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Abstract—Conditional Imitation learning is a common and ef-
fective approach to train autonomous driving agents. However, two
issues limit the full potential of this approach: (i) the inertia prob-
lem, a special case of causal confusion where the agent mistakenly
correlates low speed with no acceleration, and (ii) low correlation
between offline and online performance due to the accumulation of
small errors that brings the agent in a previously unseen state. Both
issues are critical for state-aware models, yet informing the driving
agent of its internal state as well as the state of the environment
is of crucial importance. In this article we propose a multi-task
learning agent based on a multi-stage vision transformer with state
token propagation. We feed the state of the vehicle along with the
representation of the environment as a special token of the trans-
former and propagate it throughout the network. This allows us
to tackle the aforementioned issues from different angles: guiding
the driving policy with learned stop/go information, performing
data augmentation directly on the state of the vehicle and visually
explaining the model’s decisions. We report a drastic decrease in
inertia and a high correlation between offline and online metrics.

Index Terms—Autonomous driving, imitation learning, inertia
problem.

I. INTRODUCTION

AUTONOMOUS driving is becoming a reality. To make
this possible, several problems have to be solved, such as

perception [1], planning [2], and forecasting [3]. A recent trend
that has obtained remarkable results is to directly train driving
agents from raw observations with Imitation Learning (IL) [4],
[5], i.e. learning to mimic demonstrations from expert human
drivers. In this way, the autonomous driving problem is tackled
holistically, without having to rely on different heterogeneous
modules.

Imitation learning, however, has some limitations. Since the
driving capabilities are learned by behavioral cloning, IL models
usually lack explicit causal understanding. Rather than rules,
relations between patterns are learned, thus making the agent

Manuscript received 3 October 2023; revised 1 November 2023; accepted
7 November 2023. Date of publication 23 November 2023; date of current
version 23 February 2024. This work was supported by the European Com-
mission under European Horizon 2020 Programme, under Grant 951911–
AI4Media. This research is part of the activities of the Joint Laboratory UNIFI-
Meccanica42. (Corresponding author: Luca Cultrera.)

Luca Cultrera, Lorenzo Seidenari, Pietro Pala, and Alberto Del Bimbo are with
the University of Florence, 50121 Firenze, Italy (e-mail: luca.cultrera@unifi.it;
lorenzo.seidenari@unifi.it; pietro.pala@unifi.it; alberto.delbimbo@unifi.it).

Federico Becattini is with the University of Siena, 53100 Siena, Italy (e-mail:
federico.becattini@unisi.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIV.2023.3336063.

Digital Object Identifier 10.1109/TIV.2023.3336063

vulnerable to spurious correlations in the data. This phenomenon
is known in the literature as causal confusion [6]. In particular,
when training IL agents for automotive, there is evidence of
a special case of causal confusion referred to as the inertia
problem [5], [7], [8]. The inertia problem stems from a spurious
correlation between low speed and no acceleration in the training
data, making the driving agent likely to get stuck in a stationary
state. As a consequence, when a state-aware agent halts (e.g.
at a traffic light or in a traffic jam), it may not move again
when it should. For state-awareness here we refer to any source
of information that can inform the agent about its halted state,
such as a state variable, either explicitly modeled or implicitly
inferred, that encodes velocity.

A second issue that limits the applicability of IL is the gap
between offline and online driving capabilities [9], [10]. Codev-
illa et al. [10] showed that there is a low correlation between
offline evaluation metrics (e.g. frame-wise Mean Squared Error
in steer angle prediction) and the success rate in online driving
benchmarks. In online driving, the output of the model influences
future inputs, violating the i.i.d. assumption made by the learning
framework [11]. Accumulation of small errors thus brings the
vehicle into new states, never observed at training time [12].
Similarly to the inertia problem, this issue manifests itself the
most in state-aware models: the more variables are observed by
the model, such as ego-velocity or previous driving commands,
the sparser the coverage of the training data gets, making it more
likely to end up in under-represented configurations at driving
time.

To summarize, IL agents suffer from ill-distributed training
data that presents spurious correlations and domain shift com-
pared to the test set. These issues make it particularly hard to
train state-aware agents: using multiple input sources increases
the chances of discovering unwanted correlations in the data
or of observing under-represented inputs at inference time, for
which the agent does not know how to act confidently [11],
[12], [13]. In this article, we address these difficulties in training
state-aware IL models.

