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Smoothing Outlier Scores Is All You Need to
Improve Outlier Detectors

Jiawei Yang , Member, IEEE, Susanto Rahardja , Fellow, IEEE, and Pasi Fränti , Senior Member, IEEE

Abstract—We hypothesize that similar objects should have similar
outlier scores. To the best of our knowledge, all existing outlier
detectors calculate the outlier score for each object independently
regardless of the outlier scores of the other objects. Therefore, they
do not guarantee that similar objects have similar outlier scores. To
verify our proposed hypothesis, we propose an outlier score post-
processing technique for outlier detectors, called neighborhood av-
eraging (NA) for neighborhood smoothing in outlier score space. It
pays attention to objects and their neighbors and guarantees them
to have more similar outlier scores than their original scores. Given
an object and its outlier score from any outlier detector, NA modifies
its outlier score by combining it with itsk nearest neighbors’ scores.
We demonstrate the effectivity of NA by using the well-known
k nearest neighbors (k-NN). Experimental results show that NA
improves all 10 tested baseline detectors by 13% on average relative
to the original results (from 0.70 to 0.79 AUC) evaluated on nine
real-world datasets. Moreover, deep-learning-based detectors and
even outlier detectors that are already based on k-NN are also
improved. The experiments also show that in some applications,
the choice of detector is no more significant when detectors are
jointly used with NA. This may pose a challenge to the generally
considered idea that the data model is the most important factor.

Index Terms—Anomaly detection, NA, neighborhood averaging,
outlier detection.

I. INTRODUCTION

OUTLIERS are objects that significantly deviate from other
objects. Outliers can indicate useful information, which

can be applied in applications such as fraud detection [1], [2],
abnormal time series [3], [4], and traffic patterns [5], [6]. Out-
liers can also be harmful because they are generally unwanted,
can be considered errors, and may bias statistical analysis for
applications like clustering [7], [8]. Recently, outlier detection
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Fig. 1. Outlier scores are given by three detectors on the task of detecting
outlier eggs from a Robin bird. The results of Detector 3 can be obtained from
the results of Detector 2 using the proposed method as shown in Fig. 7.

has also been applied to manufacturing data [9] and industrial
applications [10]. For these reasons, outliers need to be detected.

Most outlier detectors calculate the so-called outlier score for
each object independently and then threshold the scores that de-
viate significantly from the others and label them as outliers [11].
To improve the results of baseline outlier detectors, ensemble
techniques have been developed to combine the outcomes of
multiple detectors to obtain a more accurate detector [12], [13].
An example is the average ensemble [1], which calculates the
average outlier score from multiple baseline detectors. However,
the existing ensemble techniques merely use more detectors but
do not attempt to ensemble outlier scores of neighboring objects.
Their success is also bounded by the reliability of the baseline
detectors.

The outlier score is a fundamental concept in all score-based
outlier detectors. All outlier detectors assume that outlier objects
should have significantly higher or lower outlier scores [1].
Except for that, no attention has been paid to the relationship
between objects and their outlier scores. Because outlier objects
are directly decided by their outlier scores, it is vital to under-
stand their relationship. In this paper, we address this problem.

In Fig. 1, all detectors successfully assign significantly higher
scores to the outlier eggs (red triangles) but cannot guide the
selection of the best detectors. We can see that egg A is distinctive
and has the highest score. Detector 2 and Detector 3 are therefore
better than Detector 1. Similarly, because eggs C, D, E, and
F have the same color and size, they should have the same
outlier scores. In this case, Detector 3 is better than Detector
2. Therefore, we can conclude that Detector 3 is the best among
the three by comparing the similarities between objects’ features
and their outlier scores.

Based on the case in Fig. 1, we conclude that similar objects
should have similar outlier scores. Although this could be seen
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Fig. 2. Difference between NA and ensembles. Ensembles use multiple
detectors’ prediction of the same object (on the bottom), while NA uses a
single detector’s prediction of the different (neighboring) objects (with a gray
background).

Fig. 3. Outlier detection process.

as obvious, none of the state-of-the-art outlier detectors uses
this. Many detectors simply make use of the objects’ neighbors
in the process of producing outlier scores (especially all k-NN-
based detectors). However, they do not consider the relationship
between objects’ features and their outlier scores. For example,
egg B (the red triangle in the middle) in Fig. 1 is much more
similar to other normal eggs C, D, E, and F compared to egg A.
It should therefore have a lower score than egg A.

To address this problem, we propose a novel neighborhood av-
eraging (NA) technique for neighborhood smoothing in outlier
score space. It post-processes the outlier score of each object
provided by any existing outlier detector by averaging it with
the scores of its neighbors. In other words, if an object is an
outlier, it is more likely that its near neighbors are also outliers.
In this case, the predicted score is enhanced. On the contrary,
if the neighboring objects have low outlier scores (predicted as
normalities), the score of the object is also reduced accordingly.

The beauty of NA is that it can serve as an additional and
independent post-processing technique that can be used after
any existing detectors. It is different from ensemble techniques
because rather than operating the results of multiple detectors
of a single object, NA operates the results of multiple objects
of a single detector as shown in Fig. 2. NA is conceptually and
fundamentally different from ensemble techniques. It is also
complementary to the ensembles, and these two approaches can
be used jointly. While ensembles cannot ensure similar objects
have similar outlier scores, NA can achieve this.

Fig. 3 demonstrates all the combinations that can be con-
structed from NA and the existing outlier detection methods,
including ensemble techniques. On the top, we have the typical
situation where datasetX is input into an outlier detector, which

produces scores that are further processed by a threshold compo-
nent to determine outliers. The second case is the multi-detector
ensemble where the dataset is input into two outlier detectors
to produce two separate scores. The scores are then combined
by the ensemble component before they are processed by the
threshold component to determine the outliers. The third case
is the proposed NA where the dataset is input into an outlier
detector, after which the scores are averaged before they are
processed by the threshold component. The last case is a com-
bination of the multiple-detector ensemble and NA, where two
outlier detectors produce scores that are first combined by the
ensemble and then post-processed by NA.

