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Abstract— Swarms composed of multiple unmanned aerial
vehicles (UAVs) are emerging as a key tool in various application
fields including aerial surveillance, urban search and rescue, and
package delivery. In this context, trajectory planning remains one
of the principal concerns regarding complex robotic applications.
This paper proposes a 4D path planning algorithm based on
the Fast Marching Square (FM2) method for multi-UAV teams
in high-dimensional 3D environments with multiple obstacles.
The 4D-FM2 algorithm integrates a time-dependent speed func-
tion within the Fast Marching (FM) framework. The proposed
algorithm was tested in a simulated urban scenario and results
demonstrate that the algorithm effectively plans safe, optimal
solutions to the shortest path problem for UAVs while avoid-
ing obstacles and other drones, even in complex situations.
Additionally, the algorithm excels in providing smooth speed
profiles for the vehicles. Furthermore, the study also successfully
evaluated the effect of various implementation parameters on the
algorithm’s outcome, such as the number of concurrent missions
and the velocity of the vehicles. Moreover, computational time
was kept within acceptable limits, and the method demonstrated
overall good performance in terms of air traffic flow. The main
contribution of this work is the introduction of a novel 4D
trajectory planning algorithm that implicitly incorporates UAV
movement and speed and hence the spatio-temporal realization
of the path during the planning phase, leveraging the light
propagation phenomenon. This approach efficiently addresses the
presence of other UAVs and environmental obstacles, thereby pre-
venting collisions and avoiding unnecessary airspace blockages.

Index Terms— Multi-UAV systems, autonomous vehicles, fast
marching, 4D trajectory planning, 3D urban environment.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) or drones are
recently becoming popular in the need to cover and

speed up a wide range of civil and commercial applications
as they can perform tasks beyond the reach of human action.
This is due to their ability to access and reach complex
hotspots, achieve high flight speeds and perform coordinated
missions together with the rest of the team. Owning to their
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potential, UAVs are expected to soon become an integral
part of modern aviation, dominating the low-altitude airspace
and overall making it safer, more affordable and much more
efficient [1].

A specific type of setting where the use of this type
of vehicles is of great interest and relevance is in urban
scenarios. In this context, UAVs could perform search and
rescue tasks [2], [3], facility inspection missions [4], delivery
of goods [5] and surveillance [6], among others. However,
with multiple aerial vehicles operating in the same airspace,
there is a need for a strategy to manage air traffic and ensure
flight safety throughout drone operations.

One of the main concerns to be solved when developing a
multi-agent system is its navigation, defined as the problem
of getting a given agent from an initial point to an end point,
safely avoiding collisions with obstacles in the environment
and with other agents, all in an autonomous way. Trajectory
planning for multi-UAV teams poses challenges due to its
high dimensionality and the presence of related equality and
inequality constraints. Additionally, spatio-temporal coopera-
tion is required among the drones within the swarm. In general,
this problem is decomposed into two phases [7], [8]: genera-
tion of trajectories from the starting point to the goal for each
vehicle (i.e. global path planning) and a second stage of local
collision avoidance (i.e. conflict management stage).

These above-mentioned safety issues have so far made it
impossible - and illegal - to fly drones at low altitude in most
civilian situations and urban environments, as the technologies
related to the remote guidance and control of drones have not
reached a sufficient level of readiness to ensure the safety of
people and infrastructure. Given this premise, the European
association Single European Sky ATM Research (SESAR) [9]
has called for “urgent action in the dimension of the airspace,
in particular in the development of the so-called U-SPACE”,
a new framework designed to safely integrate low-level drone
operations (below 120 metres flying height) into European
airspace. Furthermore, given the expected increasing demand
for UAVs in a shared airspace, a major concept also introduced
by SESAR is the so-called 4D trajectory planning [10]. This
concept aims at exploiting the idea of knowing and ensuring
that a given aerial vehicle occupies a particular position within
a specific time gap. This knowledge would permit a higher
level of control and refinement over the trajectory computing
process as potential conflicting situations could be accounted
in advance and thus efficiently avoided.
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Consequently, this 4D path planning concept would open
a new scope for treating the aforementioned two path gener-
ation and obstacle avoidance stages jointly. In the literature,
various approaches have been explored to tackle the issue of
4D trajectory generation for both drone navigation and civil
aviation. These mainly involve optimization-based frameworks
like evolutionary or swarm algorithms [11], task or departure
scheduling optimization schemes [12], and receding horizon
control (RHC) methods [13]. As a novel alternative, this work
introduces a 4D path planning strategy for drone navigation
based on Fast Marching Square (FM2). FM2 leverages the
wavefront propagation phenomenon to compute the shortest
paths or distance maps within a grid environment. The key
advantage of using FM2 as a 4D trajectory planning algorithm
is its ability to implicitly consider the UAV movement and
speed profile through the light propagation behaviour. This
unique characteristic allows the algorithm to consider the
presence of other vehicles during the planning process only
and exclusively when the planned vehicle is expected to
arrive at the same location simultaneously. This approach
minimizes unnecessary spatial blockages in the environment
and prevents undesired detours of the drone, generating
smooth and conflict-free trajectories right from the planning
process.

The structure of the paper is as follows. Section II details
the state of the art (SoA) of trajectory planning algorithms that
consider the temporal dimension of the problem. Section III
describes the 4D path planning algorithm presented in this
work. Sections IV and V showcase the results obtained when
applying our method to UAV trajectory planning in a simulated
urban scenario and provide a qualitative comparison against
another closely related SoA approach. Finally, Section VI
presents the main conclusions. It is worth noting that the terms
drone and UAV are used indistinctly in this paper.

II. RELATED WORK

As it was previously mentioned, two main concepts are
defined around the navigation problem for UAVs: global path
planning and conflict management between vehicles. These
are often faced separately in the literature, although common
techniques may be used for both matters. In fact, collision
avoidance manoeuvres may rely on trajectory detours based
on either heading or altitude changes, which can be treated as
a path re-planning problem [14]. In the first phase, obstacle-
free path planning is performed (considering those obstacles
that are known from the environment), whilst the second
phase focuses on dealing in real-time with conflict situations
that cannot be avoided or predicted beforehand. Below is
an analysis of strategies found in the literature to address
the challenges of global and local path planning, as well as
those focused on generating collision-free 4D trajectories for
UAVs.

