paper, the control
is performed directly in the joint space, and the action is at
defined as:

at = [1a1, 1a2, . . . ,1ai] (13)

where 1ai represents the relative amount of change in the
angle of each joint controller (e.g., servo motor). In the
framework of this study, we control the amount of rota-
tion of each joint, i.e., the increment of the joint angle
1ai (i = 1, 2, . . . , n), to realize the robot’s path planning.
This approach allows the intelligence to fine-tune the robot’s
joint angles based on the current state and strategy, thus
inducing small translations and rotations of the end TCP.
Since the exact values of the individual joint angles are
known, we can uniquely determine the position and attitude
of the TCP through the positive kinematics of the robot.

V. DEEP DETERMINISTIC POLICY GRADIENT METHOD
BASED ON HIERARCHICAL MEMORY STRUCTURE
A. FULL RESERVATION EXPERIENCE
In DRL, Experience Replay is a key mechanism, and there
are two mainstream strategies, FIFO and Full Retention. The
FIFO strategy stores experiences in a fixed capacity buffer
and gradually replaces old experiences in the order of genera-
tion time. This approach focuses on frequently accessed states
under the current policy. Comparatively, the Full Retention
strategy stores all experiences generated from interactions
with the environment, thus achieving comprehensive cover-
age of the entire state space and a high degree of experience
diversity.

T De Bruin et al. proved that algorithms incorporating
different ways of experience retention have significantly dif-
ferent returns in different tasks [23], i.e., experience retention
has an important impact on algorithm performance. It also
proved experimentally that the size of the memory is an
important parameter of experience retention [23], and the
state distribution of the memory tends to have different distri-
butions depending on the size of the memory. Full retention
can be regarded as a special case of FIFO, and the two are
equivalent when the memory is large enough.
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To further explore the performance differences between
these two strategies, this study conducted an experimental
comparison on the MountainCar-v0 and Acrobot-v1 tasks in
the Gym environment. It is worth noting thatMountainCar-v0
is a discrete state space task while Acrobot-v1 is a continuous
state space task. The experimental results are shown in Fig. 2,
where DQN+FIFO denotes deep Q-network combined with
first-in-first-out experience replay, and DQN+FULL denotes
deep Q-network combined with full retention experience
replay. In the MountainCar-v0 environment, the FIFO strat-
egy outperforms the full retention strategy. However, in the
Acrobot-v1 environment with continuous state space, the
full retention strategy performs even better. This further
emphasizes the superiority of the all-retention strategy in
continuous state space, especially in scenarios that require a
high degree of experience diversity and comprehensive state
space coverage.

FIGURE 2. FIFO and full retention of experience put back on the classic
control task returns.

This study employs a full retention strategy, a decision
based on several key advantages. First, the full retention
strategy provides a richer training dataset by providing more
comprehensive coverage of the state space. Second, by retain-
ing all experiences, the strategy is able to learn from diverse
states and actions, thus enhancing the generalization ability
of the model. Finally, by including all possible states and
actions, the full-preservation strategy reduces the instability
caused by ignoring certain rare but important states.

B. HIERARCHICAL MEMORY STRUCTURE
The offline learning goal of DRL algorithms is to elimi-
nate the temporal correlation between sample data before
and after network parameter updates [24]. To achieve this
goal, many algorithms such as DQN, DDPG, TD3, SAC,
etc. introduce an memory to store limited historical empirical
data (st , at , rt , st+1). These memories operate according to
the first-in-first-out (FIFO) principle, where the earliest saved
data are replaced by new empirical data when the data reaches
the capacity limit. However, these algorithms usually use
random uniform sampling, which ignores the importance of
sample data and thus reduces the learning efficiency.

Prioritized Experience Replay (PER) attempts to address
this problem by preferentially picking data with large TD
differences for sampling, especially in the case of sparse
rewards [25]. However, when the rewards are thicker, the
effect of PER is limited and does not even significantly
improve the performance [26]. In addition, the computation
of TD difference involves the current reward and the target Q
value, which increases the computational complexity.