To summarize this paper’s contribution, (1) we assume that
similar objects in feature space should have similar outlier
scores. (2) We propose NA based on k-NN to post-process the
existing outlier scores to produce more reliable and consistent
scores for neighborhood smoothing in outlier score space. While
there are already many k-NN-based methods, they all operate in
the feature space. In contrast, NA operates in the score space by
modifying existing scores without any additional information
besides the neighborhood graph defined in the feature space.
The method is not limited to geographical data [14] or any
other single application, but it can be applied in any application
domain. It can improve any existing score-based outlier detec-
tors or ensemble techniques, and it is not limited to use with
k-NN-based outlier detectors. (3) We perform comprehensive
experiments showing NA’s superiority when jointly used with
existing outlier detection techniques.

We organize this paper as follows. In Section II, we recall
several state-of-the-art outlier detectors from several categories.
They later are used as our baseline detectors. In Section III, we
introduce the proposed hypothesis and NA. The experimental
setup is described in Section IV, and the results are shown in
Section V. In Section VI, we describe our conclusions.

II. OUTLIER DETECTORS

We next review the existing outlier detection methods. They
all analyze the relationship between the objects globally or
locally and calculate an independent outlier score to conclude
whether an object is an outlier. NA can be applied to all of these
as an outlier score post-processing technique, and to the best of
our knowledge, there is no similar technique in the literature.
All introduced detectors consider only the relationship between
objects’ features and, unlike our technique, they do not operate
on the outlier scores.

By constructing the reference set [1] for the calculation of out-
lier scores, outlier detectors can be grouped into global detectors
and local detectors. Global detectors use all objects and local
detectors use only a small subset of objects, such as k-NN, in
the dataset as a reference set. We next review 12 well-known and
state-of-the-art outlier detectors including deep-learning-based
detectors.

In distance-based outlier detectors [15], [16], [17], outlier
objects essentially should be located far away from other objects.
The detector proposed by Ramaswamy et al. [15] computes the
distance between an object and its kth nearest neighbor as the
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outlier score. This detector is referred to as KNN [15]. A variant
that evaluates the average distance to its all k neighbors was
proposed by Hautamäki et al. [16]. The method proposed by
Shekhar et al. [14] calculates the distance to the average of its
k-NN. It uses spatial features to determine the neighbors and the
other features for the outlier detection.

Instead of considering the distance, the detector proposed
by Knorr et al. [17] counts the number of objects within a
predefined distance threshold to the object. The count is used
as the outlier score. Outlier detection using indegree of nodes
(ODIN) proposed by Hautamäki et al. [16] is also based on the
k-NN graph. It uses the number of being other objects’ neighbors
as the outlier score.

Reverse unreachability (NC, as defined by Li et al. [18]), is a
detector based on representation. A given object is represented
by k-NN with a weight matrix corresponding to the contribution
from each neighbor. The negative weights carry information
on the possibility of being outliers. The occurrence of negative
weights is used as the outlier score.

Mean-shift outlier detection (MOD) [7], [8], [19] replaces
an object with its k-NN’s mean. This process is repeated three
times. The distance between the original object and the modified
object is the outlier score. This approach works well, especially
when a dataset contains a large number of outliers [7].

In density-based detectors [20], [21], outlier objects have
considerably lower densities than their neighbors. Local outlier
factor (LOF) [18] evaluates the density of an object relative to
that of its k-NN as the outlier score. In [22], LOF was reported
to be the best-known detector when compared to the other 12
k-NN-based detectors.

The minimum covariance determinant (MCD) [23] is based
on statistical analysis and is a robust estimator for evaluating
the mean and covariance matrix. It finds 50% of objects with a
covariance matrix having the smallest determinant. It then uses
the difference from an object to the center of the objects as the
outlier score.

Isolation-based anomaly detection (IFOREST, as defined by
Liu et al. [24]) builds trees over the dataset. It recursively
separates the objects into two parts with a threshold randomly
selected from each dimension. To remove the bias of random-
ness, it repeats the process several times. The average number of
splits to isolate an object from other objects is its outlier score.
An improved version of IFOREST can be found in [25].

Support vector machine (SVM) has been widely applied to
pattern recognition tasks. One class support vector machine
(OCSVM) [26] treats the objects as training data and creates
a one-class model. The distance to the trained model is then
used as the outlier score.

Principal component analysis (PCA) is an established data-
mining technique. PCA can extract the principal structure of the
data. The principal-component-analysis-based outlier detection
method (PCAD) [27] reconstructs objects using the eigenvectors
with reconstruction errors. The normalized errors are outlier
scores.

Angle-based outlier detection (ABOD) [28] calculates the
angles between objects. The variance of these angles is used as

Fig. 4. Define local variance in outlier scores: relative outlier scores do not
match the relative degree of being outliers.

the outlier score. It was viewed as overcoming dimensionality
better than distance-based measures in [28].

Multiple-objective generative-adversarial active learning
(MO-GAAL) [29] is proposed to overcome the sparsity of data
in high-dimensional space by generating additional data objects.
MO-GAAL first trains a neural network to classify the generative
and real-data objects. The outlier score is calculated as the
possibility of the object being real.

Copula-based outlier detector (COPOD) [30], [31] predicts
the tail probabilities of each object by constructing an empirical
copula. The probability is used as the outlier score.