The path planning problem, particularly in complex envi-
ronments with multiple constraints, variables and objectives,
is often considered NP-hard [15]. However, some classic
approaches used for realistic problems consider some assump-
tions and heuristics to reduce the complexity to that of
polynomial time problems [16]. Some of the most common

strategies found for solving this matter for UAVs include
potential field methods [17], [18], [19], common graph
search algorithms as A* [20], [21], stochastic optimization
metaheuristics as evolutionary and swarm algorithms [22],
[23], [24], approaches derived from dynamic programming
as Dijkstra [25], [26], probabilistic methods as Probabilistic
Roadmap (PRM) [27], sampling-based path planning algo-
rithms as Rapidly-Expanding Random Tree (RRT) [21], [28]
and numerical optimization approaches as either Mixed Inte-
ger Linear Programming (MILP) [29] or Model Predictive
Control (MPC) [30], [31], among others. In the literature,
some of these strategies have been specifically designed and
implemented for the problem of coordinated path planning for
multiple UAVs. A velocity-aware A* algorithm that generates
paths with acceleration vectors that converge to the predefined
destinations is presented in [32], whereas MPC serves as
framework for nature-inspired optimization solvers in [33]
and [34]. In [35] a MILP program is developed to model the
problem and achieve optimal navigation of the swarm, along
with two heuristic algorithms based on Dijkstra to solve the
path planning problem with faster convergence speed.

Some other strategies are more specifically related to the
previously mentioned collision or obstacle avoidance stage.
These approaches are encompassed by the so-called reactive
planning concept [16]. This term refers to the set of path
planning algorithms that mostly work on the basis of local
knowledge of the environment, so the goal is to prevent
last-minute collisions with previously unforeseen obstacles
present within a limited distance range from the vehicles.
Geometric algorithms as the velocity obstacle approach [36],
[37] are emerging as the main alternative for this type of
planning, which relies on either Automatic Dependent Surveil-
lance Broadcast (ADS-B) or vision-based sensing. Another
approach is based on vehicle speed regulations [38]. Other
options consist of those algorithms that try to reduce the
needed computational cost by simplifying the process of col-
lision avoidance to individual drone detection and dodging of
obstacles, based on information captured by sensors mounted
on the vehicles such as LiDARs, sonars, and radars [39].
Strategies built on UAV parameters such as the relative
azimuth angle of the vehicle to the goal [40] are included
in this category, whereas image processing techniques along
with deep learning methods [41], [42] are a commonly used
alternative.

Taking these detour decisions for collision avoidance
maneuvers in real-time could result in unsolvable con-
flicts [43], [44]. The scalability of the UAV team and the
ability to maneuver in cluttered or complex scenarios are
particularly compromised by this issue [45], [46]. As conflict
situations between vehicles cannot be anticipated during the
initial 3D path planning phase due to their dependence on
the dynamic execution of missions, efforts have been made
to implicitly incorporate the time dimension into the path
planning problem. These approaches, known as 4D trajectory
planning algorithms, aim to enhance knowledge and control
over the trajectory followed by the drones. This enables proac-
tive conflict prevention and the generation of collision-free
trajectories from the outset, resulting in improved efficiency.
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Planning optimal collision-free 4D trajectories for multi-
ple UAVs leads to optimization problems which are often
faced through stochastic optimization metaheuristics, since
this eliminates the local minimum problem of local opti-
mization methods, as well as they can be run in parallel
under the idea of sub-populations. Some common approaches
consist on evolutionary techniques or swarm algorithms as
the widely used Particle Swarm Optimization (PSO) method.
In [47], the authors implement a PSO-based strategy to
obtain collision-free 4D trajectories by adding one interme-
diate waypoint in the already computed trajectory of each
UAV and changing the vehicles speed to meet the Esti-
mated Time of Arrival (ETA) whenever a potential conflict
is detected between drones. [48] follows a similar strategy
for manned aircraft deconfliction also relying on adding a
series of discrete waypoints to control the shape of the
track and assigning arrival times to each waypoint to meet
the time constraints. A Spatial Refined Voting Mechanism
(SRVM) is designed for standard PSO in [49] to avoid local
optimal and slow convergence and resolve the coordinated
path planning problem for multiple UAVs in four-dimensional
space, generating feasible flying and collision-free trajectories
for each UAV from different starting points to the same
destination at the same time. A similar approach can be found
in [50].

Furthermore, the literature presents other ways in which this
time variable is considered. One common strategy is based
on treating this 4D trajectory planning as a task scheduling
problem. In [51], multiple 3D paths for a drone are gen-
erated by a Clustering Improved Ant Colony Optimization
(CIACO) algorithm, while at task scheduling level these
results of multi-path planning for drones, along with the
scheduled time information of flights and the task priorities,
are regarded as the inputs for computing a 4D flight scheme
by a genetic algorithm-based method. An improved 4D Ant
Colony Optimization (ACO) algorithm along with a velocity
optimization method can also be found in [52], which performs
spatio-temporal path planning in a dynamic environment.
In [53] and [54], the A* algorithm is implemented in order
to solve the 4D path planning problem for a single UAV in
complex dynamic scenarios. [55] presents a framework for the
continuous local motion planning problem, where the reced-
ing horizon trajectories were described by 6th order Bezier
polynomials and optimised via a steepest descent algorithm.
Tau guidance [56] and vector-field guidance strategies [57],
[58] are also found as alternative solutions to 4D trajectory
generation.

In contrast to well-established control strategies and
optimization-based approaches, Dougui et al. in [59] and [60]
present a light propagation algorithm in order to solve potential
conflicts between 4D trajectories of manned aircrafts and to
avoid congested and bad-weather areas. During flight, when-
ever two vehicles get too close and their flight plans interfere,
the resolution trajectories to solve the conflict are provided
by a branch and bound (B&B) algorithm. The uncertainty
related to the aircrafts position and arrival times increases
the difficulty of the problem and reduces the solution space,
so that the algorithm can remove 88% of the conflicts. The

Fig. 1. Examples of a wave propagating through media with different
velocities. Taken from [63].

remaining conflicts are solved by imposing time constraints
called required time of arrival. These studies are based on
the wave propagation theory proposed by the Dutch scientist
Christiaan Huygens [61].

The strategy proposed in this paper also tackles the 4D
trajectory planning through a nature inspired path planning
algorithm based on the light propagation phenomenon, named
Fast Marching Square (FM2). The contribution of this work
with respect to these just mentioned studies is the development
and implementation of a novel 4D algorithm based on a
different light propagation approach, as is the subject Eikonal
equation on which FM2 relies. Preliminary research [62]
suggests that algorithms using the Huygens principle are
slower and less efficient than Fast Marching. Furthermore,
the problem of trajectory planning will be addressed for a
different type of vehicle such as UAVs and therefore we
aim for application environments of distinct scale and nature
like urban scenarios. In these scenarios, in addition to the
presence of other team vehicles, there is the added complexity
of navigating around numerous obstacles, such as buildings.
As a result, the computed trajectories require a higher level
of resolution compared to those needed in civil aviation.
The proposed approach benefits from the inherent charac-
teristics of the Fast Marching algorithm. It provides exact
and optimal solutions to the shortest path problem in grid-
based environments, ensuring correctness with respect to the
chosen distance metric (e.g., Euclidean distance). Additionally,
the FM method exhibits deterministic behaviour, enhancing
reproducibility and predictability. Its wavefront propagation
and grid-based nature guarantee smooth paths, eliminating the
need for extra path post-processing.

