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ABSTRACT This paper comprehensively reviews medical VQA models, structures, and datasets, focusing
on combining vision and language. Over 75 models and their statistical and SWOT (Strengths, Weaknesses,
Opportunities, Threats) analyses were compared and analyzed. The study highlights whether the researchers
in the general field influence those in the medical field. According to an analysis of text encoding
techniques, LSTM is the approach that is utilized the most (42%), followed by non-text methods (14%)
and BiLSTM (12%), whereas VGGNet (40%) and ResNet (22%) are the most often used vision methods,
followed by Ensemble approaches (16%). Regarding fusion techniques, 14% of the models employed non-
specific methods, while SAN (13%) and concatenation (10%) were frequently used. The study identifies
LSTM-VGGNet and LSTM-ResNet combinations as the primary approaches in medical VQA, with 18%
and 15% usage rates, respectively. The statistical analysis of medical VQA from 2018 to 2023 and individual
yearly analyses reveals consistent preferences for LSTM and VGGNet, except in 2018 when ResNet was
more commonly used. The SWOT analysis provides insights into the strengths and weaknesses of medical
VQA research, highlighting areas for future exploration. These areas include addressing limited dataset sizes,
enhancing question diversity, mitigating unimodal bias, exploring multi-modal datasets, leveraging external
knowledge, incorporatingmultiple images, ensuring practicalmedical application integrity, improvingmodel
interpretation, and refining evaluation methods. This paper’s findings contribute to understanding medical
VQA and offer valuable guidance for future researchers aiming to make advancements in this field.

INDEX TERMS Attention, deep learning, NLP, QA, question answering, SWOT analysis, vision, vision
and language, visual, VQA.

I. INTRODUCTION
Question answering (QA) is a process used to answer
questions written in a natural language.When these questions
focus on visual information, the process is called visual
question answering (VQA). The VQA about non-medical
images is called general VQA, whereas the VQA about

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

medical images is called medical VQA. This paper focuses
on medical images and related VQA questions. VQA
is a multidisciplinary task that involves natural language
processing (NLP), computer vision (CV), and knowledge
representation and reasoning (KR). The VQA chart in
Figure 1 asks whether the image contains fundus exudates,
extracts the features from the image (CV) and text (NLP),
and interprets the relationship between them (KR) to answer
the question by a classifier.
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Recently, given the high significance of deep learning
and the use of transfer learning in building vision and
NLP models, VQA has become a challenge for artificial
intelligence (AI) researchers. VQA helps achieve a visual
dialog AI-dream to make a computer as efficient as a human
in understanding, analyzing, and answering questions about
a visual scene [1]. Providing an explanation for answering
selection is essential in VQA [2]. Although significant
progress has been made in QA models, VQA models still
suffer from poor performance [3], [4]. The main reasons for
this poor performance are as follows:

• The method that humans follow to solve problems
differs from that used in VQA models. For example,
while humans can easily recognize an older human in
images, this could be harder for the model.

• Existing VQA models lack the ability to engage in
higher-level reasoning [4]. For example, a question
on tumor types according to specific properties, such
as size, shape, and texture, requires more than object
detection. When asking about a tumor larger than 5 mm,
the model must detect all tumors in the image and all
sizes of existing tumors, make a comparison, and answer
the question.

• Many studies do not focus on the deep relationships
between the expressed ideas in the text and image
contents [5]. Many studies do not show whether the
results are based on correct reasoning or coincidental
answers [4].

One gap in this field is the requirement of a large, rich
dataset with images and simple and complex question-answer
pairs and their correlations, with no biased data for a specific
subject. Therefore, much information was generated in the
last three years [6]. Vu et al. [7] generated three medical
datasets with complex questions.

Besides the complex question in the medical VQA gap,
there are limitations related to this field. Although recent
data has been made available by ImageCLEF-Med yearly
and researchers enhanced existing data or generated new
data, the information still has limitations and is insufficient
in developing a robust and practical model used in the
real world [8]. For example, a limitation appears in data
size, which needs to be large to handle various questions
and answers. Data with insufficient information about the
images or patient history limit the real-world medical VQA
agent system [8]. Although Kovaleva et al. [9] proposed
patient history data, they extracted the history based on
only one sentence. Furthermore, unbalanced or biased data
are two other data shortcomings. The data is simple, with
no complex questions, leading to a simple model that
cannot answer complex problems. Besides, automatic data
generation methods create a robust data problem [10]. All
those data matters sufficiently affect the performance of
VQA models. Researchers proposed different solutions and
multi-models to exceed those borders and enhance the overall
performance, which is still considered low.

Medical images, such as CT, MRI, Mammogram, and
ultrasound, are affected during acquisition and transmission.
These noisy images require a robust model that can pass
this noisy limitation [11]. Although researchers, such as
Nguyen et al. [12] and Zhan et al. [13], proposed models to
exceed this problem and significantly enhance performance,
the performance levels remain low. Besides those problems
in medical VQA, pre-trained models, such as VGGNet
and ResNet, which are regularly used, have fixed input
image sizes that can affect the models’ performance and
make disease features invisible [14]. Finding an effective
augmentation method can help in this case.

The medical VQA model can play a role in the medical
VQA agent system to help patients understand their X-ray,
CT, or MRI images. Medical VQA also helps students in
the medical field. The accurate models help doctors and
ray specialists acquire more information by asking questions
about ambiguous objects in the image.

Medical VQA is a new and underexplored AI field.
Researchers designed various multi-model VQAs to improve
performance. These multi-models require further study to
detect their pros and cons and overcome limitations. An in-
depth analysis of the most recent models is needed to
select a novel model structure that significantly enhances
performance. Several surveys have focused on VQA in
general field [1], [15], [16], [17], [18], [19], [20], [21], [22],
[23] except Lin et al. [24], which is classified as the first
survey in medical VQA. Table 1 contains the relative surveys.
Table 1 shows the published survey research in the VQA

field from 2017 to 2023. Although many surveys were
published, which denoted how active this field is, most of
these publications were in the general field and did not
have sections on medical VQA, their pros and cons, or the
open challenges in the medical field except Lin et al. [24],
Noor Mohammed and Srinivasan [26], and Lin et al. [27].
Lin et al. [24] and Mohamed and Srinivasan [26] propose
a VQA survey study in the medical field. Those survey
studies survey the methods designed for the 2018, 2019,
and 2020 ImageCLEF challenges and two extra models on
the VQA-RAD dataset. The Lin et al. [24] study also surveys
the public medical VQA datasets except VQA-Med 2021,
whereas Mohammed and Srinivasan [26] added VQA-Med
2021 and Diabetic Macular Edema (DME) dataset [28].
Additionally, they discussed the challenges and future studies
in the field. Lin et al. [24] and Mohamed and Srinivasan
[26] surveys, which are based on a comparison of 32 studies,
require further work to cover and analyze more methods and
datasets. The most recent survey, Lin et al. [27], is more
comprehensive than the previous two surveys [24], [26]
where it covers 44 studies with 47models. The present survey
study is an analytical review with 60 studies in medical VQA.
It would be more comprehensive than the previous study.
It proposes and comparesmore than 75medical VQAmodels.
Regarding a dataset, the existing reviews [24], [26], [27]
surveyed eight, five, and eight datasets, respectively, whereas,
in the proposed review, 16 datasets are analyzed. Moreover,
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FIGURE 1. QA main architecture.

TABLE 1. A VQA state-of-the-arts researches.

this review study compares the techniques used in themedical
field with those used in the general field, surveyed in the
Sharma and Jalal study [22] in 2014-2020, which surveyed
80 models. In the present review, the statistical analysis for
these studies in [22] is done to show which techniques are
primarily used in the general field and check whether those
influence the researchers in the medical field.