To sum up, the above-mentioned detectors can be divided
into four categories: proximity-based detectors (KNN, ODIN,
NC, MOD, LOF, and ABOD), statistics-based detectors (MCD
and PCA), learning-based detectors (MO-GAA and SVM), and
ensemble-based detectors (IFORES and COPOD). Regardless
of the categories of detectors, outlier scores for different objects
have been generated independently without considering the
scores of other objects. This will lead to inconsistent scores
for similar objects, in which case NA will be needed to smooth
these inconsistent scores to improve detectors.

III. METHODOLOGY

In this section, we present the general framework of NA.
In general, outlier detectors utilize different assumptions to
produce outlier scores, such as distance or density. However, NA
does not set any requirements but assumes that similar objects
in the feature space should have similar outlier scores.

A. General Averaging Framework

The example in Fig. 1 shows that similar objects should have
similar outlier scores. Although Detector 1 can find the two
outliers (with a proper threshold), by plotting the outlier scores
in Fig. 4, we can see there is a local peak in the distribution of
the outlier scores, which does not match reality. Fig. 5 shows
that the local peak will cause either a false positive or a false
negative regardless of which threshold value is selected. It is
therefore necessary to remove the local peak.

In a recommendation system [32], a related hypothesis
for collaborative filtering techniques states that similar users
must/should have similar preferences. Both of these hypotheses
rely on defining the similarity of the objects in the feature
space. However, there is one important difference between them.
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Fig. 5. Visualization of how the local variance (local peak) affects the accuracy
of outlier detection. The blue line and green line have local variances. We can
see that no matter how we adjust the threshold value, the local variance affects
the accuracy by causing either a false positive or a false negative.

Fig. 6. Definition of the similarity of objects can be different with different
data. In feature space, it can be based on the distance of objects (Left); it can be
based on the nodes’ common neighbors (Middle); and it can be based on which
level the object is located in the structure (Right).

While collaborative filtering does not involve any outlier score
calculations, the definition of the outlier score is the key to outlier
detection.

Fig. 6 shows three types of similar objects. Various distance
metrics can be employed to define similar objects. For tabular
data, the Euclidean distance, Manhattan distance, or Cosine
distance can be utilized. Set data can be evaluated using the
Jaccard distance, while string data can be assessed using the
Hamming distance or Edit distance. Spatial data can be measured
using the Haversine distance, and graph data can be analyzed
using the Geodesic distance. In the case of a data type with mul-
tiple options for distance metrics, the selection of an optimized
distance metric may be determined based on the distribution of
the data and the patterns of outliers. However, due to constraints
on the length of this paper, a detailed exploration of this topic will
be deferred to future research. With the aid of distance metrics,
similar objects can be defined as objects with a sufficiently small
distance. Optionally, similar objects can be defined as objects
within the same partition after performing a data partition. The
accurate definition of similar objects has a direct impact on
the performance of NA. In cases where the boundary between
outliers and normalities is uncertain, the application of a smooth-
ing method may have a detrimental effect on performance. To
mitigate this issue, it is crucial to precisely define similar objects.

Algorithm 1: NA(X,S, k).

This can be accomplished by either defining objects within a
narrow region as similar or by considering objects that are in
close proximity to each other using various distance metrics.

B. Neighborhood Averaging (NA)

The proposed NA technique is simple: We take any baseline
outlier detector and use it to compute the preliminary outlier
score for every object. We then modify the objects’ outlier scores
in the neighborhood to be closer to one another to smooth the
baseline outlier detectors’ results. The main advantage of NA
is its applicability to any existing outlier detectors or ensemble
techniques. While we use k-NN defined by Euclidean distance
in this paper, it should be noted that any neighborhood model
can also be applied.

NA first defines an outlier score similarity function f(·) as
(1).

f(θi) =
∑
j

Wj(θi − Sj)
2, Xj ∈ ψk

i , Sj ∈ S (1)

where ψk
i is defined as the set containing Xi and its k-NN and

Wj is a weight satisfying
∑

j Wj = 1,Wj > 0. Then, NA finds
the θi such that the f(·) can be minimized as (2) and uses the θi
found as the revised outlier score for object Xi.

θi ← argmin
θi

f(θi) (2)

To obtain the θi to minimize the f(·), NA gets θi =
∑

j WjSj∑
j Wj

after solving the equation ∂f
∂θi

= 0. The weightWj is influenced
by two factors: the similarity of objects and the reliability of
the scores. When the scores are more reliable and the objects
are more similar, the weight Wj increases. Therefore, it is not
recommended to use the distances (or normalized within k-NN)
between objects as the weight values directly. To simplify the
solution, we can setWj =Wp for anyXj , Xp ∈ ψk

i . Finally, θi
can be calculated as (3). The solution with the optimal weights
can be future work as validating the concept of NA is more
important than focusing on developing a more sophisticated
solution.

θi =

∑
j Sj

k + 1
, Xj ∈ ψk

i , Sj ∈ S (3)

Algorithm 1 shows the pseudo-code and Fig. 7 demonstrates
NA’s two steps. Considering the red object (object B in Fig. 4),
NA first searches its k-NN and then calculates the average scores
of the neighbors. As a result, the peak in the outlier scores in
Fig. 4 has been removed. The visualization examples with and
without NA are shown in Fig. 8. We can see that the LOF detector
(with k = 40) falsely detects many boundary objects as outliers
(cross), but it succeeds after using NA.
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Fig. 7. Illustration of the averaging process: an object B from Fig. 4 (red), and
all the outlier scores. NA first finds the 2 nearest objects of B and then calculates
the average score within its neighbors as the revised score: (100+1+1)/3 ≈ 34.
As a result, the local peak has been successfully removed by NA.