In literature, some attempts to identify and solve these is-
sues have been done. The inertia problem has been addressed
by regularizing training through vehicle speed prediction [5],
whereas [10] demonstrated the usefulness of two data augmenta-
tion approaches to improve offline and online driving capability
correlation: first, augmenting the training set with lateral cam-
eras, thus simulating a vehicle with an unusual trajectory, and
second, perturbing the driving policy to record samples where
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the vehicle recovers from anomalous states. In this article, we
build on these ideas without collecting additional data. We pro-
pose an IL agent that propagates the state of the vehicle through
the model and uses it as the core of a multi-task architecture.
On the one hand, this allows us to explicitly train the model
to avoid issues such as the inertia problem. On the other hand,
this allows us to perform data augmentation on all the observed
data, reducing the distribution shift between training samples
and what the agent may see at driving time.

Our IL agent is designed as a hierarchical transformer model
with state token propagation. The vehicle’s state is encoded in
a special token of a vision transformer [14] and is enriched
with new information at each stage of the architecture. At
first, we predict whether the vehicle must stop or go, directly
tackling inertia. This information is passed to the next stage
which predicts the driving commands (namely steer, throttle, and
brake). Finally, the model leverages a differentiable Command
Coherency Module (CCM), encouraging the model to correctly
bring the vehicle to the desired future state by generating non-
conflicting controls. Such command is used only at training
time and acts as a regularizer. Since our architecture is based
on a transformer encoder [15], it heavily relies on attention.
We leverage such attention to gain insights about what the
model is focusing on to make its decisions (e.g., the vehicle’s
state or visual patterns), following the recent trend of designing
explainable driving models [16], [17], [18].

Interestingly, the ability to explain the model’s decisions
provides us with a better understanding of the inertia problem.
Inertia makes an IL model halt and stay still whenever the
speed of the vehicle is close to zero. However, it is hard to
discriminate this phenomenon from other kinds of failures that
make the vehicle stop indefinitely. For instance, if part of the
environment is mistakenly interpreted as a crossing pedestrian
or a red traffic light, the vehicle will wait indefinitely for the
state of the surrounding environment to change. Whenever this
happens, a different solution must be sought in order to enforce
the visual backbone of the model, rather than its causal infer-
ence capabilities. By combining the model’s attention with a
retrieval-based explainability method, we are able to highlight
these differences and isolate instances of inertia from backbone
failures.

The main contributions of our article are the following:
� We propose a state-aware conditional imitation learning

model for autonomous driving. The model is multi-stage
and exploits state propagation through different trans-
former layers breaking down the generation of driving
commands into coarse to fine tasks.

� We specifically address issues in state-aware imitation
learning such as the inertia problem and the offline/online
performance gap. Inertia is drastically limited by state
token propagation and multi-stage learning, whereas the
correlation between online success rate and offline met-
rics is enforced via data augmentation on the vehicle’s
state.

� We propose a combination of the transformer’s self at-
tention with an ex-post semantic explainability method
that we use for inspecting model failures. This points out

interesting “hallucinations” of the visual backbone that
cause behaviors mistakenly confused with inertia.

II. RELATED WORKS

Imitation Learning (IL) is based on the idea that, to learn
a complex task, a model can observe the demonstrations of an
expert performing it [19], [20]. This paradigm has been success-
fully applied to autonomous driving. One of the first approaches
based on IL predicted steering commands for lane following
and obstacle-avoiding tasks [21]. The task soon evolved into
the so-called Conditional Imitation Learning (CIL), in which
predictions are conditioned on high-level commands such as
turn or go straight. Several works followed this approach [4],
[17], [22], [23], [24], also combining it with reinforcement
learning [25], [26], [27].

To obtain better driving capabilities, several sensors and ad-
ditional synthetic data are often used [4], [28], [29], [30], [31].
Large use of environmental information is done by prior work
in the form of semantic segmentations [26], [32], [33], [34],
top-view maps [30], or both [27], [35], [36], [37], [38]. Similarly,
other methods leverage depth information [23], [38], LiDAR
data [24], [24], [32], [38] or cues such as traffic light states [26],
[33], lane position [26], and intersection presence [26], [33].
Such data has been also used in the form of affordances, low-
dimensional representations of environmental attributes [22],
[26], [39]. Differently from all the aforementioned methods, we
rely on a purely RGB-based approach. Whereas these methods
have access to environmental data, either as inputs or as addi-
tional sources of supervision, we assume to have access only to
the RGB stream and the state of the vehicle (i.e., current speed,
steer, acceleration, and brake), which is a direct consequence of
the driving policy. A similar assumption is done in recent works
such as [5], [40], [41].