The core goal of DRL is to maximize the cumulative
reward. Thus, in the early stages of training, when Actor and
Critic’s network parameters are not perfect, highly rewarding
sample data is indeed more helpful for intelligences to find
higher cumulative rewards. This observation highlights the
importance of sample data, especially when the memory
contains a large amount of undesirable data. Highly reward-
ing sample data has the potential to drive intelligences to
more successful experiences, thus providing a more efficient
learning path.

In order to utilize the experience at different stages of
the training process more rationally and to improve the
convergence speed and performance of the driving strategy,
this paper proposes a novel hierarchical memory structure,
as shown in Fig. 3 shown. We design an experience separa-
tionmechanism that distinguishes between high reward-value
experiences and low reward-value experiences and stores
them in the Priority Experience Buffer (BPri) and the Sec-
ondary Experience Buffer (BInf ), respectively, and both
experience pools follow the all-retention principle.

This is crucial for convergence because a well-trained
model is always updated by previous successes, which can
lead to greater robustness and flexibility in most states
encountered by the intelligence. In short, what starts out
as an attempt to speed up the training process fails when
the model tends to converge. Therefore, in this paper,
we design a mini-batch sampling strategy that tends to be
unbiased sampling, where each small batch of experience
used for training is selected in different proportions from
the pool of prioritized experience and the pool of secondary
experience.

C. BIAS-FREE STRATEGY
The hierarchical memory structure addresses a key issue: how
to effectively utilize high-reward data to facilitate the learning
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FIGURE 3. Network structure of hierarchical memory depth deterministic
policy gradient algorithm.

of intelligences without falling into overfitting. Although the
sampling of high-reward data is beneficial to enhance the
learning speed, sampling high-reward data throughout will
lead to model overfitting [27]. Therefore, this paper also
designs a Bias-Free strategy to balance the sampling ratio
of high and low reward data, so that the algorithm gradually
shifts from biased sampling at the beginning of training to
unbiased sampling.

At the beginning of training, the Bias-Free strategy tends
to sample high-reward data from the prioritized memory
to quickly improve the smart body strategy. As training
advances, the strategy gradually increases the proportion of
sampling low-reward data from the secondary memory to
avoid overfitting and ensure global optimization. Assume that
the total capacity of the full memory is Ntotal , where the
number of high-reward data is NPri and the number of low
reward data is NInf which satisfies Ntotal = NPri + NInf .

In general, when training DRL models, a small batch of
data is usually randomly drawn from the memory with a total
capacity of N . While the Bias-Free strategy draws from the
prioritized memory and the secondary memory with capacity
of N −N1 and N1 of the experience memories as the sampled
data for extraction. Where N1 the value of the Bias-Free
policy grows logarithmically from 0 until it reaches the upper
limit N1max this approach leads the algorithm to perform
biased sampling while learning, which in turn leads to the
overfitting problem, so we restrict Eq. (14) to the condition
that the algorithm gradually transitions from biased sampling
to unbiased sampling:

N1max

N
=

NInf
Ntotal

(14)

This Bias-Free strategy works through biased sampling in
the early and middle stages of algorithm training to rapidly
improve the performance of the intelligences with the help of
highly rewarded data and increase the experience of success.
As training progresses, the strategy gradually shifts to unbi-
ased sampling, ensuring that the algorithm stabilizes to reach
the global optimal solution.

The hierarchical experience pool library structure with the
pseudocode for the Bias-Free sampling strategy is shown
in TABLE 2. In this paper, we incorporate this approach
into the DDPG algorithm to form an innovative hierarchi-
cal empirical pooling Deep Deterministic Policy Gradient
(HM-DDPG) algorithm and demonstrate its potential and
efficiency in practical applications.

TABLE 2. Implementation of DDPG algorithm.