Fig. 8. Visualization of the outlier scores (Top row) and the detected outliers
(Bottom row). The results at the left column and right column are given by the
LOF detector with and without NA, respectively (k = 40). LOF falsely detects
boundary objects as outliers (cross) as evaluated on a noisy A1 dataset [33],
while NA improves the result of the LOF significantly.

NA updates the outlier score of an object by the average of
the scores of its neighbors. Where the object is also a neighbor
of other objects, NA would be applied with multiple iterations,
and in each current iteration, only the score of the last iteration
is used to revise each object’s score. The iteration leading to
coverage of outlier scores of all objects in the dataset should be
avoided. More information about the effect and selection of the
iteration can be found in Section V-B.

C. Theoretical Analysis

Theoretical Analysis With the Bias-Variance Tradeoff: The
idea of analyzing the unsupervised outlier ensemble using the
bias-variance tradeoff, as proposed by Aggarwal [34], can be
employed to analyze NA. In this analysis, we make the assump-
tion that the ideal (ground truth) outlier score for a given object is
determined by an unknown function g(·), which can be estimated
using outlier detectors such as h(·). Both g(·) and h(·) produce
scores that satisfy the assumption of having a zero mean and
unit variance across all objectsXi ∈ X . The mean-squared error
(MSE) of the detector h(·), calculated over all the test objects in
Xi ∈ X , is defined as MSE = 1

N

∑N
i=1{g(Xi)− h(Xi)}2.

After introducing a random noise term εi (variable) to the
Xi, denoted as X̂i = Xi + εi, the score ofXi can be calculated
by ensembling the outlier scores of X̂i with different noise εi.
Consequently, the expected MSE over various εi is represented
by (4), whereE[·] represents the mathematical expectation. The
first and second components of (4) correspond to the (squared)
bias and variance, respectively. In other words, (4) is equivalent
to the expression E[MSE] = bias2 + variance. To minimize
the value of E[MSE], techniques can be developed to reduce
either the bias or variance component. However, NA focuses
on reducing the variance term by setting X̂i = Xi + εi = Xj ,
whereXj ∈ ψk

i (as defined in (1)). SinceXi andXj are close to
each other in terms of distance, the noise εi = Xi −Xj is also
small. Consequently, the difference E[h(X̂i)]− h(X̂i) is also
small, leading to a reduction in the variance component.

E[MSE] =
1

N

N∑
i=1

E[{g(Xi)− h(X̂i)}2]

=
1

N

N∑
i=1

E[{g(Xi)− E[h(X̂i)] + E[h(X̂i)]− h(X̂i)}2]

=
1

N

N∑
i=1

E[{g(Xi)− E[h(X̂i)]}2]

+
2

N

N∑
i=1

{g(Xi)− E[h(X̂i)]}{E[h(X̂i)]− E[h(X̂i)]}

+
1

N

N∑
i=1

E[{E[h(X̂i)]− h(X̂i)}2]

=
1

N

N∑
i=1

E[{g(Xi)− E[h(X̂i)]}2]

+
1

N

N∑
i=1

E[{E[h(X̂i)]− h(X̂i)}2] (4)

Theoretical analysis with a case: It is very challenging to
theoretically prove that the revised score calculated via (3) can
improve the outlier score reliability because the proof process
has to consider all the factors that affect the outlier detection.
These include the data dimensions, the data types, the number
of clusters, the properties of clusters such as shape, size, and
density, the outlier types, and the number of outliers. Therefore,
we give a theoretical analysis of how the revised score calculated
via (3) can improve the reliability of outlier scores by analyzing
an example as shown in Fig. 9.

Fig. 9 shows an example that the expected scores should sat-
isfy S1 > S2 > S3

∼= S4, while S4 > S1 > S2 > S3 is given.
Here, S1 is the outlier score for the outlier object (point B, red
triangle), S2 are the outlier scores for boundary objects (grey
circle, normalities), S3 are the outlier scores for insider objects
(blue circle, normalities), andS4 is the outlier score for normality
object (pointA, yellow circle). NA revises the scores so that the
revised score θn for normalities and the revised score θo for the
outlier satisfy θo > θn as shown in (5). Here, kni and koi are the
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Fig. 9. Example where a normality object (point A, yellow circle) has a larger
outlier score than that of an outlier object (point B, red triangle).

numbers of Si in the neighborhood of a normality object and
an outlier object, respectively. If the solution for (5) exists, the
neighborhood of point A should not contain the point B, while
the neighborhood of point B should not contain the point A, as
shown in (6). If the (6) holds, we can get kn1 = 0 and k04 = 0.
With (5), we can obtain ko2 > kn2 + (S4−S1)

S2−S3
as shown in (7).

Finally, the solution for θo > θn is the k satisfying klower <
k < kupper as shown in (6) and (7). Therefore, we can see that
NA works when some conditions hold. First, decided by the
upper bound kupper, point A and point B should have enough
distance so that their neighborhoods are not much overlapped.
Second, decided by the lower bound klower, the outlier score
difference between the point A and point B, namely the term
S4 − S1, should not be significantly larger than the outlier score
difference between the boundary objects and insider objects,
namely the term S2 − S3. If these conditions are not met, NA
may still work by requiring a larger k until more necessary
boundary and insider objects in other clusters can be included.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θo > θn

θn = 1
k

∑4
i=1 k

n
i Si

θo = 1
k

∑4
i=1 k

o
i Si

k =
∑4

i=1 k
o
i =

∑4
i=1 k

n
i

(5)

kupper = min{min{k|B ∈ ψk
n},min{k|A ∈ ψk

o}} (6)

klower = min

{
k|ko2 > kn2 +

S4 − S1

S2 − S3

}
(7)

D. Discussion

In this section, we discuss the proposed NA and conceptually
related techniques to show that the proposed NA is novel and
fundamentally different. One is the k-NN classifier, which also
looks for neighborhood objects when classifying objects. The
difference is that the k-NN classifier is a supervised method, but
NA is not.