Training a state-aware imitation learning agent hides some
challenges [13]. Despite its simplicity and effectiveness, it
breaks the i.i.d assumption made by any statistical supervised
learning framework since current decisions influence future
inputs [11], [12]. The main difficulty that needs to be addressed
is trying to keep the model in a state close to what has been
observed at training time [13]. When this does not happen, online
errors tend to accumulate over time, generating less accurate
behaviors [11], [42]. The effect is to have online capabilities
that do not correlate with offline error metrics measured on a
validation set [10], which makes the agent difficult to train. A
solution to bridge this gap is to perform data augmentation.
Codevilla et al. [10] showed that collecting data from three
different cameras while adding noise to the driving policy helps
in recovering from unexpected scenarios. This however requires
collecting hours of additional data. Image-level data augmen-
tations such as changes in contrast, brightness and tone also
have beneficial effects, especially for generalizing to similar
scenarios with different conditions (e.g. weather) [5], [10].
Nonetheless, augmenting the pixel space has a limited effect
on state-aware models, where predicted quantities are provided
as input. Differently from prior work, we perform augmentation
on the vehicle’s state, injecting it into the model as a special
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Fig. 1. Convolutional backbone extracts a feature map, which is fed to a multi-stage transformer architecture. The first stage (E1) takes the feature and a state
token, which is propagated across the network. The output of E1 corresponding to the state token is decoded into a stop/go prediction with a Feed Forward Network
(FFN). The second stage (E2) uses the propagated state to predict driving commands. Finally, the Command Coherency Module is used as a loss regularizer to
ensure consistency between driving commands.

token of a transformer [15]. Augmenting the state leads to a
better coverage of the state space during training.

The presence of the state token allows us to address another
well-known issue with imitation learning in automotive: the
inertia problem [5], [7]. This has been addressed in litera-
ture by predicting the current speed of the vehicle [5] or via
causal imitative learning [8], also based on speed prediction.
A memory-based approach for retrieving previously observed
scenarios has also been exploited recently [43]. The common
speed-prediction solution proposed in [5] suffers from a high
collision rate, likely due to overcompensation of inertia. Instead
of making the network predict its current velocity, we leverage
a multi-stage architecture, where a stop/go loss based on the
actual causes for stopping (presence of pedestrians, traffic lights,
other vehicles) conditions the command generation. In this way,
we inform the model about external elements that should be
taken into account while driving. We find this solution to almost
eradicate inertia entirely.

III. OVERVIEW

Imitation Learning (IL) trains an agent by observing a set
of expert demonstrations to learn a policy [20]. In the sim-
plest scenario, IL is a direct mapping from observations to
actions [19]. In automotive, the expert is a driver, the policy
is ”safe driving” and the demonstrations are a set of (frame,
driving-controls) pairs. In this article, we address Conditional
Imitation Learning (CIL), a declination of imitation learning
where the policy must reflect a given high-level command, such
as turn right or follow lane. As in prior work (e.g. [4], [17], [22]),
we divide our architecture into multiple branches, with separate
heads learning command-specific policies. However, differently
from prior work, we structure our model as a hierarchy of stages,
each of which is dedicated to addressing different aspects of
driving, as depicted in Fig. 1.

The proposed model is state-aware, in the sense that it takes as
input the speed and the steer, acceleration and brake values pre-
dicted at the previous timestep. In principle, informing the model
of the current state of the vehicle could ensure temporal smooth-
ness and coherency in the driving policy (i.e., the predicted

driving controls). In practice, this makes the model vulnerable
to spurious correlations in the data, bringing out the inertia
problem. To address this issue, we propose a multi-stage trans-
former model with state token propagation. We feed the vehicle
state to the model as a special token of a vision transformer
(ViT) [14]. Operatively speaking, the state token fulfills the same
role as the CLS token in standard ViTs. However, by enclosing
vehicle measurements we can inject information into the model
and let it correlate to relevant spatial features via self-attention.
After each layer, the state token is enriched with spatial infor-
mation and is decoded into coarse-to-fine driving commands,
depending on the stage. The coarser of such commands is a
decision on whether the vehicle should stop or go, thus explicitly
addressing inertia. Injecting the state token into the model has
the additional benefit of enabling data augmentation on the state
values itself, addressing what is arguably the biggest limitation
of imitation learning, i.e., the inability to perform well in pre-
viously unseen states [9] that is also responsible for the gap of
accuracy between offline and online driving. We also introduce
a regularizer that ensures coherency in the generated driving
commands. This is different from similar solutions adopted in
prior works, where speed is predicted to reduce inertia [5], but
here we use it to reduce online-offline evaluation gap.