Furthermore, the Strengths, Weaknesses, Opportunities,
and Threats (SWOT) analysis technique provides a clear
view of a subject that helps the researchers understand
what has already been done and their weaknesses. They
also receive opportunities to consider new research about
the threats they may face. This research has utilized
SWOT to comprehensively analyze medical VQA datasets,
techniques, attentions, and vision+language pre-trained
models. The analytical study contributions are summarized as
follows:

• Proposing a survey of existing medical datasets with
their characteristics, generation, and statistical and
SWOT analysis.

• Vision and text featurization techniques along with
a fusion phase utilized in medical VQA undergo
discussion in this survey. The statistical and SWOT
analysis of these methods also take place.

• Statistical analysis of the text and vision featurization
methods in general VQA, based on Sharma and Jalal
[22], are compared with those in the medical field to
check whether general VQA influences the researcher.

• We propose the challenges and give recommendations
that may help the researcher start new research in the
field.

The rest of this paper proposes the review assumptions and
methodology in the second and third sections, followed by the
VQA question types in the fourth section. Surveys of medical
benchmark datasets have been proposed in the fifth section,
followed by VQA evaluation metrics in the sixth section.
Section seven proposes the medical VQA systems, and a
discussion and statistical and SWOT analysis are discussed
in the subsequent section. Besides, the open challenges and
recommendations for researchers were proposed in the same
section. Finally, we conclude the review in the last section.

II. THE REVIEW ASSUMPTION
Several assumptions can be taken into account while
conducting a critical evaluation based on statistics and SWOT
analysis for the dataset andmethods in the field of med-VQA.
These assumptions could consist of:
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• Representative Dataset: The chosen datasets for the
study are presumed to be typical of the broader field
of medical VQA and include various medical diseases,
image kinds, and question categories. Methodological
Consistency: The presumption that methodology used
in various research within the field follows consistent
guidelines to enable meaningful comparisons and anal-
ysis.

• Data quality: The dataset’s validity and integrity are
guaranteed by the assumption that the data used in
the reviewed studies is accurate, reliable, and correctly
annotated.

• Generalizability: The presumption that the results
and conclusions drawn from the dataset analysis and
methodologies used in the evaluated research can
be generalized to a broader context and applied to
additional medical VQA scenarios.

• SWOT framework applicability: Assumption that the
SWOT analysis framework is a suitable and valuable
tool for assessing the advantages and disadvantages of
the dataset and the methods used in the med-VQA area.

• Validity of Statistical Analysis: The validity of the
presented results is predicated on the assumption that the
statistical analyses carried out in the examined research
were adequately planned, carried out, and interpreted.

• Publication Bias: The presumption that the studies
that have been evaluated are a relatively complete and
unbiased sample of the literature currently available in
the field of medical VQA, without a significant bias
towards publishing only significant or positive findings.

III. THE REVIEW METHODOLOGY
This critical review aims to thoroughly study and analyze
existing benchmarks, techniques, and models in the medical
Visual Question Answering (med-VQA) field. The method-
ology of the review can be summarized as follows:

• Based on the contribution of studying the authors’
inspiration by the VQA in the general field based
on Sharma and Jalal [22] that focuses on studies
published between 2014 and 2021, and since the field
of Visual Question Answering (VQA) in the medical
domain emerged in 2018, the most relevant studies
published between 2018 and 2021 were included in our
survey. In order to stay up to date, we also considered
some studies published in 2022 and 2023. Additionally,
we included all studies from the imageCLEF challenges
conducted between 2018 and 2021. However, It is
important to note that this survey does not encompass
any papers from the med-VQA challenge organized
by imageCLEF in 2022, as no such event occurred
during that year. Furthermore, since the imageCLEF
2023 conference was held in September 2023, any
papers presented at that conference will not be included
in this survey.

• The review covers and analyzes all benchmarks used in
med-VQA since 2018, providing insights into their gen-
eration methods, sizes, validation procedures, question
types, image types, and limitations.

• Since one criterion of the comparison between models
is a performance metric, and it is one of the VQA gaps,
those metrics are discussed.

• The review explores VQA components and techniques
to provide researchers with a clear overview of VQA
before delving into med-VQA models.

• The models are classified into sections and discussed
based on their methods. Statistical and SWOT analyses
are conducted. The statistical analysis focuses on the
frequency of each method used in the literature along
with its performance on different datasets. Moreover,
the analysis is performed for each dataset, considering
the frequency of its usage and the best accuracy
achieved.Furthermore, the VQA in the general field
started three years before it was in the medical field.
Therefore, a statistical analysis is conducted to study
whether the researchers influence the researchers in the
general field.

• The SWOT analysis addresses several key questions:
What significant research aspects exist in the field that
can contribute to significant progress? What are the
limitations of existing research? What opportunities do
these limitations present for researchers? Lastly, what
aspects do researchers need to be aware of?

• Finally, the review concludes with a discussion of
challenges in the med-VQA field and provides recom-
mendations to guide future research.

Thismethodology ensures a comprehensive and systematic
analysis of med-VQA benchmarks, techniques, and models
and provides valuable insights for researchers in the field.

IV. MEDICAL VQA DATASETS
Many VQA datasets have been made publicly available.
These datasets can be classified based on the image type
into four categories: clip-art, natural, synthetic, and hybrid.
Figure 2 shows an example of the first three image types.
To the best of our knowledge, there are five of nine publicly
medical datasets.

A. VQA DATASET GENERATION
Generating questions and answer pairs in natural languages
based on images is a new process known as visual question
generation (VQG) [29]. The primary motivation behind this
task is to provide a large-scale dataset to create practical
VQA agents [30], [31]. There are three methods for visual
question-answer pairs: manual, automatic (VQG), and semi-
automatic. Figure 3 shows the dataset generation types.
Manual VQA dataset generation is based on specialists
creating the question and answer pairs, such as VQA-RAD
[10] and SLAKE [32] datasets. One dilemma related to
this method is that the size of these datasets is relatively
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FIGURE 2. VQA question types.

small due to the lack of available specialists. Since VQA
requires a large dataset, these datasets do not provide
an efficient, practical VQA agent. Another type of VQA
dataset generation is semi-automatic, based on automatic
generation for question-answer pairs and authenticated by
specialists, such as VQA-Med 2019. VQG refers to the
automatic visual question-answer pair generation methods
based on generating question-answer pairs with no human
authentications. RedVisDial [9], Tools [7], BACH [7], and
IDiRD [7] datasets are examples of VQG. The VQG datasets
have two primary problems: noise and having no sense
question-answer pairs [10], [33]. A generated VQG task is
more intelligent and tricky than VQA because it requires
deep background knowledge about the information related to
the problem before designing the methods [30]. The VQG
task has not undergone much exploration because of the
effort required to explore it [30]. Even if it is possible
to generate a dataset automatically from validated existing
datasets, themedical dataset still suffers from size limitations.
ImageCLEF included VQG tasks from challenges between
2019 and 2021. Sarrouti et al. proposed a comprehensive
state-of-the-art survey for VQG [30]. Table 2 shows a
comparison between the three dataset generation types in
terms of size, authentication, errors, question sense, cost, and
trust.

Eleven question types and four answer types (‘‘yes’’ or
‘‘no’’, numbers, categories, and locations) were used.

B. EXISTING VQA DATASETS
In 2018, the ImageCLEF-Med challenge [3] called on
researchers for a medical VQA challenge. They provided
the VQA-Med v1 dataset with 2,866 radiology images taken
from PubMed Central articles and 6,413 question-answer

TABLE 2. Comparison between dataset generation types.