Another related technique is the mean-shift technique [7],
which is also widely applied in image processing [35]. NA can
be repeated several times and the process iteratively replaces
an object’s outlier score with its neighbors’ mean scores. This
process is close to the mean-shift process [11]. The difference is
that mean-shift modifies the feature values of the objects whereas
NA modifies the outlier score values of the objects.

All k-NN-based outlier detectors are related as they use k-NN
as their key components. However, their usage of k-NN differs.
In general, all k-NN-based detectors use k-NN to produce the
outlier scores for the objects, as shown at the top of Fig. 10.
However, NA uses k-NN to revise the outlier scores produced

Fig. 10. Difference between k-NN-based detectors, ensembles, and NA: they
require different inputs and have different models.

by any detector, including detectors based on k-NN, as shown
at the bottom of Fig. 10. Using k-NN as a detector to produce
outlier scores is a well-known approach but it is novel to use it
as a post-processing technique for tuning the score.

It is worth noting that other detectors [7], [14], [16] also utilize
k-NN and the average operation. However, these are stand-alone
detectors and cannot be an add-on to existing detectors, while
NA is an add-on to other existing detectors and cannot be used
as a stand-alone detector.

Ensemble techniques are also related and have a combination
operation. Besides this commonality, NA has three fundamental
differences. First, ensemble techniques combine several poor
detectors to obtain a better one [1], as shown in the revised
outlier score in the ensemble in Fig. 10, while NA removes
local variance. Second, ensemble techniques need to compute
the outlier score for the same object multiple times, while NA
does not. Third, ensemble techniques cannot be applied to a
single detector, but NA can.

NA and ensemble techniques are not exclusive, and they can
be applied jointly. Their similarity is that both aim to smooth the
outlier scores; the ensemble operates across the detectors while
NA operates across the objects. Considering the two detectors
(the blue and green lines) in Fig. 5, ensemble techniques can
improve these two poorly performing detectors only when the
two peaks happen in the same location (objects) and with a
proper difference.

It is worthwhile to note that NA may be suitable for other
score-based data-mining tasks. This is because similar input
should have a similar output. If we extend the definition of en-
semble as the technique having the operation of score combina-
tion, we can identify several types of ensembles. These types in-
clude feature-based ensemble (feature bagging), detector-based
ensemble, parameter-based ensemble, and object-based ensem-
ble (the proposed NA). These ensembles should be applicable
to data-mining tasks other than outlier detection.

Recently, Ke et al. [36] proposed a method called group
similarity system (GSS) for unsupervised outlier detection and
Yang et al. [37] proposed a data pre-processing technique called
neighborhood representative (NR) to detect collective outliers
using exiting outlier detectors. GSS partitions the data into
non-overlapped groups and judges the groups as outliers by
considering the mean of the outlier scores of the objects in each
group. NR scores the representative objects sampled from each
group and judges the groups as outliers by considering the scores
of the representative objects in each group. NA is not used for
collective outliers but for individual outliers, making it different
from GSS or NR.



7050 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 11, NOVEMBER 2024

TABLE I
DATASET INFORMATION

TABLE II
AVERAGE AUC AND F1-SCORE FOR ALL DATASETS

IV. EXPERIMENTAL SETUP

We used nine public, real-world, semantically meaningful
static datasets, which can be found in UCI repository datasets
or [22]. The information in the datasets varies from 8 to 259.
They contain outliers ranging from 0.40% to 75.40% and have
objects ranging from 195 to 60,632 as summarized in Table I.
For preprocessing, all data were scaled by subtracting the mean
and dividing by the standard deviation for each attribute.

The outlier detectors’ performance was measured mainly by
the area under the receiver operating characteristic (ROC) curve
(AUC). The ROC curve was drawn by plotting the true positive
rate against the false positive rate over various threshold values.
The AUC was a single value ranging from 0 to 1. The bigger the
value, the better the performance.

While AUC measured the average performance, we also
tested the performance when a selected thresholding method
was applied. For the threshold component, we used the known
number of outliers in the dataset. This is known as the top-k
method. The result was measured by the F1-score, which was
the average of precision and recall. Precision is the ability to
minimize false positives and recall is the ability to find all the
positive samples.

For k-NN-based outlier detectors, we used the value of k,
which provided the best results when k ranged from 2 to 100.
Further discussion on the identification of the optimal parameter
k value for k-NN-based detectors can be found in this com-
prehensive survey [38]. The default parameters found in the
literature are used for the other detectors.

The proposed NA was tested with all values of k from 1 to
100. We used k = 100 as the default value. NA was iterated 10
times to study the effect of iterations.

V. RESULTS

A. The Overall Effect of NA

We varied the neighborhood size k in NA from 1 to 100 to
find the best results and compared them with the results obtained
using the default value k= 100. The average AUC and F1-score
results are summarized in Table II. The AUC results per dataset
are summarized in Table III. Based on the results, we can make
the following observations.

First, based on the AUC results in Table II, the proposed NA
significantly improved all the detection results. On average, all
the detectors evaluated for all the datasets improved by +0.04
(from 0.70 to 0.74) with the default k, and +0.06 with the best k.
We can make a similar observation about AUC for the F1-score.
NA improved all outlier detectors by +0.02 (from 0.73 to 0.75)
on average when using the default value of k, and by +0.03 when
using the best value of k.

Second, NA provided the most AUC improvement with the
NC detector, from 0.62 to 0.77. The most significant individual
improvement was +0.28 for HeartDisease and KDD-Cup99.
This observation is interesting, as NC was originally one of
the worst detectors. However, when used with NA, it became
competitive. This indicates that NC and NA utilize different
properties and are complementary. It also suggests that the
poorly performing detectors evaluated previously may have been
seriously underestimated.