IV. MODEL

A. State Token Propagation

Our model exploits a multi-stage transformer encoder archi-
tecture. The hierarchy of layers reflects a coarse-to-fine learning
where each stage generates a different output. The rationale is
that the i− th stage can inform stage i+ 1 by taking the output
of the encoder corresponding to the state token and propagating
it as the new state token. To enrich the token with increasingly
complex semantics, at each stage we decode it into a different
output with a Feed Forward Network (FFN), specific for separate
tasks.

We define our multi-task hierarchy as follows. The first stage
predicts whether the agent should halt the car or keep it going.
This is specifically thought to address the inertia problem. This
stage does not produce any driving control and is expected
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to focus on traffic lights and other agents. The second stage
generates the actual driving commands: throttle, brake, and steer.
This second stage of the model should instead learn and un-
derstand road topology and ego-motion patterns. Thanks to the
propagated state token, the generation of the driving commands
is conditioned on the stop/go decision of the previous stage. The
third and final stage is the command coherency module that acts
as a regularizer, thus we use it only at training time. The initial
state token is the embedding of steer, throttle, brake and speed
at time t− 1.

To cope with the non-uniform distribution of vehicle states
in the train set (see Section VII-A), we introduce a data aug-
mentation strategy based on noise injection to perturb the state
token. We inject a zero mean Gaussian noise with σ = 0.1 for
driving controls, since they are all in [0,1]. For the speed, that
takes values in [0,10], we use σ = 1 instead.

B. Pixel-State Attention

Every stage of the model performs token-to-token attention,
thanks to the transformer’s self-attention. The advantages are
twofold: on the one hand, prior work has shown that explicitly
modeling attention improves driving capabilities [17], [40]; on
the other hand, it provides a built-in interpretability mechanism
that can be used to visually explain decisions.

In our model, the attention involves not only visual patches
as in [17], [40] but also the state of the vehicle. First, the
output of the convolutional backbone, i.e. a feature map f of
size Hf ×Wf × C, is flattened into N = Hf ·Wf separate
C-dimensional tokens, corresponding to 1× 1 spatial patches
in the feature map. Patches are then linearly projected into a
D-dimensional space to adapt them to the input size of the
transformer. The four scalar quantities that compose the state
of the vehicle (speed, steer, acceleration and brake) are lifted to
a dimension of D/4 and concatenated into the D-dimensional
state token, which we refer to as xstate. As in [14], a learnable
positional embedding Epos is added to all the N + 1 tokens.
To summarize, the set of N + 1 tokens fed to the encoder is
composed as follows:

z = [xstate; f
1Pv; . . . ; f

NPv] + Epos (1)

where Pv ∈ R
C×D is the feature projection matrix, Epos ∈

R
(N+1)×D and xstate ∈ R

1×D.
The self-attention carried out in every layer of the transformer

is thus a pixel-state attention, where every pixel of the feature
map can attend to each other plus the state token. This allows us
to inspect at each stage which information is privileged by the
model: when the state token carries relevant information from
the previous stage (e.g., if the vehicle must stop), the model
will give it high importance; vice-versa, if the image carries
meaningful cues (e.g., an intersection) the model will focus on
the interested pixels.

C. Command Coherency Module

A possible cause for low correlation between off-line error
and on-line driving performance [10] can be found in throttle,
brake and steer being predicted independently. What is missing

is the optimization of a common goal that brings the vehicle from
one initial state to a desired one, considering all three quantities.
Furthermore, individual biases may interfere with the quality of
the overall policy.

To generate the appropriate driving behavior, the predicted
commands must be compatible with each other. To this end,
we introduce the Command Coherency Module (CCM). The
CCM takes as input steer, throttle, brake and speed at time t
and predicts the future speed at time t+ 1. We first train the
command coherency module on training measurements to learn
how such quantities affect the speed of the vehicle. Once the
module is trained, we freeze it and use it as a regularizer while
training the driving agent. To implement the CCM, we use a
lightweight multi-layer perceptron with three layers and ELU
activations.