FIGURE 3. Dataset generation types.

pairs. These question-answers were generated automatically
from corresponding image captions using the MS-COCO
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FIGURE 4. VQA-RAD dataset.

FIGURE 5. VQA-Med 2019 dataset.

FIGURE 6. VQA-Med 2020 dataset.

dataset [34]. Therefore, some questions did not make sense.
This dataset suffers from bias. In the same year, the

VQA-RAD [10] dataset was made available publicly. The
VQA-RAD was the first manual dataset included questions
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FIGURE 7. PathVQA dataset.

FIGURE 8. SLAKE dataset.

FIGURE 9. DME dataset.

answered by clinicians. It has 315 radiology anatomical
medical images; thus, one limitation of this dataset is its
small size. In 2019 and 2020, ImageCLEF-Med provided the

VQA-Med v2 [31] andVQA-Med v3 [35] datasets containing
4,200 radiology images with 14,292 question-answer pairs
and 5,000 radiology images with 5,000 question-answer
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pairs, respectively. All VQA-Med dataset versions relate to
general medicine. The reset medical VQA datasets created in
2020 relate to specific specializations.

The PATHVQA [8], RadVisDial [9], BACH [7], Tools, and
IDRiD [7] datasets deal with pathology, chest x-rays, breast
cancer histology, surgical tools, and diabetic retinopathy
specializations, respectively. The PATHVQA dataset has
4,998 pathology images with 32,799 open-ended questions.
One problem of the PATHVQA dataset is that the lack of
diversity and robustness in question-answer pairs created
from captions using the linguistic rules method [8]. The
RadVisDial [9] dataset contains 91,060 x-ray images with
455,300 question-answer pairs. These are split into 77,205,
7,340, and 6,515 images for training, validation, and tests.
The RadVisDial [9] is the largest dataset available and
is unique as it provides external information. The IDRiD
dataset [36] contains 516 retina color fundus images with
220,000 question-answer pairs. The BACH dataset contains
420 microscopy images for breast cancer with 360 question-
answer pairs. The Tools dataset includes data for seven
surgical tools: grasper, hook, bipolar, scissors, irrigator, clip
applier, and specimen bag. This dataset contains 2,523 images
with one million question-answer pairs. The IDRiD, Tools,
and BACH datasets contain complex questions. However,
these three datasets use dataset annotation as the generation
method for QA, which means the possibility of error if the
original dataset annotation has an error.

Another manual medical VQA dataset is a semantically-
labeled knowledge-enhanced (SLAKE) dataset, which is
created in 2021 [32]. As VQA-RAD dataset, SLAKE is based
on expertise humans for form the question answers pairs,
but it is larger than VQA-RAD dataset and answer more
composed and complex questions, including queries such
as disease-causing, organ functionality, or disease treatment.
SLAKE is a public medical bilingual dataset that has
English and Chines question answers pairs. It covers human
parts more than the previous existed datasets. It contains
642 radiology images with 14K question answers pairs.
It covers 12 diseases on 39 human parts.

The medical datasets in 2022 are OVQA dataset [37],
Diabetic Macular Edema (DME) dataset [28], EndoVis-18-
VQA [38], and Cholec80-VQA [38].
OVQA dataset [37] has been created based on hospital

FQAs. Physicians verified the template of the questions and
answers. OVQA has 19,020 question-answer pairs about
abnormality, modality, organ, plane, condition presence,
and attribute others. The dataset is split into training,
validation, and testing datasets with 2,000, 1,235, and 1,234
images related to 15,216, 1,902, and 1,902 question-answer,
respectively. All the questions are about two modalities: x-
ray and CT, which cover six body parts: hand, leg, head, and
chest. The dataset includes 2001 images distributed in 70%
are CT, and the remains are X-ray images.

Diabetic Macular Edema (DME) dataset [28] that is gen-
erated automatically from the Indian Diabetic Retinopathy
Image Dataset (IDRiD) [36] and the e-Ophta dataset [39]

is used. The dataset has 679 images with 13470 question-
answer pairs distributed into 433,112, 134 images with
9779,2380, and 1311 for the train, validation, and testing
dataset. The dataset has questions about exudates’ grades.
The dataset has specific questions with five answers. The
questions have been assigned to a region or a whole image.
It is classified as a manually generated dataset.

EndoVis-18-VQA dataset was generated by extracting
images from the MICCAI Endoscopic Vision Challenge
2018 [40] dataset. Each image has two question types:
one with a single-word answer (EndoVis-18-VQA (C)) and
another with a sentence answer (EndoVis-18-VQA (S)). The
question answers were generated based on the tissue, tool,
interaction annotations, and bounding box used for tool-tissue
interaction detection tasks [41]. Both versions have 1,560
images with 9,014 question-answer pairs and 447 images
with 2,769 question-answer pairs for training and testing
datasets, respectively.

Cholec80-VQA dataset has 21591 images generated from
sampling 40 video sequences of the Cholec80 dataset [42]
at 0.25 fps. Each image related to 2 questions using
the phase annotations and tool-operation provided in the
original dataset [42]. The dataset has two parts; the first
is for classifying 14 single words (Cholec80-VQA (C)),
and the second one is for sentence answers (Cholec80-
VQA (S)). Each part of the dataset has 17,000 images with
34,000 question-answer pairs and 4,500 images with 17,000
question-answer pairs for training and testing datasets.

The newest medical dataset is a Patient-oriented Visual
Question Answering (P-VQA) [43], which was published
in 2023. The dataset contains 2,169 X-ray, CT, MRI, and
Ultrasound images collected from hospitals with 24,800
question-answer pairs for 20 diseases of 12 body parts. The
p-VQA dataset is provided with a knowledge graph showing
the 13 relationship types between attributes and diseases.
Those relations are built based on patient questions. The
question-answer pairs are created based on the knowledge
graph and templates, which are written manually. The dataset
has 12 question types: symptoms, organs, diseases, therapy
advice, medicine, treatment, examination items, prognosis,
department, examination advice, prevention, pathogenesis,
and review time. The dataset splitting is 1,526 images
with 17,336 question-answer pairs, 218 images with 2,575
question-answer pairs, and 425 images with 4,889 question-
answer pairs for taking, validation, and testing datasets,
respectively. Figures 4-9 show examples from above datasets.
Table 3 shows a summary of the described datasets.

V. EVALUATION METRICS
There are two types of questions: multiple-choice and open-
ended questions. In multiple-choice, there is only one correct
answer. Therefore, metrics like accuracy, recall, and precision
can give a correct evaluation, but these performance metrics
are not precision metrics in the open-ended question due to
paraphrasing and synonyms. Therefore, other performance
metrics are used in open-ended questions in VQA: Wu-
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TABLE 3. Medical VQA benchmarks.

VOLUME 11, 2023 136515



S. Al-Hadhrami et al.: Critical Analysis of Benchmarks, Techniques, and Models in Medical VQA

TABLE 3. (Continued.) Medical VQA benchmarks.

Palmer Similarity (WUPS) [44], Word-based Semantic Sim-
ilarity (WBSS) [45], [46], BiLingual Evaluation Understudy
(BLEU) [47], Concept-based Semantic Similarity (CBSS)

[46], mean-per-type (MPT), and Metric for Evaluation of
Translation with Explicit ORdering (METEOR) [47].details
about each metric are discussed below.
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• Accuracy: Accuracy is the ratio of the correct predicted
answers to the number of all samples.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
. (1)

• Recall/ Sensitivity: Recall or Sensitivity denotes to the
ratio of the number of the correct predicted positive
answers to all actual positive answers.