VI. EXPERIMENTATION
A. DESCRIPTION OF THE EXPERIMENTAL ENVIRONMENT
In this study, a set of highly accurate virtual simulation plat-
form is constructed on VREP platform, such as Fig. 4 shown,
the platform comprehensively demonstrates the configuration
of the simulation environment from multiple perspectives.
The right side of the robotic arm is equipped with a tabletop
on which two obstacles and a manipulable yarn cylinder
model are arranged. Correspondingly, on the right side, there
is an open working platform dedicated to precisely position
the yarn bobbin to the intended target. A beam hangs at the
rear of the environment, acting as an aerial support structure
whose presence clearly defines the no-go area for collisions.
Additionally, there is a humanoid model scattered through-
out the environment as a potential obstacle during mission
execution.

The simulation platform enables us to conduct large-scale
policy training, thus obtaining a rich and high-quality training
dataset that can be directly used for trajectory planning and
generation of real robots. More importantly, the simulation
system not only facilitates policy migration and safety con-
straints, but also takes into account a wide range of production
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FIGURE 4. Composition of virtual simulation platform.

scenarios and environmental variables in the simulation. This
feature allows us to provide more comprehensive and accu-
rate training data for the actual operating robots, and to
verify the robustness and reliability of the robots under a
variety of environmental conditions. The system also allows
us to pre-test and optimize safety and stability in a safe and
controlled virtual environment.

FIGURE 5. Continuous trajectory planning task for a textile robot arm.

B. MISSION STATEMENT
Fig. 5. depicts the continuous trajectory planning task of a
textile robotic arm in a virtual simulation platform. At the
start of the task, the robotic arm is located at and near the
initial position point A. A number of obstacles of different
sizes and dimensions are placed on the tabletop to the right
of the robotic arm, details of which will be further elaborated
in subsequent sections. In addition, there is a yarn bobbin on
the tabletop as a workpiece to be gripped and placed, which
is located over point B.

The process of gripping and placing the bobbin involves a
series of precise movements. First, the robotic arm actuator
needs to face down vertically, insert the claw into the cavity
in the center of the yarn bobbin and hold it open, then lift
it with the help of friction, and finally place it in a suitable
posture in the region of point C on the left platform. In order
to increase the generalization of the problem, only one target
yarn cylinder (directly below area 1) is placed in the virtual

simulation platform, but it can be placed in a different location
before each simulation to accommodate more possibilities.

In the process of moving from point A to point B, the
end-effector of the robotic arm needs to move a short distance
in the direction of the -x-axis, then move along the -y-axis,
then continue to move in the direction of the -x-axis and
approach the bobbin with a suitable attitude, and finally lift
the bobbin along the z-axis. During this process, if the robotic
arm moves directly from point A to point B, it will inevitably
collide with the beams in the environment.

Thus, the entire grasp-place task is carefully divided into
complete trajectories consisting of the following consecutive
trajectory segments:

(1) The yarn bobbin appears at an arbitrary position on
the table, and the end of the robotic arm TCP moves from
the initial position A along the trajectory segment 1 with a
suitable attitude to the preparatory position B. The point B
is located above the center point of the yarn bobbin along
the direction of the z-axis, and it may appear at an arbitrary
position in Region1.

(2) The robotic arm moves along the trajectory segment 2,
from the preparation position B to the placement position C
(which can be randomly specified in Region2) in a suitable
attitude, contracts the hand claw and places the yarn bobbin
on the platform.

(3) Reset and move from the placement position C to the
vicinity of the initial position A.

There is a temporal sequence of these three steps, which
together constitute the entire process of grasping-placing the
yarn cylinder, demonstrating the complexity and variety of
the task.