Our CCM shares some traits with the speed prediction module
of [5]. Here, the authors feed a frame-based estimate of the
speed to the model. Instead of feeding the predicted speed as
an additional input, we optimize it to regularize the outputs and
conciliate the driving commands.

D. Architecture and Training

The proposed model is composed of a shared convolutional
backbone plus four parallel branches, one for each high-level
command. The shared backbone consists of 5 convolutional lay-
ers with ELU activations. The first three layers have respectively
24, 36, and 48 5× 5 kernels with stride 2, followed by two
other layers with 64 3× 3 filters with stride 1. Input images are
resized to a 200× 88 px, yielding a 4× 18× 64 feature map.
After flattening we obtain N = 72 visual tokens. Each branch is
a multi-stage transformer encoder with input size D = 64. We
use 3 heads with a depth of 4 for each encoder stage.

The first stage of the transformer takes the state token xstate

along with the N visual tokens. The stage outputs N + 1 trans-
formed tokens, among which the enriched state token is used to
predict whether the vehicle should stop or go. To optimize the
stop/go prediction we use an L1 loss:

LSG =
|STL − S̄TL|+ |SP − S̄P |+ |So − S̄o|

3
(2)

where STL, SP , So represent intention signals in [0, 1] [5],
respectively for traffic light stop, pedestrian stop, and stop due
to other vehicles.

The second stage is in charge of generating driving com-
mands. Similarly to the first stage, the propagated state token
taken from the output of the stage is fed to a feed-forward
regressor to predict steer, throttle and brake. We use an L1 loss
for driving command prediction:

Lc = |α(s− s̄)|+ |β(t− t̄)|+ |γ(b− b̄)| (3)

where s ∈ [0, 1], t ∈ [0, 1] and b ∈ [0, 1] are respectively the
predicted steer, throttle and brake values, s̄, t̄ and b̄ the cor-
responding ground truth values and α, β, and γ are weights
with values 0.5, 0.45, and 0.05, as in [23]. For the Command
Coherency Module, we also use an L1 loss. The CCM loss
LCCM , and the stop/go loss, denoted as LSG, contribute to
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the total loss according to: LTotal = λLc + κLCCM + τLSG

where λ = 0.8, κ = 0.1 and τ = 0.1. We train our model end to
end with the Adam optimizer for 100 epochs with a batch size
of 64 and a learning rate of 0.0001.

V. MODEL EXPLAINABILITY

The self-attention of the transformer stages in our model
allows us to inspect the behavior of the model, thus providing
explanations for the predictions. We refer to this as built-in
explainability. Since we have dedicated each stage of the model
to different tasks, we can leverage such information to gain
insights about what is important for different aspects of the
learned policy. We combine the built-in explainability with
ex-post explainability, i.e. an approach specifically designed to
provide an additional interpretation of the model’s behavior at
inference time.

A. Built-in Explainability

In both stages of the transformer model, we can obtain visual
explanations in the form of attention maps. The maps are ob-
tained by considering the attention between the state token and
the image patches. The first stage provides information on what
the model looks at for stop/go prediction, whereas the second
identifies relevant image regions for a correct navigation.

B. Ex-Post Semantic Explainability

Built-in explainability only explains which regions are taken
into account. However, it does not provide information about
how these regions are interpreted by the model. We propose an
ex-post semantic explainability that combines visual attention
with k-NN search of image features.

We gather offline a set of m feature maps from the training
set and collect the D-dimensional descriptors of each spatial
location. In this way, we obtain a total of M = m ∗N feature
vectors,N being the number of image spatial patches. We denote
the i-th feature in the set as yi. At inference time, we extract the
feature map f of the input image and, for any spatial location of
interest (e.g., the most attended ones by built-in attention), we
perform a k-NN search with FAISS [44] using the L2 distance:

L = k − argmin
i=1 :M

‖fp − yi‖2 (4)

where fp is the p-th feature vector of the input image (p ∈
{1, . . . , N}).

For each k-NN we reproject the feature back onto the original
image and take the semantic segmentation of the corresponding
region1. This allows us to inspect what the model is hallucinating
by finding the dominant semantic category in the neighbors and
allows us to interpret failures.