Recall/Sensitivity =
TP

TP+ FN
. (2)

• Specificity: Specificity is the ratio of the correct
predicted negative answers to the number of all actual
negative answers.

Specificity =
TN

TN + FP
. (3)

• Precision: Precision is the ratio of the correct predicted
positive answers to the number of all predicted positive
answers.

Precision =
TP

TP+ FP
. (4)

• F1-Score:

F1− score = 2 ∗
Precision ∗ Recall
Precision+ Recall

(5)

• WUPS: This metric is based on the semantic meaning
and how much the actual answer differs from the
predicted answer. The decision of which the predicted
answer is true or false is controlled using a threshold.
WUPS is calculated based on the following equation:

WUPS(a, t)

=
1
N

N∑
i=1

min
{ ∏
a∈N

max
t∈N

(a, t),
∏
t∈T i

max
a∈T i

}
.100 (6)

where N ,A,T denoted to the total number of questions,
predicted answers, and the actual answers, respectively.
WUP(a, t) returns the position of words a and t in the
taxonomy relative to the position of the Least Common
Subsumer (a, t)

• WBSS: WBSS metric is based on finding the score
of word similarity between the actual answer and the
predicted answer. WBSS is calculated based on the
following equation:

S(q, c) = softmax(W2max(ReLU(W1U ), 0))

U = [
−→
U ;
←−
U ;
−→
U ⊙

←−
U ;
−→
U −
←−
U ]

−→
U i = GRU(

−→
U i−1, xi)

←−
U i = GRU(

←−
U i+1, xi)

xi = [BERT(q);BERT(ci)] (7)

where q and c are the question and context. S(q, c)
represent the similarity score between q and c. U ,
−→
U ,
←−
U are the input embedded, forward hidden states,

and backward hidden states, respectively. xi is the

input embeddings created by concatenating the BERT
embeddings of the question q and the i-th context token
ci.

• BLEU: BLEU metric depends on analyzing the n-
grams co-occurrences between the actual answer and
the predicted answer. BLEU is calculated based on the
following equation:

BLEU = BP. exp
( N∑
n=1

Wn logPn

)
(8)

where BP, W, and P denoted to Brevity Penalty, Positive
weights summing to one, and entire corpus Precision
score, respectively.

• CBSS: It is almost as same asWBSSmetric, excep using
MetaMap13 for biomedical concept extraction instead
of tokenizing the ground truth and system-generated
answers into words.

• MPT: This performance metrics was proposed solve the
problem of the dataset with unbalanced distribution of
question-type or bias answer distribution for each type
of question. It is based on calculating the harmonic or
arithmetic mean accuracy for each question type. It is
calculated suing the following equation.

MPT =
T∑
t=1

At

/
T or MPT = T

/ T∑
t=1

A−1t (9)

where T and A denoted to the number of question types
and Accuracy over question type t, respectively.

• METEOR: This metric aims to find the similarity by
when align the words in the ground truth with predicted
answers one to one. Not always such alignemt is found.
the following equation is used for calculate METEOR.

METEOR = (1− Pen) ∗ Fmean (10)

VI. VQA SYSTEM COMPONENTS
As noted, VQA consists of four components: image featur-
ization, text featurization, fusion (joint) that combines image
featurization and text featurization, classifier, and V+L
pre-trained model. For statistical analysis in this section,
we compared methods in the general field, and those in the
medical field based on our state-of-the-art and Sharma and
Jalal [22] VQA survey in the general field.

A. IMAGE FEATURIZATION
To easily apply mathematical operations to an image, the
image is represented as a numerical vector called image
featurization. There are various methods to calculate image
featurization, such as scale-invariant feature transform (SIFT)
[48], simple RGB vector, a histogram of oriented gradients
(HOG) [49], and Haar transform [50]. In deep learning
systems, such as CNNs, image featurization vectors are
learned by the neural network. There are two choices for
using deep learning: training a model from scratch or using a
pre-trained model. The first method requires highly specific
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computational sources and a large amount of data. As such,
pre-trained models such as AlexNet [51], VGGNet [52],
GoogLeNet [53], and ResNet [54][14] have been widely used
in VQA. The most frequently used pre-trained model in VQA
is ResNet because of the reasonable cost of its computational
resources [1]. Ensemble of some deep learning method may
be used too [55], [56], [57].

The visual features are extracted in this phase, and the
most recent VQA image models are based on pre-trained
CNNs, such as ResNet [58], [59], [60], DenseNet-121 [9],
and VGGNet [18], [46], [61], [62]. Other methods used for
image feature extraction that pay attention to questions in
VQA include the Multi-modal Low-rank Bilinear (MLB)
[59], Multimodal Compact Bilinear Pooling (MCB) [58],
Global Multimodal Low-rank Bilinear (G-MLB) [7], and
Multimodal Tucker Fusion for Visual Question Answering
(MUTAN) methods [60].

B. TEXT FEATURIZATION
The text featurization phase is responsible for selecting
and extracting features from the question and representing
them as numerical vectors using word-embedding meth-
ods to apply mathematical processing. There are three
word-embedding categories, namely count-based methods,
prediction-based methods, and hybrid methods. One problem
in word-embedding is choosing a suitable method for a given
problem, which depends on a trial-and-error approach [1].
Count-based methods count the occurrence of words in the
text using one-hot encoding, a co-occurrence matrix [63],
and singular value decomposition (SVD) [64]. In prediction-
based methods, word representation is learned based on
a model. Neural network models [65], continuous bag-of-
words (CBOW) [66], skip-gram [67] (which was used by
Google as open-source and called word2vec) [68], long-sort-
termmemory (LSTM) [69], gated recurrent units (GRU) [70],
skeleton-based [55] are examples of prediction-based word
embedding. Hybrid methods are created from count-based
and prediction-based methods. The global vectors (Glove)
method proposed by Pennington et al. [71] is an example
of a hybrid method. The most common methods used in
question models are LSTM [8], [9], [72], GRU [8], [72],
RNNs [46], [73], [74], [75], Faster-RNN [8], [72], and the
encoder-decoder method [7], [58], [59], [60], [61], [76].
In addition to the previous methods, pre-trained models have
been used, such as Generalized Autoregressive Pretraining
for Language Understanding (XLNet) [77] and the BERT
model [61], [78]. Some models have ignored text featur-
ization and convert the problem into image classification
problem [57], [79], [80]

C. FUSION METHODS
Since both text and image featurization are independently
processed, a fusion of the two is required for generation
answers. There are three fusion types: baseline fusionmodels,
end-to-end neural networkmodels, and joint attention models

[1]. In baseline fusions, various methods are used, such as
concatenation [81], element-wise multiplication, element-
wise addition [82], all of them [83], or a hybrid of
these methods with a polynomial function [84]. End-to-
end neural network models can be used to fuse image
and text featurization. Various methods are currently used,
including neural module networks (NMNs) [85], multimodal,
MCB [58], dynamic parameter prediction networks (DPPNs)
[86], multimodal residual network (MRNs) [87], cross-
modal multistep fusion (CMF) networks [88], basic MCB
model with a deep attention neural tensor network (DA-
NTN) module [89], multi-layer perceptron (MLP) [90], and
encoder-decoder method [91], [92]. The main reason for
using the joint attention model is to address the semantic
relationship between text attention and question attention [1].
There are various joint attention models, such as the word-
to-region attention network (WRAN) [93], co-attention [94],
the question-guided attention map (QAM) [95], and question
type-guided attention (QTA) [96].