In general and among the revised literature, optimization
approaches strive for global optimality in multi-vehicle path
planning, allowing for custom objectives. However, they can
be computationally complex. RHC algorithms, on the other
hand, compute paths in real-time and excel at handling con-
straints. Yet, they tend to provide local optimality and require
precise models. Path planning algorithms are known for com-
putational efficiency, scalability and simplicity but may lack
multi-vehicle coordination and struggle with local minima. It is
important to note that the presented work addresses these two
limitations. Hereinafter, the fundamentals and performance of
the algorithm are introduced and analysed.
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III. METHODOLOGY

In this section, we present the methods used to develop
the 4D trajectory planning algorithm based on Fast Marching
Square (4D-FM2) and its application for UAV teams.

A. Motion Planning as a Light Propagation Phenomenon

A desirable feature when generating feasible trajectories for
a vehicle from a starting location to a target position is to
obtain smooth, short and obstacle-free paths. In nature, there
are phenomena that are intended to behave in the same manner,
such as light propagation. According to Fermat’s principle,
a light wave travelling from a point source through a material
medium will reach any point in space in the fastest possible
way. Thinking about it the other way around, one could reach
this source along the shortest path by tracing the waves back
to the goal. This behaviour becomes especially interesting for
motion planning, since this artificial potential created by the
wave propagation and its associated vector field gradient have
the good properties desired for trajectory generation, such as
smoothness and the absence of local minima.

Considering light as a linear ray and in the case of a
homogeneous medium, in which the light velocity is constant
(i.e., constant refraction index), the light follows a straight
line. When the refractive index varies continuously, the light
ray is also continuously bent to avoid areas with lower light
velocity (higher refractive index), whereas smooth light paths
are still obtained. Examples of a light wave propagating
through media with different velocities are shown in Figure 1.
On this basis and from the path planning perspective, desirable
characteristics for trajectory generation could be obtained by
modifying the allowed light propagation speeds. For instance,
no-crossing areas or obstacles of the environment could be
modelled as repulsive fields by assigning a high refraction
index to them and their surroundings.

B. Fast Marching and Fast Marching Square as Path
Planning Methods

The Fast Marching (FM) algorithm was introduced by
Sethian [64] in 1996. It is a method used to numerically solve
the Eikonal equation originally on a rectangular orthogonal
mesh, which models the propagation of a wave (e.g., a ray of
light) in a non-homogeneous medium by the arrival time of
that wave at any point in space. This is given by Equation 1,

1 = F(ρ)|∇T (ρ)|, ρ ∈ RN , (1)

where ρ represents any point in the environment, T (ρ) is the
time it would take for the wave to arrive from the initial point
to point ρ, F(ρ) is the velocity of the wave propagation at
ρ and N constitutes the dimension of the problem. Therefore
the magnitude of the gradient of the arrival function T (ρ)

is inversely proportional to the propagation speed. A set of
multiple points ρ0 can be determined as wave sources. As can
be deduced, at any source point one has that T (ρ0) = 0. This
formulation is valid for multiple dimensions, since the gradient
is orthogonal to the isochronal level sets of the arrival function
T (ρ). No reflections or interferences are considered, so the

Fig. 2. Stages of the FM method. (a) Binary map representing F(ρ)

and occupancy map. (b) Arrival times T (ρ) represented by a color map.
(c) Wavefront propagation can be stopped when reaching goal point. Final
trajectory is represented on every map.

speed function never changes sign and the propagating wave
only moves forward (or backwards).

The complete description of this algorithm along with
details about its lower-level implementation is already
well-explained in the literature [63]. For this reason, a broad,
high-level outline of the method and its direct application to
the path planning problem will be addressed in this paper.
In few words, to generate a path from a starting point to a tar-
get location in either a two-dimensional or three-dimensional
environment, the FM method begins by taking as input the
binary occupancy matrix of the scenario. Then, it computes
the arrival times from the starting point to all the points of
the reachable space. Lastly, from the specified goal point and
by means of gradient descent techniques, it is possible to
compute the path that leads to the origin point by the shortest
path.

An implementation example is shown in Figure 2 for a
simulated 2D indoor scenario. In the original Fast March-
ing method, the wave propagation velocity F(ρ) is simply
discretized to zero values inside the environment obstacles
and one (total velocity) in free space (see Figure 2a). Some
drawbacks may derive from this. As the path obtained is
the optimal in time and distance, it tends to get too close
to obstacles, which would be dangerous for a vehicle to
follow. Similarly, the path may not be sufficiently smooth and
therefore achievable due to the vehicle kinematic constraints.

These two problems are solved in the variant Fast Marching
Square (FM2), proposed by our group [65]. As it was previ-
ously mentioned, desirable characteristics for the generated
trajectories could be achieved by conveniently modifying the
propagation speed values F(ρ) (i.e., the refraction indices) at
certain locations of the space mesh. On this basis, FM2 com-
putes these values and makes them depend, for each point,
on its distance to the nearest obstacle: grid points farther
away from obstacles will allow the propagating wave to have
higher velocities than points closer to obstacles. Hence, the
generated paths will tend to be around areas with higher veloc-
ity values (i.e., farther away from obstacles) and thus safer
ones.

The FM2 implementation consists of applying the original
FM twice. Firstly, it is applied from each point in the envi-
ronment that constitutes an obstacle. As a result, each point in
space acquires a time value T (ρ) which symbolizes the time
required to reach that cell ρ from the nearest obstacle. Lower
time values will mean greater proximity to obstacles. These
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Fig. 3. Example of FM2 implementation. (a) Velocity map obtained in the
first FM2 stage. (b) Lyapunov surface of the arrival times T (ρ) in the second
FM2 stage. (c) Arrival times T (ρ) displayed in the occupancy map. The final
trajectory is represented in magenta.

values are rescaled to the interval [0,1]; therefore, the resulting
grid can be represented as a grayscale map (see Figure 3a).
This map can be seen as a velocity or viscosity field F : higher
values of T (ρ) indicate greater distances to obstacles; thus,
at such points, the vehicle will be able to acquire higher
velocities. Thus in the second stage, these values of T (ρ)

obtained in the previous stage act as propagation velocity
values F(ρ). Similar to the original FM method, the path is
finally obtained by gradient descent techniques. An example of
the FM2 usage is shown in Figure 3, displaying a smoother and
far-from-obstacles path, compared to the original FM method.
In practice, the first step of FM2 can be replaced by any
function that calculates the Euclidean distance transformation
of the original binary occupancy map.