VI. EXPERIMENTAL RESULTS

A. Dataset

For training and evaluating our model, we use the
Corl2017 [45] and NoCrash [5] datasets, both based on the Carla

1Ground truth segmentations are available in the NoCrash dataset [5]

TABLE I
SUCCESS RATE ON CORL2017

simulator [45]. The Corl2017 dataset has expert demonstrations
driving across the same town with a set of different weather
conditions. Testing is performed by driving in different condi-
tions: same town and weather as training; same town and new
weather; new town; new town new weather. Testing also includes
4 tasks: go straight, one turn, navigation, navigation dynamic.
The navigation tasks require driving from two distant waypoints
and the dynamic scenario includes other vehicles and pedestri-
ans. NoCrash has been designed to evaluate advanced driving
skills such as stopping at traffic lights, avoiding collisions and
driving in dense traffic environments. The evaluation involves 25
episodes on three navigation tasks, spanning from an empty town
scenario to a dense traffic one. Corl2017 has 657.601 frames and
NoCrash instead 1.279.738 frames, divided into frontal and two
lateral cameras (−30◦,+30◦). For both datasets, the agent must
comply with a given high-level command among go straight,
turn right, turn left and follow lane. As in [5] we train on a
subsample of 10% of the data, comprising 10 hours out of a total
100 hours of driving. Both datasets provide meta-data including
the current state of the autonomous vehicle and environmental
information such as driving commands, high-level commands
and position.

B. Results

We report in Table I the results on the Corl2017 dataset.
For a fair analysis, we compare our method directly against
other RGB-based methods. We also report methods that leverage
additional sources of supervision such as depth and semantic
segmentation or additional data to train the model. The results
show that our method obtains better or on-par results when
compared to other RGB-based models. Per-task success rates
are in the supplementary material.

Compared to Corl2017, where traffic light violations and col-
lisions are not considered, the NoCrash benchmark is extremely
more challenging since environmental cues must be taken into
account. We report results in Table II. Our approach outper-
forms RGB methods, with the only exception of CILRS [5],
which performs slightly better in some empty scenarios. In the
more challenging scenarios with regular and dense traffic, our
approach performs better than the competitors, highlighting the
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TABLE II
SUCCESS RATE ON NOCRASH

TABLE III
TRAFFIC LIGHT VIOLATIONS ON NOCRASH BENCHMARK (EMPTY)

capacity of the model to interpret patterns relative to traffic lights
and other agents.

In Table III we show the percentage of traffic light violations
committed by our model. These results are computed on the
task Empty both for Training Conditions and for New Weather
& New Town. As a baseline, we also report the results for a
Single Stage model, i.e. a simplified version of our approach
without the first stage. This model is state-aware as the full
model, but does not exploit the stop/go loss which we designed to
prevent inertia. Interestingly, our model outperforms the single
stage baseline by a large margin, showing the usefulness of the
stop/go loss to correctly focus on traffic lights. At the same time,
we significantly lower the traffic light violations compared to
CILRS, despite it obtained a higher success rate in the empty
tasks for New Weather & New Town (see Table II). We attribute
this difference to two factors: (i) CILRS’ strong ResNet vision
backbone yields better generalization across weather conditions;
(ii) higher capacity of our model to focus on traffic lights thanks
to attention and stop/go loss.

Fig. 2. Each row shows visual attention for the two stages of the model w.r.t an
input image. The two stages reflect important cues for the stop/go and command
generation losses respectively.

Fig. 3. Importance of state token vs image tokens. The presence of a red
traffic light is detected by the first transformer stage and encoded in the state
token propagated to the second stage. In this case, the second transformed stage
assigns a high attention value (red bar) to the state token. When restarting at the
green light and turning, the image tokens (blue bar) gain importance.

Attention plays an important role in identifying relevant cues.
Since we employ transformer encoders in every stage of the
model, we can visually inspect self-attention for every stage. We
create heatmaps by reprojecting on the image the attention value
relative to the state token against every visual token (Fig. 2). The
heatmaps for the two stages reflect the tasks that are addressed at
the corresponding levels: stop/go decision and driving command
generation. The first stage focuses on small scene details such as
traffic lights or pedestrians (additional qualitative examples for
the first stage of our model are shown in Fig. 9), while the second
stage attention is scattered and attends regions that are important
for correct navigation such as intersections and roadsides.

VII. STATE TOKEN AND INERTIA PROBLEM

We inspect the relative importance of the state token and the
image image content. The state token emitted by the first stage
is used to predict a stop/go decision with a dedicated loss. This
makes the token carry useful information to the second stage,
which is in charge of generating the actual driving commands. In
presence of a halt cue (e.g. red traffic light) encoded in the state
token propagated to the second stage, the attention scheme of the
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TABLE IV
ABLATION STUDY SWITCHING OFF MODEL COMPONENTS ON NOCRASH

Fig. 4. Top 10 nighbors for the highest scoring attention after a traffic light
turns green. We show examples of both successful crossing of the traffic light
(framed in green) and failed due to red light “hallucination” (framed in red).