Neural network methods such as LSTM and encoder-
decoder are also used in the fusion phase. Verma and
Ramachandran [61] designed a multi-model that used
encoder-decoder, LSTM, and GloVe.

VQA attention scheme: Attention is utilized to identify
semantic features in questions, images, or both. It improves
the interaction between questions and visual features by
focusing on specific words in the question and connecting
them with specific regions or objects in the image. Attention
mechanisms can be classified into single-hop and multi-hope
attentions, based on the attention layers number [22]. Shih
et al. [97] developed an attention-based approach for VQA
that has recently emerged as a key element in almost all
architectures. Current strands of research cover co-attention
architectures for the generation of simultaneous attention
in both textual and visual modalities, which heightens the
accuracy of predictions [81], [94]. Nevertheless, an important
challenge with global co-attention mechanisms relates to
their limited ability to model interactions and attention
among individual image regions and text segments, such
as at the level of the word token. Dense co-attention
networks, including BAN [98] and DCN [99], have been
developed to solve this challenge, wherein every image
region can interact with any - and every - word in the
question. Resultantly, models of this kind can produce a
more refined understanding and reason regarding the image-
question relationships; as such, VQA performance increases.
Despite this, the absence of self-attention within every
modality in dense co-attention networks such as BAN and
DCN is a bottleneck, such as word-to-word relationships
in the question and region-to-region relationships in the
image [100]. Yu et al. [100] developed a deep Modular
Co-Attention Network (MCAN) to solve this bottleneck,
which is composed of various Modular Co-Attention (MCA)
layers. An MCA layer, in turn, contains two general attention
units: guided attention (GA) and self-attention (SA). In the
case of the latter, SA, it captures intra-model interactions such
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as word-to-word and region-to-region interactions, whereas
GA captures cross-model interactions such as word-to-region
and region-to-word, which is achieved using a multi-head
attention architecture. Although it is flexible and expressive,
there are problematic aspects to this type of attention; in
particular, the result is always a weighted combination of
value pairs among which the model is attending. This can
create challenges when closely related context is unavailable
for the model to attend over, such as when there is a
word with no corresponding image region or context word.
In cases such as this, attention would lead to excessive
noise or, more severely, the distraction of the output vector,
which can undermine performance. Building on Huang et
al. [101], Rahman et al. used the Attention on Attention
(AoA) module to resolve this limitation. Cascading of the
AoAmodule occurs multiple times to produce a newModular
Co-Attention on Attention Network (MCAoAN), which is an
enhanced version of MCAN [100]. Through two independent
linear transformations [101], similar to GLU [102], the
AoA module produces both an information vector and an
attention gate. To generate an information vector, the query
context is concatenated with the attention results and a
linear transformation is applied. Ben-Younes et al. designed
MUTAN [60], which uses multi-modal tensor-based Tucker
decomposition to parametrize the interactions of bilinear
between question and image features. Minh et al. utilized the
operation of an inner product instead of applying low-rank
bilinear pooling, designing a full-rank bilinear transformation
G-MLB [103] to obtain significant answer ranges. All
previous approaches gave equal importance to question and
image features. Vu et al. claimed that paying more attention
to the question would enhance the results. Therefore, they
designed a Question-Centric Multi-modal Low-rank Bilinear
(QC-MLB) approach [7].
Various attention schemes are used in VQA models.

Many models have used SAN [9], [10], [12], [46], Bilinear
Attention Network (BAN) [12], MCB [10], [46], and MFB
[61] attentions. In 2020, Kovaleva et al. [9] applied two
attention architectures in the models: Late Fusion Network
(LF) and Recursive Visual Attention Network (RVA).

D. ANSWER CLASSIFICATION AND GENERATION
This phase is responsible for producing the answer. Most
researchers designed classification VQA models due to
easiness, whereas others designed answer generation models.
Several methods were used, such as a Softmax layer for
classification and LSTM or CNN models for a generation.

E. VISION-AND-LANGUAGE PRE-TRAINED MODEL
ResNet [54],GoogLeNet [53], and VGG [52], among other
models pre-trained on ImageNet [104], have contributed to
significant early advancements in enabling diverse down-
stream CV tasks. For several NLP applications, there are
some pre-trained models, such as XLNet [77], BERT [78],
and RoBERTa [105], attained high accuracy results compared

to the other transformer-based models in the state-of-the-arts.
Multiple researchers have used transformer learning for the
vision and language areas separately to resolve the challenge,
seeking to use external data to pre-train image features before
the training of feature fusion and generating a prediction [33].
Nevertheless, these studies have overlooked the degree to
which the pre-trained features are applicable and compatible
for cross-model fusion [33].
Driven by the usefulness and value of XLNET [77], BERT

[78], and other large-scale pre-trained language models,
recent researchers have sought to generate image-text joint
embedding from pre-training transformer-based models on
V+L datasets [92]. In turn, the joint embedding is fine-tuned
with a set of V+L tasks, which has been shown to
produce remarkable results. What distinguishes the models is
their pre-training strategies and cross-modality architecture.
Specifically, UNITER [106] and VisualBert [92] used a
single stream of transformers to learn image-text embedding
jointly. By contrast, LXMERT [107] and ViLBERT [108]
incorporated a pair of separated transformer blocks on image
and text input, along with a third fusion transformer block for
cross-modality [92].

Active research in this area has proposed pre-trained
V+L models [92], [106], [107], [108], [109], [110], [111],
[112], [113], [114], [115], [116], [117], [118], [119], [120],
[121], [122], [123], [124], [125], [126], [127], [128], [129],
[130], [131], [132], [133], [134], [135], [136], [137], [138],
[139], [140], [141], [142], [143], [144], [145] to learn V+L
representations for specific V+L tasks. Nevertheless, almost
all prior studies have not attempted to solve the problem of
learning these representations through the explicit detangling
of multi-modalities and the incorporation of visual concepts,
and they are not capable of directly performing downstream
generation tasks [146].

Pre-trained models like VGGNet or Bidirectional Encoder
Representations from Transformers (BERT) that are trained
for vision or NLP are not efficient for VQA models
[147]. Other pre-trained models trained for vision and text
datasets are more effective for VQA use. Examples of
these pre-trained model are UNITER [106], LXMERT [107],
VisualBERT [92], PixelBERT [114], and ClinicalBERT
[148]. Li et al. [92] compared four V+L pre-trained models,
namely VisualBERT [92], LXMERT [107], PixelBERT
[114], UNITER [106], CTL [144], VLMixter [145], BLIP
[149], OFA [150], CoCa [151], BEIT-3 [152], PaLI [153], and
BLIP-2 [154]. They determined that the pre-trained model
using VisualBERT achieved the highest AUC performance
at 0.987, whereas the model using PixelBERT earned the
lowest score. Table 4 shows the performance of the existing
pre-trained models that are fine-tuned on the VQA-Med
2019 dataset and which model was utilized in the medical
field.

VII. MEDICAL VQA MODELS
Medical VQA is an active topic where much research has
occurred. In this section, we propose the VQA models
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TABLE 4. Vision and language pre-trained.

in the medical field based on those in ImageCLEF VQA
challenges, CNN-LSTM-based models, image classification-
based models, ensemble-based models, vision-and-language
(V+L) transfer learning models, and models based on
external knowledge.

A. IMAGECLEF VQA CHALLENGES
ImageCLEF calls for challenge yearly, where it started the
first call inmedical challenge in 2018 [3]. Although 28 groups
were registered for this challenge, only five groups sent
results in 17 runs [46], [73], [74], [75], [93].
Most groups built their models based on deep learning.