C. EXPERIMENTAL RESULTS AND ANALYSIS
All experiments were performed on a computer equipped
with AMD Ryzen7 3700X 8-Core Processor @ 3.60GHz,
NVIDIA GeForce RTX3080 Ti. The code compilation
environment was PyTorch 2.0.0 + cuda11.8 framework
with Python 3.8. the virtual simulation platform used was
V-REP PRO EDU Version 3.6.2. the hyperparameters of the
HM-DDPG training process were as follows Table 3 shown.

TABLE 3. Experimental parameter settings.

In order to verify the effectiveness of the proposed
algorithm in this paper, a robot grasping and placing task is

140808 VOLUME 11, 2023



D. Zhao et al.: Robotic Arm Trajectory Planning Method Using DDPG

FIGURE 6. Comparison of training effect of each algorithm.

TABLE 4. Experimental parameter settings.

designed in this paper, which consists of the following steps:
(1) moving from the initial position A to the preparatory
position B; (2) moving from the preparatory position B to
the placing position C; and (3) moving from the placing
position C back to the initial position A. The experimental
environment consists of the elements of obstacles, work-
pieces, and robots. At the beginning of each round, the
robotic arm stays at the initial position and its joint angle is
set as [0,0,0,-90◦,0,90◦,0]. In order to make the continuous
movements generated by the Actor stable enough, its output
movement value is limited to [-1.5◦,1.5◦] and the size of the
OU noise is limited to [-0.5,0.5] within the size of the OU
noise.

In this paper, average round steps, round rewards and
success rate are used as evaluation metrics to measure the
performance of different algorithms in accomplishing the
task [28].

In the experimental part, we used various algorithms as
comparison benchmarks. Among them, ORI stands for the

benchmark DDPG algorithm [18]; PPO refers to the Prox-
imal Policy Optimization (PPO) algorithm [16]; and SAC
is the Soft Actor-Critic (SAC) algorithm [21]. In addition,
HM denotes the DDPG algorithm with a hierarchical Mem-
ory structure. To further explore the effect of the proportion
of sampling from high reward intervals on the performance
of the algorithm, we also set up five variants, HM1 to HM5.
These variants are all based on the HM-DDPG algorithm,
but they fix the proportion of data sampled from the high
reward intervals during the training process. Specifically,
these proportions were set to 94%, 80%, 60%, 50% and 20%,
respectively. Fig. 6. shows the Average Episode Reward and
Average Episode Step for each algorithm during training.
Together, these two metrics provide a comprehensive view
to evaluate the performance of different algorithms in terms
of task execution efficiency and learning stability.

Table 4 demonstrates the success rate of each algorithm at
different training stages, which is defined as the ratio of the
number of successful rounds to the total number of rounds
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FIGURE 7. Performance comparison between DDPG and HM-DDPG for planning different trajectories.

in a given time interval. It can be observed that HM-DDPG
and its variants (HM1 to HM4) significantly outperform the

benchmark algorithm ORI in terms of success rate in the
early stages of training (rounds 1-500). This phenomenon

140810 VOLUME 11, 2023



D. Zhao et al.: Robotic Arm Trajectory Planning Method Using DDPG

FIGURE 7. (Continued.) Performance comparison between DDPG and HM-DDPG for planning different trajectories.

TABLE 5. Comparison of the performance of DDPG and HM-DDPG under different noise disturbances.

corroborates the role of highly rewarding experiences (stored
in the BPri in) facilitates in the early learning of the algorithm.
However, continued reliance on data sampling with high

reward intervals, i.e., local data-driven training, may lead
to model overfitting or convergence of locally optimal
solutions [29]. As a result, although HM1 to HM4 have
significantly higher success rates on the training set than ORI,
they fail to outperform ORI on the test set.

In contrast, the HM algorithm maintains a higher success
rate and achieves a faster convergence rate by implement-
ing a stratified sampling strategy in both the training and
testing phases. More importantly, after convergence, the HM

algorithm demonstrated a more stable and smoother trend of
round reward changes, while the other algorithms still exhib-
ited significant performance fluctuations. This observation
further confirms the effectiveness of the stratified sampling
strategy in promoting the global optimization and stability of
the algorithm.