Fig. 5. NoCrash (left) Throttle distribution; (right) Steer distribution.

second stage focuses on the state token rather than on the image
patches. When the state token indicates that the vehicle can
advance, the attention focuses instead on the image patches to
generate appropriate driving commands. Fig. 3 shows examples
of stage 2 attention, with values of the state token and of the
image, accumulated for each visual token.

The stop/go loss has a great impact on driving performance.
In Table IV we show the effect of removing such loss on the
NoCrash benchmark. In densely trafficked environments, the
success rate is almost halved when removing the loss. Similar
results are obtained with the single stage baseline. We also test a
model trained using a random vector as state token (w/o ST), yet
keeping the stop/go loss: success rate heavily drops, especially
in crowded environments. By feeding the state of the vehicle, the
agent becomes aware of its speed and momentum, e.g. indicating
whether and how a turn is taking place. This is hard to deduct
from a single image.

TABLE V
FAILURE RATE DUE TO INERTIA PROBLEM IN TOWN01 - NEW WEATHER OF

THE NOCRASH BENCHMARK

Furthermore, the use of the state token and the stop/go loss,
have a direct effect on addressing the inertia problem since the
first stage is explicitly trained to predict movement. Table V
shows the failure rate due to inertia. As in [5] we identify the
inertia problem when an agent is still for 8 seconds before time
out. Most failures of the single-stage baseline can be traced
back to inertia and these are almost completely eliminated with
the multi-stage model. Surprisingly, the NewWeather-Empty
configuration in the NoCrash Benchmark exhibits the highest
failure rate, attributed to inertia (as indicated in Table V). In this
context, when the vehicle comes to a halt, it becomes trapped in
a stationary state due to inertia. Notably, in an empty scenario,
the sole discernible visual cue is the traffic light. Conversely,
in Regular or Dense scenarios, the dynamic nature of the en-
vironment allows the autonomous vehicle to break free from
its stationary state by observing other vehicle behaviors and the
dynamic surroundings, prompting a reevaluation of its decisions.
In simple terms, the distance from a vehicle ahead or the dynamic
behaviors of other agents can act as a trigger to escape from stall
states caused by the inertia problem.

A more general analysis of the causes of failure is also
provided in Table VI. The multi-stage model considerably re-
duces collisions with pedestrians and vehicles, compared to
the single-stage baseline. Interestingly failures due to time out
(which include inertia) are almost eliminated. Tables V and VI
indicate that, despite addressing in a very effective way the iner-
tia problem, the model still suffers from a few inertia failures. We
exploit the Ex-post Semantic Explainability approach presented
in Section V to inspect 50 episodes of the NoCrash benchmark
where the inertia problem still occurs at traffic lights. In 56% of
the cases where the vehicle is stuck at a green light, the k most
similar features to the attended one contain a red traffic light, in
18% a pedestrian crossing, and in 3% a vehicle (Table VII).
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Fig. 6. Distribution of Steer-Throttle without (left) and with (right) Noise Injection on NoCrash. We have a better coverage of the space with Noise Injection.

TABLE VI
SUCCESS RATE AND NUMBER OF FAILED EPISODES TERMINATION CAUSE ON NOCRASH

Fig. 7. Pearson correlation between online success rate and offline MAE
obtained by training the model multiple times without (left) and with (right)
data augmentation on the state token. Dot size corresponds to training epoch.

Fig. 8. Distribution of Brake-Throttle values with the Command Coherency
Module disabled (blue) and enabled (orange).

In Fig. 4 we show the top 10 nearest samples of the image
region with the highest attention value (first transformer stage).
The first two rows show failure cases: the model correctly
focuses on the traffic light but although it is green, the model
maps it in a region of the latent space densely populated by
red traffic lights. We also show a sample of correct driving,

Fig. 9. Examples of Stage 1 attention. This layer is dedicated to understanding
whether the vehicle should halt its motion or not and therefore focuses on relevant
cues in the scene such as vehicles, pedestrians and traffic lights.