RNN, such as BiLSTM and LSTM, were used for text
featurization, whereas encoder-decoder-based frameworks,
VGG, ResNet, and Inception-ResNet-v2, were used for
vision featurization. SAN and MCB attentions were used
by the NLM participant [46], whereas MFB and ETM were
used by the UMMS participant [93]. Their models achieved
the highest score of 0.162 and 0.186 for BLEU and WBSS,
respectively. The NLM model achieved the highest WBSS
performance with a score of 0.338.

Peng et al. [93] provided the winning model in the
ImageCLEF 2018 challenge. The model was based on
ResNet152 fine-tuned with ETM for vision, LSTM for
text, and co-attention with MFH, followed by a convolution
layer and ReLu layer for fusion. The models’ performances
in the first challenge were considered poor, unlike in the
second challenge, where the performance levels improved
[31].The best BLEU score was 0.644, whereas the best
BLEU performance was 0.162 in 2018. This progress shows
how this field encourages researchers to develop more
robust medical VQA models. In this challenge, 17 teams

[62], [103], [155], [156], [157], [158], [159], [160], [161],
[162], [163], [164] submitted 90 runs [31]. Like the first
challenge, the models based on deep learning used RNN
and CNN with or without pre-trained models and focused
on aligning the text with images. The winning Hanlin
model was based on VGG-16 and global average boolling,
BERT, and co-attention for visionm text and fusion phases,
respectively [156].
Like the previous two challenges, ImageCLEF 2020 and

ImageCLEF 2021 were based on deep learning [35], [165].
In the ImageCLEF 2020 challenge, 30, 11 [35], [61], [166],
[167], [168], [169], [170], [171], and 62 teams for team
registration, teams submitted, and runs, respectively. This
challenge featured CNN, such as VGGNet and ResNet, trans-
formers, such as RNN and BERT, multi-modal factorized
bilinear (MFB) pooling, and multi-modal factorized high-
order pooling (MFH) for vision, text, and fusion, respectively.
Liao et al. [55] were the 2020 winners. They designed a
method based on Skeleton-based Sentence Mapping (SSM).
For the visual aspect, they made several models based on
VGGNet, DenseNet, ResNet, NextNet, and mobileNet, and
several ensemble models from all those visual parts. The
winning model had an ensemble of all these models with
different versions. For fusion, class-wise and task-wise were
used. The best model with the ensemble of the last pre-trained
vision models achieved 0.496 and 0.542 for accuracy and
BLEU performances, respectively.

In ImageCLEF 2021, there were 48, 13 [57], [79], [80],
[165], [172], [173], [174], [175], [176], and 68 registered
teams, submitted teams, and runs, respectively, in the VQA
task [165]. The vision part of most VQA multi-models
is based on CNN models, such as ResNet, VGG, and
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TABLE 5. ImageClef challenges information.

TABLE 6. The models’ comparison on the Med-VQA 2018.

TABLE 7. The models’ comparison on the VQA-RAD 2018.

DenseNet, whereas text parts are based on LSTM and
transformer-based, such as BioBERT and BERT. Fusion parts
are based on pooling strategies, such as MFH and MFB. The
winning SYSU-HCP model was based on ensemble learning
with 0.416 and 0.382 for BLEU and accuracy, respec-
tively [57], [165]. Their model is based on eight models:
ResNeSt-50, ResNet-50, VGG-19, VGG-16, ResNeSt-50-
HAGAP, ResNet-50-HAGAP, VGG-19-HAGAP, and VGG-
16-HAGAP. They augmented the data using a mixup strategy
during the training. Table 6 summarizes the ImageCLEF
challenges from 2018 to 2021.

Al-Hadhrami et al.2 is a fused of multiple of Al-Hadhrami
et al.1 models based on the greedy soup technique.

B. CNN-LSTM BASED MODELS
Most models fall into the CNN-LSTM-based methods.
These models aim to solve problems in the field, such as
data limitation, required answer types, and text and vision
reasoning. The answer to the medical question depends
on the end-user [177]. When the end-user is a patient or
student, the answer could be simple; for example, ‘‘yes’’ or
‘‘no’’ could be enough, but the answer should have more
details when the end-user is a doctor or specialist. Therefore,
Gupta et al. proposed a hierarchical multi-model that depends
on segregating the question using the SVM traditional
machine learning classification to adopt the answer to the
end-user. Their model was based on using the Glove and
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TABLE 8. Models’ Com parison on the Med-VQA 2019.

TABLE 9. Models’ comparison on the Med-VQA 2020.

TABLE 10. Models’ comparison on the Med-VQA 2021.

BiLSTM technique for text featurization and the Inception-
Resnet-v2 pre-trained model for vision featurization. They

concatenated those features using the concatenation layer
followed by the batch normalization layer. They evaluated
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TABLE 11. Models’ comparison on PATHVQA dataset.

TABLE 12. Models’ comparison on the SLAKE dataset.

TABLE 13. Models’ comparison on the DME dataset.

TABLE 14. Models’ comparison on several medical VQA datasets.

their model on two public datasets: RAD-VQA and VQA-
Med v1. The model with segregated questions outperformed
the model without segregation on both datasets and combined
those two datasets. The model achieved 0.411, 0.132,
0.257 for BLEU on RAD, VQA-med, RAD-VQA+VQA-
med datasets, respectively, and 0.437, 0.162, and 0.288 for
WBSS on those three datasets, respectively. Their model did
not outperform the Zhou et al. [74] model, which differed
from their model thanks to the use of the fusion method.
Zhou et al. [74] also used attention. Their model suffered

from errors that they claimed could be returned to the
auto-generation dataset or showed the unsuitability of the
performance metric.

Using a pre-trained model before the fusion phase as a
solution for limiting data problems enhances the accuracy
but does not consider the alignment between text and image
[33]. Therefore, Gong et al. proposed a cross-model self-
attention (CMSA) to solve this problem and reformulated the
pre-trained model using an external dataset to adopt it for a
multi-task model of a multi-modality dataset. Their model
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was based on ResNet-31 and a decoder with threeMLP layers
for the vision phase, LSTM for the text phase, and CMSA for
the fusion. They used CMSA to focus on the image encoder
for the representation learning instead of the fusion feature.
The authors evaluated their proposed model on RAD-VQA
and three external datasets: chest X-Ray 2, brain MRI [193]
and abdominal CT 1. The model achieved 61.5%, 80.9%, and
76.3% accuracy for open-ended, closed-ended, and overall,
respectively.

Most VQA learn single reasoning for fusion representa-
tion, which is more suitable for closed-end questions than
open-ended questions. Zhan et al. built a multi-model that
learns the different reasoning representations for each TCR
and QCR question type [13]. Their model is a multi-level
reasoning skill suitable for tasks of complex medical VQA.
Their model is based on the Nguyen model [12] as a
backbone. They evaluated their reasoning modules on the
VQA-RAD dataset and achieved 60%, 79.3%, and 71.6%
accuracy for open-ended, close-ended, and overall questions,
respectively.

C. IMAGE-CLASSIFICATION-BASED MODELS
Although the visual questions are modality questions,
some authors prefer to convert the problem to an image
classification problem and use the answers as labels. This
method faces a generalized problem since the question could
change. Furthermore, the model cannot know whether a
question is framed negatively. Although this is the case, three
of seven groups in the ImageCLEF 2021 challenge used this
method [57], [79], [80], and the owner model was based on
this method [57]. Lubna et al. [186] proposed a VQA system
based on modality questions produced by ImageCLEF 2019.
They converted the problem into an image classification
problem and applied four model structures, namely, VGG-16,
VGG-19, MobileNet, and CNN, from scratch. Their models’
accuracy achieved 0.838, 0.8344, 0.846, and 0.838 for VGG-
16, VGG-19, MobileNet, and CNN, respectively.