Further modifications can be applied to the velocity map
obtained in the first stage to obtain desired behaviours. For
instance, this map can be saturated to consider higher veloc-
ities at shorter distances to obstacles. In the case of path
planning for UAVs, flight levels, no-fly zones and free-flying
corridors were established in some of our previous works [38],
[66]. The main contributions of applying either FM or FM2 to
path planning are derived from its close relation to the light
propagation phenomenon and they are summarized herein:
• Completeness. As the method is based on the propaga-

tion of a wave through any point in space, if there exists
a path from the initial position to the goal, the method is
capable of finding it.

• No local minima. A local minimum would imply that a
point is assigned a lower T (ρ) than neighbouring points
closer to the wave source. This is not possible since our
algorithm guarantees F(ρ) ≥ 0∀ρ and it is clearly shown
in Figure 3b, where only a global minimum is observed.

• Optimal trajectories. The obtained path between two
points in space is the optimal in both time and distance.
In the case of FM2, a smooth and safe path is obtained,
which remains sufficiently optimal.

• Fast response. Fast Marching solvers typically have
a complexity of O(nlog(n)), where n represents the
total number of points in the considered mesh. Less
common implementations may achieve linear O(n)

complexity [67]. This makes Fast Marching generally
computationally faster than planning algorithms with
exponential complexity, such as the A* algorithm, when
solving certain types of problems. In terms of com-
putational efficiency, Fast Marching would typically

outperform sample methods, like the RRT algorithm, for
the same high level of path optimality and quality.

Moreover, the FM method offers notable advantages when
compared to potential-based algorithms such as Artificial
Potential Field (APF). While both aim at yielding smooth
trajectory profiles, one key advantage is its resilience to local
minima. Unlike APF, which can become trapped in local
minima, the FM algorithm guarantees finding the global opti-
mum when determining the optimal path. Furthermore, the FM
method inherently provides not only collision-free trajectories
but also precise ETA at each waypoint. In contrast, calculating
arrival times for waypoints in APF-based approaches is not
as straightforward and often requires additional computational
effort. Our group has extensive experience in the use of the
Fast Marching method both in 2D and 3D path planning
problems [68], [69], [70]. In addition, other researchers have
also applied this method to their own application needs [71],
[72], [73], [74].

C. 4D Fast Marching Square Trajectory Planning

The 4D trajectory planning problem can be addressed by
the Fast Marching method by considering a time dependent
speed function F(ρ). The subsequent Eikonal equation can be
written as in Equation 2,

1 = F(ρ, T (ρ))|∇T (ρ)|, ρ ∈ RN . (2)

Considering an increasing set of K times t0 < t1 <

. . . < tk < . . . < tK and a set of K speed maps
F0(ρ), F1(ρ), . . . , Fk(ρ), . . . , FK (ρ) associated to those time
steps, the Fast Marching Square algorithm can be configured
to perform linear interpolation in each time interval, so that the
resulting viscosity map used for trajectory planning is obtained
iteratively and results in a combination of all the considered
speed maps. This is expressed by Equation 3,

F(ρ, t) = (1− α)Fk(ρ)+ αFk+1(ρ),

for t = (1− α)tk + αtk+1, (3)

where α ∈ [0, 1] and 0 ≤ k < K . For time intervals prior
to t0 and beyond tK , F(ρ, t) = F0 and F(ρ, t) = FK ,
respectively. According to these previous statements, in order
to use this 4D Fast Marching Square (4D-FM2) approach for
solving the path planning problem for multi-UAV teams, the
first step consists of defining the set of times and speed maps
needed.

For this application, consider the situation where a trajectory
has to be planned for a UAV to perform a new mission from
a start to an end point in a 3D environment. In this case, the
path planner algorithm is intended to compute a conflict-free
trajectory with respect to other vehicles in the swarm that
will be flying over the same environment simultaneously.
To accomplish this, it is essential to have knowledge of the
other UAVs positions and the expected timing of their loca-
tions. For this matter, we consider the following assumptions:
• The drones considered in this study are UAVs with

multiple rotors, which can climb and descend vertically.
• The drones will tend to fly at a constant velocity vm ,

which corresponds to the speed assigned for the mission.
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Fig. 4. Framework of the proposed 4D Fast Marching Square algorithm.

However, this cruising speed will also depend on the
distance of vehicles to obstacles in the environment,
modelled by F(ρ) and referred to as W velocity matrix.
The velocity of the UAVs may be also modified and
reduced in order to avoid collisions with other drones.

• The drones are treated as a free point with three degrees
of freedom. However, a safety distance is set to ensure a
certain separation from buildings and other drones.

On this premise, one advantage of the FM2 method is that
it not only generates a smooth three-dimensional path, but can
also provide a speed profile for the vehicle that will follow the
trajectory. These velocity values can be related to our benefit to
the values of the FM2 wave propagation velocity, which can be
tuned according to the viscosity map F(ρ, t) (scaled from zero
to one) and the desired mission speed. This way the velocity
reaches its highest values (close or equal to mission speed)
in the areas furthest away from the obstacles (lighter areas in
Figure 3a) and other drones and minimum values in the nearest
areas (darker zones in Figure 3a). Therefore, the expected time
of arrival (ETA) at each waypoint (WP) of a mission trajectory
can be drawn from the very own wave propagation of the
method and corresponds to T (ρ) of the FM2 second stage,
denoted as arrival time D matrix. The general framework of
the 4D Fast Marching Square algorithm presented in this work
is shown in Figure 4 and details are provided below.

1) Spatio - Temporal Coordination Between Trajectories:
Going back to the scenario in which a new trajectory is to
be planned for a vehicle and a set of M previously planned
trajectories E = [P1, P2, . . . , Pm, . . . , PM ] must be consid-
ered. From this four-dimensional data, the aforementioned
associated sets of K times and speed maps are computed so
that this information is considered. For instance, if another
vehicle of the team is due to be flying Pm j of its trajectory
at time tk , where 1 ≤ j ≤ N W and N W the number of

waypoints of Pm , this three-dimensional position is marked
as an obstacle (zero relative velocity value) at Fk viscosity
matrix. To enhance safety, some uncertainty can be added
by considering this restriction at given wider time gaps and
properly registering this in the corresponding time and speed
map sets. This time frame might be given by tk ± t f , where
t f is a constant positive time value. These collections of time
values and velocity matrices will henceforth be referred to as
relevant time tset and either viscosity or velocity Fset sets.