Third, the default setting with k = 100 performed almost as
well as the best k. This shows that NA is robust on the choice of
the parameter k.

Fourth, as shown in the columns of data labeled original in
Table II, except MO_GAAL, without using NA the average AUC
of detectors has a range from 0.62 to 0.75. However, with NA, the
range becomes much smaller, from 0.75 to 0.79. This indicates
that when NA was not used, the choice of detector mattered, but
when NA was used it mattered less. This may pose a challenge
to the generally accepted idea over the decades that the data
model is the most important factor [1]. For MO_GAAL, the
ROC AUC is near 0.50, which is close to random guesses. This
may be because MO_GAAL needed more samples to train the
neural network.

In Table III, we can see that all detectors for all datasets im-
proved for both the default k and the best k. The only exception
is the result for Arrhythmia, which weakened by -0.02 when
using default k. Most datasets improved from +0.03 to +0.15
on average. The most significant individual improvement was
for HeartDisease, which was +0.17 on average. NA did not help
much with the datasets containing only a few outliers or when the
original detector already performed well. For example, MOD,
KNN, IFOREST, OCVSCM, and PCAD all achieved AUC =
0.99 for KDD-Cup99.

B. NA’s Effect on the Best Detector Per Dataset

Table IV provides a summary of the best detectors with
and without NA for each dataset. The impact of NA on the
performance of the best detector varies across three distinct
groups. The first group consists of datasets, such as Cardio. and
SpamBase, where the best detectors remain the same when NA is
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TABLE III
AUC IMPROVEMENT PER OUTLIER DETECTOR PER DATASET

TABLE IV
BEST DETECTOR WITH AND WITHOUT NA FOR EACH DATASET

used. The second group includes datasets like PageBlocks, Pima,
HeartDisease, and Parkinson, where the best detectors com-
pletely change when NA is applied. The third group comprises
datasets such as KDD-Cup99, Stamps, and Arrhythmia, where
the best detectors partially change when NA is utilized. These
findings suggest that there is no single detector that consistently
outperforms others, regardless of the presence of NA. This
observation aligns with the conclusion drawn by Aggarwal [1].

C. Effect of the Iterations

NA can be iterated several times. Next, we varied the
iteration parameter from 1 to 10 times to study its effect on
the result. The value iteration = 0 corresponds to the original
detector without NA. The average AUC results of all detectors
evaluated for all datasets, a selected detector (MOD), and a

TABLE V
AVERAGE AUC RESULTS FOR ALL DATASETS

selected dataset (HeartDisease) are summarized in Table V,
Table VI, and Table VII, respectively.

The average results in Table V show the first iteration achieved
the most improvement (+0.06). The second iteration achieved
further improvement (+0.01) but beyond that, the effect re-
mained rather small (≤+0.03). However, by applying NA for
multiple iterations the performance was improved from 0.70 to
0.79 AUC.

However, it has been observed that as the number of iterations
increases, the scores assigned to all objects tend to converge.
This convergence negatively impacts the performance of outlier
detection, as indicated by performance drop (NC) and fluctua-
tions (OCSVM). Achieving an optimal number of iterations is
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TABLE VI
AUC RESULTS OF MOD DETECTOR

TABLE VII
AUC RESULTS ON HEARTDISEASE DATASET

challenging in unsupervised learning. To mitigate this issue, it
is not recommended to iterate NA (number of iterations) exces-
sively. However, it is worth noting that a significant improvement
in performance is observed when using a single iteration for all
detectors, thus it is considered safe to use NA with a single
iteration.

The results for the individual datasets with MOD are reported
in Table VI. All the datasets evaluated with the MOD detector
were improved except Arrhythmia, which started to deteriorate
during the second iteration. This might have been caused by
the so-called curse of dimensionality in high-dimensional data,
as Arrhythmia has 259 dimensions, while all the other datasets
had 60 or fewer. Most other datasets were improved even when
they were iterated 10 times. Another exception was Pima, for
which the result started to deteriorate after the fourth iteration.
This indicated that the iteration parameter needed to be tuned
according to the datasets if desiring an optimal value. To be
conservative, we set the default value as iteration = 1 despite
knowing that some datasets, such as SpamBase and HeartDis-
ease, would benefit from more iterations.

The results for the individual detectors with HeartDisease
are reported in Table VII. It shows all detectors can benefit from
iteration = 2.

Drawing inspiration from the elbow method, which is a
visual technique for determining the optimal K in K-means
clustering, we can construct an iteration-mean-squared-error
(iteration-MSE) curve by plotting the iteration of applying NA
and the MSE between the outlier scores in the current and
previous iterations. The elbow point in this curve can potentially

TABLE VIII
AVERAGE AUC RESULTS FOR ALL DATASETS WITH K IN NA EQUALING TO K

IN K-NN BASED DETECTORS

serve as an indicator for identifying the optimal iteration. In
Fig. 11, we present the iteration-MSE curves for three detectors,
namely LOF, NC, and OCSVM, when tested with the Parkinson,
HeartDiease, and Spambase datasets. The elbow points in these
curves accurately correspond to the optimal iterations, which
typically fall within a range of three iterations. Even in the case
of OCSVM on the Spambase dataset, where the performance
of OCSVM deteriorates after five iterations, the elbow point is
observed to be around four, effectively capturing the trend of per-
formance change with increasing iterations. This demonstrates
the utility of the elbow point in the iteration-MSE curve as an
indicator for determining the optimal iteration.

To summarize, it can be determined that the ideal number
of iterations for applying NA is contingent upon the specific
dataset and detector employed. The elbow point observed in
the iteration-MSE curve may serve as a useful indicator for
identifying the optimal iteration. Nevertheless, we suggest a
conservative approach of utilizing a single iteration, as it strikes
a balance between performance and stability.