D. ENSEMBLE-BASED MODELS
Nguyen et al. utilized MAML to solve the data limitation
problem and noisy medical images [12]. The model was
based on LSTM, MEVF, and attention mechanisms for text,
vision, and fusion phases. They also used a Convolutional
Denoising Auto-Encoder (CDAE) to reduce the noise. Their
model achieved accuracy figures of 43.9 and 71.5 for
open-end and closed-end questions on the VQA-RAD
dataset. The model showed its limitations because the text
embedding is based on GloVe, which may have a problem
with a larger corpus, and they trimmed questions to 12 words.

Most medical VQA utilized transfer learning techniques in
the vision phase to avoid data limitations, but the pre-trained
models trained on general images differ frommedical images.
Medical images are also noisy image labels. To solve
these problems, Do et al. designed a Multiple Meta-Model
Quantifying (MMQ) method for medical VQA [56].

They utilized Model Agonistic Meta-Learning (MAML)
to increase meta-data based on auto-annotations. MMQ has
three models: meta training for image feature extraction
based on MAML; data refinement based on auto-annotation
to increase the data and exceed the noisy labels limitation;
and meta quantifying that has the decision of meta-model
selection for best performance guarantee. They evaluated
their model on two datasets: RAD-VQA and PathVQA. The
Glove pre-trained model was used for the text phase, whereas
SAN and BAN were applied for attention alternately. The
model with BAN attention obtained the highest accuracy
scores, 48.8% and 67%, on PathVQA and RAD-VQA,
respectively.

VQA requires high reliability and performance, which
a reliable dataset may achieve. There is only one dataset
(VQA-RAD) that experts validated, whereas others were
generated by semi-auto-creation or auto-creation [32]. Since
VQA-RAD is a small dataset, Liu et al. created a newmedical
dataset, SLAKE, that was created by specialists and is
more extensive than VQA-RAD [32]. Additionally, external
knowledge can enhance the performance and robustness
of the VQA models. Therefore, they created a medical
knowledge base extracted from Wikipedia’s large-scale
knowledge base. They built two models based on LSTM,
VGG, and SAN for the text, vision, and fusion phases. The
primary difference between those two models is that one
model is based on applying FCN segmentation for images
before using VGG. This last method enhanced the accuracy
from 72.73% to 75.36% for the English language. They
trained the model without FCN segmentation for the Chinese
language and achieved 74.27% accuracy. The accuracy levels
are still not at the required standard for practical medical
applications [32].

Liao et al. and Gong et al., the winners of the last
two ImageCLEF challenges in 2020 and 2021, utilized
the ensemble methods [55], [57]. Another team in the
ImageCLEF Challenge 2021 achieved third place using the
ensemble technique with accuracy and BLEU figures of
0.348 and 0.391, respectively. Eslami et al. [79] model
was based on converting the VQA problem to an image
classification problem and ignoring the text part. It was also
the winner of this challenge [57].

E. MODELS WITH V+L PRE-TRAINED MODELS
According to Li et al. [147], V+L pre-trained models in
vision and text tasks outperform RNN-CNN models. They
compared four V+L pre-trained multi-modals: UNITER
[106], LXMERT [107], VisualBERT [92], and PixelBERT
[114]. All these pre-trained models used BERT on their
text embedding. Since the clinicalBERT pre-trained model
has a better effect in the medical field than BERT, Lie et
al. supposed that replacing the BERT pre-trained model in
the UNITER, LXIMERT, VisualBERT, and PixelBERT pre-
trained multi-models with clinicalBERT leading to better
multi-model than the original multi-models. However, all
new multi-models behaved worse than the original multi-
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models. This situation occurred because for various reasons:
1) they trained the models for only 12 epochs, which may
not be enough for adjusting the weights; 2) UNITER and
PixelBERT have two versions of models: basic and deeper.
They configured only the basic ones, which are not the best
choice; and 3) in PixelBERT, they froze the vision part and
copied the original weights to use them with clinicalBERT
text embedding. These weights required adjustment. In the
baseline performances of those four V+L pre-trainedmodels,
PixelBERT achieved the highest performance in the COCO
dataset, whereas visualBERT achieved theworst performance
in the same dataset. In Li et al.’s study, PixelBERT achieved
the lowest performance in the MIMIC-CXR dataset, whereas
visualBERT achieved the highest performance in the same
dataset. We believe that this result happened as the reason for
the previous limitations in their experiments and choosing the
shallower models instead of deeper ones.

F. MODELS BASED ON KNOWLEDGE-BASE
Medical VQA needs information about the diseases and
patients’ histories. This information is not included in the
existing datasets. Therefore, an external knowledge base is
needed to enhance the robustness of the models and make
them more practical. Lui et al. [32] and Zheng et al. [178]
utilized the external knowledge in training their models. Lui
et al. [32] created the SLAKE dataset and presented the
baseline scores in the created dataset. Zheng et al. [178]
designed a model that utilized BERT, VGG-16 with GAP, and
BLOCK for the text, vision, and fusion phases, respectively.
The model achieved the highest score on the VQA-Med
2019 dataset: 91.2%m 93.8%, 95.7%, 95.9%, and 95.8% for
BLEU, accuracy, precision, recall, and F-means. Although
the score was high, the dataset on which the model trained
had a high bias; no clarification was mentioned in relation to
this problem or the use of data visualization to check whether
the model learned the alignment between text and vision or if
the result stemmed from the dataset bias.

Kovaleva et al. [9] used the patient history trained model,
which utilized LSTM and DenseNet-121 for the text and
vision parts, on the RedVisdial dataset. They designed three
models with the same text and vision parts and three different
fusion methods, namely, SAN, LFM, and RVA attentions,
that achieved a macro-average score of 34, 33, and 33,
respectively. The used patient history was based on only one
sentence.

G. VQA WITH OTHER TASKS
Recently, Cong et al. [182] have utilized an image caption
task to give summarized information about the image in the
medical VQA. This information is embedded and merged
with question and image features to enhance the classifi-
cation task performance. They utilized ResNet-152, BERT,
and Progressive Compact Bilinear Interactions (PCBI)for
vision featurization, text featurization, and fusion phases,
respectively. The method was validated on RAD-VQA and
SLAKE datasets, where achieved 69.8 (+8.7), 79.8 (−0.6),

75.8 (+3.1), 80.2 (−1.0), 86.1 (+2.7), and 82.5 (+0.4) for
open, close, and overall datasets, respectively. One limitation
of this method is that the image caption task affects the wrong
information obtained by the final classification.

Tables 16-14 show the the models’ comparison based on
the the datasets each model fine-tuned on.

VIII. DISCUSSION AND ANALYSIS
Most researchers tend to exploit CNNs for vision feature
extraction due to the effectiveness of using deep learning in
medical object detection and classification. Some researchers
have built CNNs from scratch, whereas others have taken
advantage of pre-trained models, such as ResNet, VGGNet,
and BERT. However, pre-trained models focused on large
image or text datasets weaken model generalizability. Li et al.
[147] demonstrated that the VQA model based on the V+L
pre-trained model outperforms models based on CNN-RNN
models. Thus, the overall performance of the existing models
needs to be enhanced. While Vu et al. [7] achieved more than
90% macro accuracy, they achieved a recall of less than 10%
onBACH andVQA-Med v2 due to unbalanced data. Zheng et
al.’s models achieved an accuracy of 93.8% on VQA-Med v2
[178], but a major limitation with the VQA-Med v2 is a bias.
For example, Zhou et al. failed to show whether this result
was attained as a result of a dataset bias, which is all the more
concerning especially given that Lubna et al. [186] achieved
80.8% accuracy without using any questions whatsoever.