Note that the presence of another vehicle at time tk and at a
certain position of the environment will be taken into account
along the planning procedure only if the vehicle to be planned
is due to arrive at this location at the same time, i.e. if the wave
propagation of the FM2 method reaches this location accord-
ingly. This is a significant contribution of using FM2 as a 4D
trajectory planning algorithm: the movement and speed of the
vehicle and hence the spatio-temporal realization of the path
can be inherently accounted in the planning phase based on the
light propagation phenomenon. This way unnecessary spatial
blockages of the environment can be omitted and undesired
detours of the drone avoided, which would be the case if the
environment space already occupied by other trajectories were
blocked for new missions for any time instant.

According to this procedure, UAV trajectories are planned
sequentially without any specific criteria, beyond the order
of arrival of the request to calculate a new mission path.
In the case no previously planned trajectories have to be
contemplated, the trajectory is planned according to the basic
viscosity W matrix, which considers just the distance to
obstacles of the environment.

To get a robust solution, a common time reference scale can
be established for all mission trajectories so that a consistent
set of relevant times tset is obtained. Hence, this set will be
composed of time values proportional to a predefined time
scale ts . This parameter in turn enables to reduce the number
of waypoints that will be eventually registered at these sets,
streamlining the process of computing a new trajectory. In fact,
ts allows us to define which time and distance steps will
be used to go through every mission trajectory that must be
considered when generating tset and Fset sets.

In order to guarantee a safety distance dsec between drones,
a security area must be conveniently marked around every
waypoint position recorded in Fset . As it has been mentioned,
other vehicles trajectory waypoints are only accurately selected
and registered every ts step, so this safety area size must be
wide enough to assure dsec at any time. This safety separation
size dplus is then given by Equation 4,

dplus = dsec + vm · ts . (4)

As mentioned earlier, the 4D behaviour of the Fast March-
ing Square algorithm presented in this work is achieved by
interpolating the so-called relevant velocity matrices. In order
to ensure a smooth transition, some good practice consists of
darkening these Fset matrices, i.e. reduce its original viscosity
value by a factor 0 < ε < 1, around the potentially conflicting
zones already marked with zero relative velocity value. This
should be done both spatially (at neighbouring grid cells closer
than a given distance du) and temporally wise (for tk ± tu
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Fig. 5. 2D Representation of how the position of other vehicles is added to the path planning viscosity matrices. In this example, only one drone has to be
considered at time instant tk .

time stamps, where tu is a constant positive time value greater
than t f ). Note that time frames tu and t f should be set or
automatically rounded up to a value proportional to ts and
that t f must be higher than the time it takes for the vehicles
to fly from a grid cell to an neighbouring one.

So far, the alleged relevant path planning sets Fset and
tset would only gather matrices informing about the presence
of other vehicles and at which time instants. Hence, another
effective practice involves adding extra Fk arrays equal to the
basic speed map W (and their associated tk) to the sets between
every two consecutive relevant time stamps, e.g. tk and tk+1,
that are separated for a longer time than a given threshold tl
and also at the last time stamp tK , as no other vehicle has to
be considered afterwards. This avoids unnecessary blocking of
airspace during the interpolation process among Fset matrices.
Then, the velocity matrix corresponding to tk time instant can
be defined as in Equation 5,

Fk =

{
vm ·W · Hk, if presence at tk
vm ·W, else,

(5)

where presence indicates the existence of other drones at time
tk and Hk is the three-dimensional matrix filled with ones in
which the positions of these other vehicles (and subsequent
safety areas surrounding them) are conveniently marked with
either zero or ε values as appropriate. A 2D visual example
of this procedure is shown in Figure 5.

2) 4D Trajectory Generation and Processing: Regarding
the two stages that make up the FM2 method, the first
one would be completed once the relevant time tset and
velocity Fset sets are obtained. Then, the second phase is
performed according to these sets and Equation 2. From
this dynamic FM2 implementation, the arrival times from the
starting position to every point in space (D matrix) is obtained.
The interpolation among velocity matrices required by this
procedure has been added to our FM2 path planner algorithm
on the basis of the Fast Marching solver provided by [75].

In order to compute the trajectory from this data, gradient
descent is to be performed in D. With the aim of handling the
discretization of the procedure given by the discrete viscosity
matrices, the Fast Marching algorithm uses an efficient numer-
ical scheme to discretize the partial differential equation that

governs the propagation of the wavefront. Then, it efficiently
computes from D a continuous motion curve, which is an
approximation of the geodesic path from the source point
to the goal. The aforementioned FM solver includes this
functionality and can provide this path solution as an output.
However, for this UAV trajectory planning application in
which not only spatial information on trajectories but also a
profile of feasible speeds and times for the vehicles is desired,
this resulting trajectory has not proved to be suitable. For the
purpose of deriving these spatio-temporal trajectories, these
time values have to be extracted from D by accessing the
values of the matrix corresponding to the indices given by the
spatial coordinates of the path. For this reason, looking at a
discrete matrix through the indices of a continuous approxi-
mate geodesic path leads to velocity and time inconsistencies.

So as to solve this problem, in this work we have carried
out a custom discrete trajectory search method through a
constrained gradient descent algorithm. Based on D matrix
and the time of arrival assigned to the goal point, the resulting
path to the source location is obtained iteratively by selecting
the next waypoint from the neighbouring cells of the current
position through predetermined rules, listed as follows:

Rule 1: The time of arrival allocated to the next waypoint
tnext must in any case be less than the time tc assigned to the
current position, as presented in Equation 6,

tnext < tc. (6)

Rule 2: The next waypoint must not be farther than a
second-level neighbourhood and a solution that satisfies all
criteria is first sought among the first-order adjacent cells.
These concepts are illustrated in Figure 6. As a result,
the maximum total distance between consecutive waypoints
dmax is limited to less than 3.5 cells, which is the farthest
possible distance from the current position.

Rule 3: Time value tnext must not deviate from tc by more
than the time it would take to travel dmax at the slowest
possible speed, as shown in Equation 7,

|tnext − tc| ≤
dmax

vm · ε ·Wavg
. (7)

This is determined by vm , factor ε, and the average viscosity
value Wavg obtained from W for the neighbouring cells of the
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Fig. 6. 2D representation of adjacent cells to current waypoint in D matrix.

Algorithm 1 4D-FM2: Dyn. FM2 & Constrained Grad.
Descent

1: Input: Start position, Goal position, Fset , tset
2: Output: Trajectory
3: Compute arrival time map D from inputs via dyn. FM2
4: Initialize Trajectory ← Goal position and time
5: Current position ← Goal position and time
6: while Start position is not reached do
7: Current position ← neighbouring cell from current
8: acc. to spatio-temporal Rules
9: Add Current position and time to Trajectory

10: end while
11: Flip Trajectory

current position (excluding those with zero value). This filters
out any possible time singularities present in D.