In the comparison experiments of three mainstream DRL
algorithms, PPO, SAC, and DDPG, the experimental results
show that PPO and SAC outperform DDPG in terms of
convergence speed and final performance. However, it is
important to note that the model parameters of PPO and
SAC are relatively large, which leads to an increase in

VOLUME 11, 2023 140811



D. Zhao et al.: Robotic Arm Trajectory Planning Method Using DDPG

FIGURE 8. Anti-noise interference performance of HM-DDPG.

computational and storage overheads [30]. Moreover, due
to its deterministic policy structure, DDPG has lower over-
head in terms of model storage and deployment. Therefore,
DDPG is a more worthwhile choice in resource-constrained
scenarios.

As Fig. 7 demonstrates, HM-DDPG performs well in the
six-degree-of-freedom robotic arm continuous three-segment
trajectory planning task described in Section VI-B. Clearly,
HM-DDPG achieves faster convergence, lower training steps,
and higher reward gains in each subtask. The algorithm
demonstrates superior efficiency and stability in the training
phase, as well as a more refined action strategy. The changes

in its round rewards are also relatively smooth with limited
fluctuations. Notably, among the three trajectory segments,
Trajectory 1 and Trajectory 3 showed significant fluctua-
tions in their round steps due to higher task complexity.
Further observation reveals that compared to the baseline
DDPG algorithm, HM-DDPG reaches convergence faster in
the training of each trajectory segment, thus realizing signifi-
cant savings in the total training time of the three consecutive
trajectory segments.

Finally, in order to demonstrate the robustness of the
HM-DDPG proposed in this paper under multiple noise dis-
turbances, it is compared with the DDPG and each algorithm
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is tested for 100 rounds under three different trajectories of
the task: (1) all the algorithms are tested under the orig-
inal OU noise, where the OU noise is within [−0.5,0.5];
(2) the original OU noise is replaced with another larger
OU noise with amplitude within [−1,1] (algorithms named
Di:OU and HMi:OU); (3) OU noise was replaced with Gaus-
sian noise with variance 0.5 (algorithms named Di:GS and
HMi:GS).

As Fig. 8 is the same as the Table 5 clearly demonstrate
that theDi:GS andHMi:GS algorithms are consistent with the
original model in terms of the average number of steps in each
step of the noise experiment. Notably, Di:OU and HMi:OU
require more time steps to complete the task compared to the
other algorithms and exhibit higher standard deviation (SD),
which reflects their larger fluctuations in the average number
of round steps. Further observations show that theHM-DDPG
algorithm is overall more resistant and robust to interference
than DDPG. This result supports the ability of the HM-DDPG
algorithm proposed in this study to maintain a high degree
of stability in the face of a variety of noise conditions, thus
adapting to the demands of multi-stage assembly tasks.

VII. CONCLUSION
In this research, we developed a novel Hierarchical Memory-
based Deep Deterministic Policy Gradient (HM-DDPG)
algorithm for complex scenarios in the textile industry,
incorporating positive kinematics for effective multi-segment
robotic arm trajectory planning. This algorithm innovatively
adopts a hierarchical memory structure to classify experience
data based on reward values, enhancing learning efficiency
and reducing overfitting. The Bias-Free strategy ensures
balanced sampling of diverse reward data during train-
ing, promoting comprehensive strategy exploration. Applied
to a challenging robotic arm grasp-place task, HM-DDPG
notably enhances task execution accuracy and efficiency.
Rigorous testing in a simulated environment demonstrated
the algorithm’s superiority in complex tasks, validating our
approach. The use of positive kinematics bypasses the intri-
cacies of inverse kinematics, ensuring mechanical feasibility
of trajectories and addressing the gimbal locking issue. Future
research may extend to multi-agent communication and col-
laboration, furthering the algorithm’s applicability.
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