D. Effect of k

To study the effect of k in NA, we varied it from 1 to 100.
The average AUC values across all the datasets are shown in
Fig. 12. The results on a selected individual dataset (HeartDis-
ease) are also shown in Fig. 13. The value k = 1 corresponds to
the original detector without NA.

The results show that when increasing k, all detectors im-
proved and reached their best performance with k = 100. We,
therefore, recommend k = 100 as the default value.

NA is proposed as an independent component to improve any
single outlier detector. We notice that all k-NN-based outlier
detectors also need to select the value of k. We considered
using the same k value both for the baseline detectors and for
NA. We performed additional experiments with the k-NN-based
detectors. We varied k from 3 to 100 to find the best AUC.

The average results over all datasets are summarized in
Table VIII. They show that NA significantly improved the detec-
tors by +0.05 on average. Most improvement is achieved with
NC (+0.11). Further minimal improvements might be achieved
with some datasets if k was increased further. However, some
datasets do not have enough data to go much beyond 100, and
the results would eventually start to degrade. The main result
was that we can achieve good performance with rather small k
values.
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Fig. 11. Elbow points in the iteration-MSE curves for determining the optimal iteration of applying NA. The MSE at each iteration is normalized by dividing it
by the maximum MSE value. The AV G represents the average results of the three tested datasets.

Fig. 12. Average AUC results for all datasets with varying k.

Fig. 13. AUC results on HeartDisease with varying k.

E. Effect of the Neighbor Weight

The effect of weight in (1) is studied in this section. The Wj

corresponding to Xj ∈ ψk
i in (1) can be calculated by consid-

ering the distance between Xj and Xi, denoted as di,j . Hence,
Wj and the normalized Wj can be calculated as Wj =W ∗

j and
Wj =W ∗

j /
∑

cW
∗
c , Xc ∈ ψk

i , respectively. Here,W ∗
j = 1/di,j

when di,j �= 0 and W ∗
j = 1/γ when di,j = 0. γ can be γ =∑

c di,c, Xc ∈ ψk
i (denoted as Sum) or γ = max{di,c|Xc ∈

ψk
i } (denoted asMax). Hence, four ways of calculatingWj can

be obtained by considering the combination of normalization
and γ.

Fig. 14 shows the results of LOF detector tested with
the Parkinson, HeartDiease, and Spambase datasets.

NA_Weight_Max and NA_Weight_Max_Norm are
for Wj =W ∗

j and Wj =W ∗
j /

∑
cW

∗
c , Xc ∈ ψk

i with
γ = max{di,c|Xc ∈ ψk

i }, respectively. NA_Weight_Sum
and NA_Weight_Sum_Norm are for Wj =W ∗

j and
Wj =W ∗

j /
∑

cW
∗
c , Xc ∈ ψk

i with γ =
∑

c di,c, Xc ∈ ψk
i ,

respectively. The choice of the optimal weighting method
is contingent upon the specific dataset. It is observed that
all weighting methods yield substantial improvements in
the Parkinson and Spambase datasets compared to NA.
However, in the case of the HeartDiease dataset, only the
NA_Weight_Sum_Norm method demonstrates the ability
to enhance NA. Consequently, we recommend this method as
the default weighting approach. Further research on the various
weighting methods could be considered as a potential avenue
for future investigation.

F. Effect of the Distance Metric

The effect of defining similar objects using different distance
metrics, which is the core concept of NA, is studied in this
section. Fig. 15 shows the results of LOF (k=100) and OCSVM
detector tested with the Parkinson, HeartDiease, and Spambase
datasets. In the legend of Fig. 15, the letters E and V represent
fixing the distance metric to the Euclidean metric and varying the
distance metric among Braycurtis, Canberra, Chebyshev,
Euclidean, and Manhattan, respectively.

Several observations can be deduced from the results. First,
the LOF (V )_NA(V ) consistently exhibits superior perfor-
mance across various datasets. This suggests that the selection
of the distance metric can align with the requirements of the
detector, which relies on a distance metric to generate outlier
scores. Second, for the HeartDiease dataset, the choice of dis-
tance metric does not significantly impact the results. However,
for the Parkinson and Spambase datasets, the distance metric
has a substantial influence on the outcomes. This indicates
that the selection of the distance metric is contingent upon the
specific application. Third, the utilization of the Braycurtis,
Euclidean, and Manhattan distance metrics can enhance the
performance of both the LOF and OCSVM detectors across all
datasets. Based on the average results, namely AV G, the LOF
detector benefits the most from the adoption of theManhattan
distance metric, while the OCSVM detector experiences the
greatest improvement with the use of the Braycurtis distance
metric. Notably, the Euclidean distance metric brings about
equal enhancements for both detectors. This suggests that the
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Fig. 14. Impact of various methods weighting NA is studied using three different datasets. The average outcomes of these three datasets are denoted as AV G.

Fig. 15. Impact of various distance metrics on NA is examined using three distinct datasets. The average outcomes of these three datasets are denoted as AV G.
In the legend, the symbols E and V denote the fixed utilization of the Euclidean metric and the variable utilization of the distance metric, encompassing the
Braycurtis, Canberra, Chebyshev, Euclidean, and Manhattan metrics.

TABLE IX
AUC DIFFERENCE RESULTS FOR ALL DATASETS FOR AVERAGE JOINTLY WORKING WITH NA

choice of distance metric can be determined by the requirements
of the specific detector. In other words, the Manhattan and
Braycurtis metrics can be employed as practical solutions
for neighborhood-based and non-neighborhood-based detectors,
respectively. On the other hand, theEuclideanmetric can be uti-
lized for combining both neighborhood and non-neighborhood-
based detectors in an ensemble. Additional research on the
distance metric could be explored as a potential avenue for future
inquiry.