Rule 4: Time values tnext and tc must result in a reasonable
travel speed vnext regarding an ideal velocity which considers
vm , the average viscosity value Wnext for the current position
and next waypoint cell in W and the Euclidean distance
between both positions dnext . This is given by Equation 8,

vnext =
dnext

tnext
≈ vi , where vi =

dnext

vm ·Wnext
. (8)

The first three rules serve as exclusion criteria, eliminating
neighbouring cells that do not meet these requirements as
potential next waypoints. The last one defines a cost function
to determine the best option among the eligible adjacent cells.
The cost Cq assigned to each cell, for 1 ≤ q ≤ Q where
Q is the number of neighbouring cells for a current position,
is determined by Equation 9,

Cq = |viq − vq |, (9)

where q stands for each neighbouring cell considered and thus,
viq and vq are the ideal and actual speed values related to each
cell, respectively. The next waypoint in the path is selected
as the adjacent cell q with the lowest cost. In practice, W
matrix implicitly provides smooth velocity profiles, so there
is no need for defining a specific criterion on that matter. This
process is performed iteratively until the start point is reached
and it is summarized in algorithm 1.

By following this process, a new trajectory is generated:
a four-dimensional array that contains information about the
spatial locations and ETA for each waypoint. From this
data, an approximation of the speed v j that the vehicle will
experience at each path position in order to comply with the
mission plan can be derived through Equation 10,

v j =
d j+1, j

t j+1, j
∀ 1 ≤ j ≤ N W − 1, (10)

Fig. 7. Representation of mission trajectory planning when a threshold
distance dsight is defined to limit the number of considered vehicles.

where d j+1, j is the Euclidean distance between two con-
secutive waypoints and t j+1, j is the expected time that the
vehicle will take to travel such distance. We consider that
vN W = vN W−1. Given the arrival time map D generated by
Fast Marching and the constrained gradient descent algorithm
applied, the proposed method ensures the provision of the
shortest possible path while guaranteeing feasible velocity
dynamics for the vehicles and obstacle and collision avoidance.

As the trajectory has been extracted discretely from D,
in order to ensure a smooth speed profile to avoid undesirable
temporal deviations, this initial approximate profile can be
slightly smoothed and the resulting arrival times can be re-
calculated likewise. A fast, unsupervised and robust discretized
spline smoother is used for this purpose, provided by [76].

3) Practical Considerations and Validation of Trajectories:
To enhance computational speed without sacrificing path cal-
culation quality, modifications have been made to the original
approach. For instance, the wave propagation carried out in
the second FM2 stage from the initial position can be halted
whenever the target location is reached, preventing the whole
environment space from being assessed unnecessarily. This can
be visualized in Figure 3c. In addition to this adjustment, the
wave propagation may be also confined and guided through a
vertical trench suitably oriented from the starting to the target
point. Its width (dw) must be enough in order to ensure that
the path can be obtained within these limits.

With the aim of limiting the size of tset and Fset and
hence the amount of interpolations the method must perform
to compute the mission path, a threshold distance dsight
can be set so as to narrow the number of other vehicle
positions considered at path planning level. To do so, the whole
procedure to compute a trajectory can be split into two calls
to the FM solver. First, an ideal trajectory is calculated which
does not consider the presence of any other vehicle. In the
latter stage, only vehicles closer than dsight to this base path
are included in the relevant time and viscosity sets. This can be
visualised in Figure 7. It may occur that in this second phase,
no other trajectories need to be contemplated. In this scenario,
the final trajectory will be the base path already calculated and
there would be no need for a second call to the solver.

Similarly, trajectories are expected to preferably present hor-
izontal displacements, with respect to flight altitude variations.
For this reason, safety distances dplus and du used to mark a
vehicle position in Fset matrices can be reduced on the vertical
axis by a factor λ, where 0 < λ < 1. In order to ensure that
a new mission plan is valid and does not interfere with other
previously computed trajectories, it is expressly checked that
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Fig. 8. Simulation environment. (a) Surroundings of the Santiago Bernabéu Stadium area in Madrid (Spain). Grid cell resolution is 5 meters. (b) Example
set of 12 mission trajectories planned in the simulated scenario.

Algorithm 2 Generate Viscosity Matrices & Time Steps for
CA

1: Input: Base FM2 Traj., W , vm , 4D Traj. to avoid, Dep.
time, Safety param.: t f , ts , dplus , ε, tu , du , dsight , λ, tl

2: Output: Viscosity Fset and time tset relevant sets
3: Initialize H occupancy matrices
4: for every WP of each 4D Trajectory do
5: if Pos. within dsight from Base Traj. & Time ≥ Dep.

time & (Prev. saved WP Time - Time) ≥ ts then
6: Mark 3D location in corresponding H matrices

acc. to Safety param. and Time (see Fig. 5)
7: end if
8: end for
9: Compute Fset & tset acc. to H , vm , W , tl (see Eq. 5)

no waypoint in the new path is at a shorter distance than dsec
spatially and closer than t f temporally wise. Working with
a too restrictive dsight or λ might result in a conflicting plan.
These instances are detected and planning for a new trajectory
is attempted for either wider dsight or λ = 1 values.

When computing a path for a new mission, it is intended that
its corresponding time plan commences as soon as possible
regarding a given take-off time value. There may be cases
where this is not feasible, e.g. when the area around the
initial waypoints is occupied by other vehicles at that time
instant. In addition, other blockages marked in the viscosity
matrices Fset can cause that for such launch time it is not
possible to find a correct trajectory as no other alternative
path can be found to properly dodge these occlusions. This
problem is avoided to a large extent by the aforementioned
darkening process carried out by factor ε, but not completely.
A mission temporal delay td is applied in these situations.
Algorithm 2 outlines the pseudocode for generating Fset and
tset for spatio-temporal coordination along with some of these
considerations.

IV. RESULTS

In order to test the 4D Fast Marching Square planner
presented in this work, a series of simulations are carried out
to analyze and verify its performance. The designed algorithm
is implemented in MATLAB and the tests are conducted on a

computer with 16 GB of RAM and an AMD Ryzen 5 3600
CPU running Windows 10. The results for these simulations
are presented and analysed in this section.