TABLE VII
% OF DETECTED ENTITIES IN FEATURES WHEN THE VEHICLE IS STOPPED AT

GREEN TRAFFIC LIGHT ON NOCRASH

where the vehicle accelerates as soon as the light turns green:
retrieved images all depict green lights. This suggests that what
may appear as inertia might instead be confused with a failure
of the backbone that mistakenly “hallucinates” halt cues.

A. Online/Offline Evaluation and Noise Injection

To address the offline/online shift, exhaustive coverage at
training time of possible input configurations (observed envi-
ronment + internal state) could be a solution, yet it is difficult to
achieve. For instance, the NoCrash dataset is unbalanced and
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throttle and steer values are extremely biased (Fig. 5). This
limits the possibility of effectively inputting the vehicle state
into the model at driving time. Our data augmentation strategy
that injects noise on the state token (Section IV-A) is intended to
address this limitation. We introduce a zero mean Gaussian noise
withσ = 0.1on the driving controls (which are in [0,1]) and with
σ = 1 for speed. This has the effect of letting the model see at
training time different combinations of state values. In Fig. 6 we
show the joint distribution of steer and throttle values with and
without noise injection. Two modes for throttle can be observed
corresponding to the over-represent stationary and full-throttle
scenarios. At the same time, steer has a Gaussian distribution
centered in zero (indicating no steer). With noise injection, we
get a more uniform distribution in the low-steer interval [−0.25,
0.25] across all throttle values. Also, higher steer values obtain
a more uniform coverage.

In Fig. 7 we quantify the correlation between online success
rate and offline validation MAE using the sample Pearson cor-
relation coefficient, as done in [10]. We plot the results without
using data augmentation via noise injection (corr: -0.64) and
with (corr: -0.92). Despite not having a huge impact on the
results in training conditions, as shown in Table IV, in gen-
eralization conditions noise injection brings noticeable benefits.
From the plots in Fig. 7 it can be seen that without using data
augmentation there are huge differences for similar MAE values
(e.g., 20% success rate gap with a small difference of 0.0001 in
MAE). Another component to help the agent act as the expert
demonstrator is the command consistency module (see IV-C). It
acts as a regularizer, encouraging the model to generate driving
commands that are not in conflict with each other, and thus
preventing unwanted behaviors at driving time. The necessity of
CCM also stems from the fact that maneuvers (e.g. a right turn)
could be performed in different ways (e.g. slow and narrow or
fast and wide turn). Results in Table IV confirm the usefulness
of CCM.

B. On the Command Coherency Module

In the proposed architecture, the CCM module is respon-
sible for the generation of non-conflicting throttle and brake
commands at training time. The impact of this module on the
coherency of throttle and brake pairs and ultimately on the ac-
curacy of driving at test time is demonstrated in the experiments
reported in Table IV that highlight a severe performance drop
when training is conducted with the CCM disabled. To delve
deeper into the effect of the CCM module, we log pairs of throttle
and brake command values during a driving session executed
twice, with CCM respectively enabled and disabled. For this
experiment, we use an episode of the NoCrash benchmark
consisting of about 3000 frames. Values of pairs (throttle, brake)
are shown in the scatter plots of Fig. 8. When the CCM is
disabled, it can be noticed that a relevant portion of the outputs
is characterized by both throttle and brake values greater than
zero, meaning that the vehicle is both trying to accelerate and
decelerate at the same time. By using the CCM, almost all these
non-coherent configurations disappear and only one of the two
commands at a time can take values significantly greater than
zero.

VIII. CONCLUSION AND FUTURE WORKS

We addressed two major issues in training a state-aware
model with imitation learning. First, the inertia problem has
been dealt with using a multi-stage architecture with state token
propagation, where the first stage learns to inform the next
one about stop/go decisions. We report extremely low rates
of inertia. Second, the offline/online gap has been bridged by
performing data augmentation on the state token, significantly
increasing the correlation between success rate and validation
error. In addition, we also exploited built-in visual attention with
a retrieval-based ex-post explainability to characterize failures.
We found that what may appear as inertia might indeed be
caused by a completely different problem, such as backbone
hallucinations. In future works, we intend to exploit the hier-
archical structure of the model to create an inspection chain
to debug the model: whenever the explainability allows us to
discover an issue, we can add a new level in the hierarchy to
enrich the state token with new information and condition the
generation of the driving commands. An interesting approach
in this direction would be to study a model with different
modules to be deployed in parallel rather than stacking them
hierarchically. Furthermore, the proposed model could be easily
improved to include additional sources of data such as depth and
segmentation, e.g. concatenating them to the input image.
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