G. Complementary to Outlier Ensembles

Next, we tested the effect of augmentation on NA with an
existing outlier ensemble technique. We used the average ensem-
ble [1] method, with different baseline detector combinations.
Results are summarized in Table IX.

We can observe that the results of the outlier ensemble depend
on the quality of the individual detectors. The best results are
obtained by the combination of MOD and KNN, which reaches
0.75. Combining all 12 detectors would reach only 0.69.

When applying NA jointly with the outlier ensemble, we
observed the following. First, no matter which combination was
used, NA always improved the results of the ensemble. Second,
the best combination no longer depended on the quality of the
individual detector. The best combination (MOD and KNN) is
based on one of the weaker baseline detectors among those
tested. This combination with NA reached the overall best result
of 0.79, which was very close to the result (0.77) reached without
optimizing the parameter k. This indicates that NA provides a
strong complementary component to ensembles.

H. Complementary to NR

As in our previous work, NR was a data preprocessing method
to improve detectors, we wanted to know if NA as an outlier
score post-processing method could further improve NR. We
tested LOF, NR+LOF, LOF+NA, and NR+LOF+NA by setting
their parameter k to be the same value. The results with Parkin-
son, HeartDiease, and Spambase datasets were plotted in Fig.
16. From Fig. 16, we could observe that a relatively larger k
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Fig. 16. Experiment results of LOF, NR+LOF, LOF+NA, and NR+LOF+NA ranging k. NA is complementary to NR.

TABLE X
AVERAGE AUC IMPROVEMENT AND EXTRA COMPUTING TIME USING NA FOR

ALL DATASETS

was good when NR and NA were jointly used. NR+NA+LOF
could further improve NR+LOF 31% on average (0.88 versus
0.71 AUC) relatively as shown on the right of Fig. 16. It was
noteworthy that the performance of LOF on Spambase dataset
with 0.49 AUC was close to random guess, but when jointly
used with NR and NA, it could even achieve 0.81 AUC. Another
noteworthy finding was that the NR+LOF+NA approach exhib-
ited a performance exceeding 0.90 AUC for both the Parkin-
son and HeartDiease datasets, in contrast to the LOF method
which yielded AUC values below 0.70. This performance was
significantly superior to any previously reported results of un-
supervised outlier detectors in existing literature, as far as our
knowledge extends. To summarize, NA is complementary to NR
significantly.

I. Computational Complexity

NA requires O(NlogN) calculations using KD-tree in low
dimensions (D < 20) and Ball-tree in higher dimensions (D >
20) to find k-NN. However, since NA serves as a post-processing
step, we care more about its gain relative to its additional cost.
Table X shows the average extra computing time and the average
AUC improvement over all datasets.

Table X shows that the k-NN-based detectors need only 4%
extra time but can improve by 11% in AUC on average. Non-
k-NN-based detectors are usually significantly faster and need
2,543% extra time to reach an average improvement of 7% in
AUC. The main reason is that the k-NN-based detectors have
already calculated the k-NN, which NA can directly utilize.

J. Discussion and Limitations

Discussion NA is not meant to be a stand-alone detector;
rather, it is an add-on to any existing score-based outlier detector
used to enhance its performance as shown in the example in
Fig. 3. The add-on does not increase the complexity of k-
NN-based detectors as shown in Section V-E, but it can bring
significant improvement as shown in Section V-A. NA has only
one parameter k to tune, which is not sensitive (not oscillating)
to detectors or datasets, and it is easy to tune as demonstrated in
Section V-C. Hence, NA is very useful for practical applications.

Limitations One limitation of the method is the k-NN graph.
Some neighbors can be far away, and simple averaging may
not be the best solution. Possible alternatives could be to use the
medoid or the weighted average. Different neighbor graphs [39],
[40], [41] could also be used. Nevertheless, NA is already
successful and we leave these ideas for future work.

NA also has the same limitation as other distance-based
methods: its performance starts to degrade when the dimensions
are large, as shown in the 269-dimensional Arrhythmia dataset.
NA still improved but the performance started to degrade if
NA was iterated more than once. Such problems are common
for distance-based pattern recognition methods operating in the
raw attribute space. This is often referred to as the curse of
dimensionality.

VI. CONCLUSION

A novel post-processing technique called neighborhood aver-
aging (NA) for neighborhood smoothing in outlier score space
is proposed. The technique can be used to improve any existing
single outlier detector by smoothing its outlier scores. Simula-
tions showed that it significantly improved all 12 tested outlier
detectors including deep-learning-based detectors from 0.70 to
0.79 AUC on average. This has evidenced the importance of
neighborhood smoothing in outlier score space.

The technique does not require any complicated parameter
tuning and k is the only parameter when applying NA with a
single iteration. When used with ak-NN-based baseline detector,
we do not need to recalculate the k-NN and use the existing one
with the same k value as the detector. With non-k-NN-based
detectors, setting the value ofk=100 was shown to provide good
results for almost all datasets. It is worth noting that once NA
is applied, even a poorly performing outlier detector becomes
competitive. This can help practitioners as they have one less
design component to consider.



7056 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 11, NOVEMBER 2024

Outlier detection is an important topic in data mining. In
addition to its ability to detect outliers in static data, it can also
handle dynamic cases such as time series. Therefore, it is useful
for applications like audio and video content analysis. In general,
whenever similarity between objects can be properly predefined,
whether static or dynamic, the concept of the neighborhood
can be applied. Therefore, the proposed NA can be applied to
enhance performance consistently and significantly. NA has the
potential to be widely adopted in a variety of applications in data
mining and beyond.
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