The experiments are performed for varying numbers of
simultaneous missions: 5, 10, 15, and 20. Each one of these
missions corresponds to a UAV vehicle flying from an initial
position to a target location. For this reason, it is interchange-
able to refer to either the number of drones or the number of
simultaneous missions. For each simulation, 7200 iterations
of simulation are accomplished, with each one equivalent to
1 second of actual flight time. When a mission is completed,
a new one is planned for the corresponding vehicle. Each
set of simultaneous missions is studied for performance at
different mission speeds vm , including 2, 4, and 6 cells/s.
Therefore, there are a total of 12 distinct executions to fully
test the algorithm. For the simulated movement of the drones,
it has been assumed that they fly following the velocity profile
previously computed based on the ETA obtained during the
trajectory generation process. It has been considered that the
vehicles have a maximum acceleration of 1.25 cells/s2 in any
direction. Therefore, in each iteration of the algorithm, the
vehicles can adjust their velocity to the said profile, taking
into account this speed variation restriction, and accordingly
advance spatially in their trajectory. Planning a new trajectory
is considered a separate and premeditated process, and it is
consequently not included in the 2 hours of simulated flight
time. In reality, the creation of a new trajectory will take into
account the positions and ETA of other drones that may affect
the current trajectory, based on the expected take-off time.
Hence, these data are taken into consideration as input values
during the planning stage.

The initial and final points of each mission trajectory are
arbitrarily generated, from any position of free space. The sim-
ulated environment for the tests is shown in Figure 8a, which
corresponds to the surroundings of the Santiago Bernabéu
Stadium area in Madrid (Spain). It presents a resolution of
5 meters per cell over a 467 × 497 × 44 matrix. In this urban
scenario, the robustness of the algorithm against planning in
large hindered environments will be tested. Specifically, the
trajectory generation process will have to deal with a vast
number of buildings and also consider two restricted and no-fly
zones (represented as yellow and red cuboids, respectively).
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This restricted area states that it should only be crossed if
necessary and avoided as far as possible. An example set of
12 mission trajectories is shown in Figure 8b.

The relevant parameters discussed in the previous sections
have been chosen based on experimentation. Safety distance
dsec is set to 7 cells; ts (used to uniformly determine tset )
is defined to 2 seconds for experiments with vm equal to
2 cell/s and 1.25 seconds otherwise; t f (used to deal with
uncertainties) is set to 5 seconds, while tu (used for smooth
interpolation of Fset ) equals 8 seconds. The darkening factor ε

is defined to 0.65, whereas safety distance du is set to 1.5·dsec.
Time constant tl (used to avoid unnecessary airspace blockage)
is 5 · ts . Distances dw and dsight , which ease computational
load, are defined to 200 and 20 cells, correspondingly and
according to the dimensions of the simulation environment,
and mission delay time td is 20 seconds. If dsight constitutes
a too restrictive value in order to find a feasible trajectory, its
value is doubled in the next try. For the simulations referred
to in this section, it has been established that this incremental
process may be attempted a maximum of 3 times, i.e. the
highest value for dsight is 60 cells. Similarly, a mission may
be delayed by a maximum of 2 minutes. Factor λ equals
0.67. If a trajectory cannot be computed for a given mission
based on these parameters and conditions, the mission shall
be considered failed and a new one is assigned.

A series of statistical measures are collected to check the
performance of the strategy. These measures are taken for
each of the 12 aforementioned algorithm executions and are
as follows: Travelled distance per trajectory, in cells; Average
flying speed during mission, in cells/s; Computational time
to plan a mission trajectory, in seconds; Required mission
delay time to find a feasible trajectory, in seconds; Number of
drones simultaneously flying per iteration; Number of missions
accomplished by each UAV individually; Total number of
planned missions for the whole team; Minimum separation
distance between vehicles, in cells; Number of failed missions
when trajectory planning; Number of planned missions requir-
ing 4D-FM2 second stage; and lastly, checking distance dsight
required for 4D-FM2 second stage.

The data resulting from the simulation runs are shown
in Figures 9–11. For each mission speed vm and for each
set of simultaneous missions, some of the aforementioned
measurements are presented right away and others in the form
of average value. Besides, the dispersion of the obtained results
is given by standard deviation. Negative values coming from
these dispersion measures should not lead to misunderstand-
ings. The simulation data corresponding to every vm used
are represented beside one another, around the vertical axis
associated to the number of drones of the team. From left to
right, data belong to simulations carried out with 2, 4 and
6 cells/s, respectively. Hereafter, some comments about the
obtained data are expressed.

In Figure 9a, it becomes evident that as the speed vm
assigned to every mission increases, the number of missions
completed by each vehicle also increases proportionally. This
is because the vehicles can complete the tasks in less time.
However, this measure remains almost constant in terms of the
number of drones in the swarm. It is important to note that

Fig. 9. Statistical measures collected through simulations. (a) No. of missions
accomplished by each UAV. (b) Delay time required for a mission.

for higher speeds, the number of missions performed by each
vehicle starts to trend slightly downwards. Figure 9b provides
an explanation for this observation: as the number of drones
in the team and the speed increases, the waiting time to start a
mission gradually increases, although it is always maintained
at low and reasonable values. In addition, while the number
of vehicles that can fly at the same time is always close to the
maximum value, it decreases inversely to vm (see Figure 10a).
Therefore, it can be concluded that the higher the speed and
the number of simultaneous missions, the more congested
the airspace becomes, making it increasingly complex to
manage.

A similar trend is shown in Figure 10b. Checking distance
dsight is always kept around the default value (20 cells).
However, it is observed that as traffic congestion increases,
it becomes necessary to increase the value of the parameter.
In addition, Figure 10c shows that the number of missions
requiring the second stage of the method increases both with
the number of drones in the swarm and the speed of the
missions. Although these factors suggest that generating a
new trajectory becomes more challenging, the total number
of missions performed by the entire group increases in direct
proportion to both criteria (see Figure 10d). These last two
measures must be analyzed jointly.

In Figure 11a, the length of the trajectories remains con-
stant regardless of the number of drones and the speed vm ,
as the start and end points of the missions are randomly
generated. Similarly, the minimum distance between a pair
of UAVs depends on the randomness of the missions, but it
is reasonable to expect that the minimum distance decreases
as traffic congestion increases (see Figure 11b). Note that
safety distance dsec has been maintained throughout all of the
experiments.

With regards to the time needed to compute a new trajectory,
Figure 11c indicates that this measure proportionally increases
to the number of drones, as more trajectories have to be
considered during planning. However, this time value is lower
for higher speeds. This is because the wave propagation carried
out in the 4D-FM2 method can be performed at a faster pace,
speeding up the computational process. Therefore, it has been
found that a new mission can generally be planned by the
4D-FM2 algorithm in less than 25 seconds, even in the least
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Fig. 10. Statistical measures collected through simulations. (a) No. of UAVs flying per iteration. (b) Checking distance dsight required. (c) Number of
missions needing 4D-FM2 second stage. (d) Total No. of missions planned for the team.

Fig. 11. Statistical measures collected through simulations. (a) Mission trajectory length. (b) Minimum separation distance given between UAVs.
(c) Computational time to plan a mission trajectory. (d) Average flying speed during mission.

favorable case (i.e. highest number of vehicles and lowest
speed), with the overall average time being less than this
value.

This suggests that the original O(nlog(n)) time complexity
of the FM2 method, as well as the memory usage, are
influenced in this 4D-FM2 version by the use of a dynamic
viscosity matrix, which enables to introduce the time dimen-
sion. The additional complexity is linear and not excessively
large due to the simple linear interpolation among viscosity
matrices. However, quantifying this increase is challenging as
it depends on the number of drone trajectories to consider
and, consequently, the number of viscosity matrices to han-
dle. Furthermore, it is worth noting that given the practical
considerations described in Section III, some trajectories can
be planned without the need to explicitly take other drone
paths into account. In such cases, trajectory planning can be
performed using a general Fast Marching Square call, reducing
the complexity associated with the viscosity matrix handling.

Finally, Figure 11d shows that the speed at which vehicles
perform their missions, obtained from the ETA values given
by matrix D, is indeed very close to the established velocity
vm . However, it is observed that these speed values are slightly
higher than expected. This may be due to inaccuracies inherent
in the Fast Marching solver used. According to documentation
provided by [75], areas marked with zero viscosity values in

Fset matrices (in our case, due to obstacles or other vehicles)
may cause a source of numerical uncertainty in the wave
propagation calculation of the FM method.

Given that missions were randomly generated and subject
to constraints on maximum mission delay times and dsight ,
mission planning failures could be expected. When vm was
set to 2 cells/s, all missions were computed successfully
without any issues. For higher speeds, just up to 2 failed mis-
sions occurred for each set of simultaneous missions, which
can be regarded as negligible considering the total number
of missions effectively computed through each simulation
test.

V. FURTHER DISCUSSION

This section covers several additional aspects of the
proposed algorithm’s performance. In order to provide a
qualitative comparison to the aforementioned work presented
in [60], we tested the 4D-FM2 algorithm in a 2D environ-
ment used as benchmark by the cited authors. In this case,
7 aircrafts perform a conflicting mission which converges
towards the same point. These are initially located on a circle
of radius 100 Nm. The cited authors use an environment
grid scale equivalent to the standard horizontal separation
unit in aviation (5 Nm) and the vehicles velocity is 450 kts.
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Fig. 12. Light propagation algorithms applied to 2D trajectory planning.
(a) Our 4D-FM2 algorithm (b) Method provided by [60].

To assess our proposed algorithm and regarding the earlier
stated characteristic simulation parameters, for this test these
have been selected according to the values provided by the
comparative study. We used a grid scale of 1 Nm to pro-
vide higher resolution, and hence vm is conveniently set to
0.125 cells/s. Safety distance dsec is set to 5 cells (equal to
1 standard separation unit in aviation). Although the following
parameters are not specifically determined in the benchmark
survey, we chose to define ts as 3 seconds, t f is set to
12 seconds, which corresponds to the minimum time it will
take for a vehicle to fly to a neighbouring cell according to vm
plus a threshold of 4 seconds, and tu equals 15 seconds. Given
the reduced dimensions of the environment and the distance
unit used, a limiting distance dw has not been established and
dsight is set to 10 cells. The rest of the parameters keep the
same value as in previous tests. Figure 12 shows the resulting
trajectories.

According to the selected parameters, there has been no
need to delay any mission to guarantee a collision-free trajec-
tory and all missions required 4D-FM2 second stage except for
the first one. The figure shows that the resulting paths attempt
to adhere as closely as feasible to the ideal trajectory (a straight
line between the starting and ending points, represented in
gray color) while keeping the highest and safest distance to
other vehicles. The set of 7 trajectories was computed in
under 2.5 seconds in terms of computational cost. Although
the various machine characteristics could not be directly
compared, the computational time obtained is lower than the
≈ 30 seconds corresponding value reported by Dougui et al..
Hence, the Fast Marching method a priori achieves a more
efficient solution to the path planning problem based on the
light propagation phenomenon than the one based on the
Huygens principle.

In addition to the simulation results discussed earlier,
Figure 13 illustrates examples of velocity profiles generated
by the 4D-FM2 method for the tested set of velocities vm and
the first missions to be performed by a team of 10 drones.
The method has been found to produce adequately smooth
speed profiles, particularly for lower mission velocities. This
was evidenced throughout the simulation runs, where vehi-
cles were able to follow their designated trajectories without
encountering any conflicts and maintain a safe distance at any
time.

Fig. 13. Examples of speed profiles generated by 4D-FM2 algorithm for
the set of tested mission velocities vm and a team of 10 drones: (a) 2 cells/s,
(b) 4 cells/s and (c) 6 cells/s.

VI. CONCLUSION

The main objective of this work was to novelly introduce
a trajectory planning algorithm based on the light prop-
agation phenomenon described by the FM2 method. This
has been achieved by considering a time dependent speed
function. This way, the presence of other vehicles can be
considered at corresponding time intervals, allowing to dodge
other drone locations during the planning process just when
simultaneous spatio-temporal overlap is expected. This repre-
sents a significant contribution of our approach: by implicitly
considering the spatio-temporal movement of the vehicles
through the algorithm’s wave expansion, our method allows
for the omission of unnecessary spatial blockages in the
environment and the avoidance of undesired detours for the
drones.

The basis of the proposed method was presented and how
other previously planned trajectories are handled to compute
a collision-free plan is described. A constrained gradient
descent algorithm based on predefined spatio-temporal rules
was developed to obtain the resulting trajectories with the
aim of obtaining a smooth speed profile for the vehicles
to follow, while simultaneously ensuring collision avoid-
ance and optimality in terms of both travelled distance and
time.

The 4D Fast Marching Square (4D-FM2) method was
evaluated in a high-dimensional 3D simulated urban sce-
nario with multiple obstacles for various combinations of
concurrent missions and UAV velocities. The results demon-
strated that the minimum safety distance was consistently
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maintained throughout the simulations. Moreover, the com-
putational time remained within acceptable limits, and the
method demonstrated overall good performance in terms of
air traffic flow. Additionally, the effectiveness of the algorithm
was demonstrated in a 2D scenario, proving the adapt-
ability of the method to use cases of different scale and
requirements.

Some future lines of research for this work could involve
the development of a non-sequential approach, in order to
consider an equitable order of preference among missions
that are to be planned jointly. Furthermore, other Fast March-
ing solvers could be tested for this 4D trajectory planning
implementation in the hope of coming up with a faster
solution while guaranteeing smooth speed profiles and robust
performance.
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