Following a state-of-the-art example, we concluded that
factors capable of improving such models involve utilizing
ensemble learning in the visual aspect, GAP, and using an
external knowledge-base, such as in [178]. We conducted
two types of analysis: statistical analysis and SWOT analysis.
The statistical analysis was designed to help researchers learn
which methods are primarily utilized in a medical VQA,
as well as which has a significant impact on improving per-
formance. This analysis could thus help in decision-making
processes regarding the techniques researchers require in
their models. The SWOT analysis, meanwhile, can help to
explain the strengths, weaknesses, opportunities, and threats
of a medical VQA, providing insights that can aid future
research.

A. STATISTICAL ANALYSIS
In this subsection, we aim to show the statistical analysis
of VQA models in the medical field and compare the
findings with those from a general field to examine how the
latter inspired researchers in a medical context. A statistical
analysis of the medical VQA benchmarks is also presented in
this discussion.

1) MEDICAL VQA BENCHMARKS
According to the state-of-the-art models presented in Tables
6-14, we detected the frequencies of using each dataset,
as shown in Figure 10. Table 15 shows the benchmarks,
as well as the best performance achieved in each instance.
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TABLE 15. The best performance of the models trained on each dataset.

FIGURE 10. Medical VQA dataset frequency.

FIGURE 11. Medical VQA dataset frequency.

2) MEDICAL VQA MULTI-MODAL
In Tables 6-14, we compared more than 75 VQA models in
terms of structure and performance in the medical field. The
findings are summarized in Table 16, which details the vision

and text encoding methods frequently used by researchers
and highlights which combination is predominantly used.
Long short-term memory (LSTM) was the text encoding
method most frequently used in medical VQA with a rate
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TABLE 16. Text and vision techniques distribution.

FIGURE 12. Medical VQA techniques - 2018 distribution.

FIGURE 13. Medical VQA techniques-2019 distribution.

FIGURE 14. Medical VQA techniques-2020 distribution.

of 44%, followed by no text encoding and BERT. The VQA
is then converted to the image classification problem with
a rate of 13%. Ignoring the text featurization phase in the

VQA limits the answer generation, causing a generalization
problem within the model. Although some models using
this method achieved a significant performance, such as
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FIGURE 15. Medical VQA techniques - 2021 distribution.

FIGURE 16. Medical VQA techniques - 2022-2023 distribution.

Gong et al. [57], who won the ImageCLEF 2021 challenge,
or Al-Sadi et al., who achieved second place in the
ImageCLEF 2020 challenge, this does not mean it represents
a good choice for a practical VQA, especially in a medical
context. Achieving a high score in VQA while ignoring one
part of the multi-modal denotes the bias problem in the
dataset. Putting aside those twomethods, Bi-LSTM and GRU
were used, achieving rates of 10% and 7%, respectively,
whereas SSM and BioBERT each recorded a rate of 5%.
Other methods, such as skeleton-based, skip-through, and
Glove, were rarely used. The winning model in ImageCLEF
2020 utilized a skeleton-based method [156].

In terms of vision, 11 methods were detected. The
VGGNet, ResNet, Ensemble, and DenseNet were the most
utilized, with a rate of 95%. The VGGNet was used in 28 out
of 78 models, with a rate of 34%. ResNet, Ensemble, and
DenseNet were used in 20, 14, and 5 out of 78 models,
respectively. While the researchers described a variety of
reasons for their choices regarding the multi-modal parts, the
performance of all the proposed models in this review shows
that these explanations reveal a failure of understanding in
terms of how the data are manipulated inside the model.
Consequently, a more successful representation explaining
both the model’s behavior and data visualization inside
the model is required. Figure 11 shows the distributions
rates of the text featurization, vision, fusion, and text-vision
combination methods.

To assess the change in using multi-modal parts over
time, we analyzed these methods yearly from 2018 to 2023.
Figures 14-18 show the distributions of text, vision, fusion,
and text and vision techniques in each instance. Each year,

the distributions were 10, 18, 26, 18, 5, and 1 models,
respectively. Since there is only one model in 2023, we merge
its analysis with the previous year, 2022. We found that
VGGNet was the vision pre-trained model primarily used in
2019, 2020, and 2021, with rates of 40%, 35%, and 42%,
respectively. By contrast, the ResNet was used in 50% and
67% of the 2018 and 2022-2023 models, while VGGNet was
used in 40% in 2018 and not used in 2022-2023. On the
other hand, LSTM was the text featurization technique most
widely used, with 80%, 39%, 35%, 50%, and 50% of models
utilizing the LSTM machine learning method for the text
encoding across the six years, respectively. Therefore, the
LSTM-CNN combination technique is the most-used multi-
modal VQA in the medical field, with rates of 80%, 49%,
36%, 50%, and 33%, respectively, from 2018-2023. However,
this high utilization of LSTM-CNN failed to achieve the
highest performance on anymedical VQAdatasets for all four
years. The fusion part is the most critical phase in the VQA
multi-modal. Different techniques were utilized, as shown in
Figures 12-16(c).
We conducted a statistical analysis for the models used in

the ImageCLEF challenges 2018-2021. in 2022, ImageCLEF
did not call for VQA challenge. Figure 17 shows the statistical
vision, text, and fusion techniques used in these instances
based on the models published by their teams. The number
of published papers are six [46], [46], [73], [74], [75], [93],
twelve [62], [103], [155], [156], [157], [158], [159], [160],
[161], [162], [163], [164], eight [35], [61], [166], [167],
[168], [169], [170], [171], and seven [57], [79], [80], [165],
[172], [173], [174], [175], [176] for 2018, 2019, 2020, and
2021, respectively. In the vision phase, it can be clearly seen
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FIGURE 17. ImageCLEF medical VQA 2018-2021 analysis.

FIGURE 18. General VQA 2014-2020 analysis.

from Figure 17 that VGG and ResNet pre-trained models
were mostly used across all four challenges. Ensemble and
BBN-ResNet were used in the two most recent years due to

their positive effect on general VQA and more recent medical
VQA. The winning models for those two years were both
ensemble models.
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In terms of the text phase, most participants used LSTM
in the 2018 and 2019 challenges before preferring to use
transformers like BERT and BioBERT in 2020. However,
in 2021, some participants ignored the text part and converted
the problem into image classification due to the dataset only
containing abnormality questions. The skeleton-based text
featurization proved its effectiveness in the 2020 challenge
compared to other methods.

Most of the fusion techniques deployed across the
challenges involved using an attention mechanism, as shown
in Figure 17-(c). In the 2021 challenges, no fusion method
was used in most models because converting the problem into
images classification or because the authors did not mention
it in their papers.

Besides VQA analysis in the medical field, we also
conducted an analysis of VQA in the general field for vision
and text featurization, based on the most comprehensive
survey by Sahani et al. (2021) [23]. Sahani et al. [23] reviewed
VQA in the general domain from 2014-2020. Since medical
VQA began in 2018, we analyzed the methods into two time
periods: 2014-2017 [58], [59], [60], [82], [85], [86], [87],
[95], [97], [195], [196], [197], [198], [199], [200], [201],
[202], [203], [204], [205], [206], [207], [208], [209], [210],
[211], [212], [213], [214], [215], [216], [217], [218], [219]
and 2018-2020 [4], [81], [88], [89], [96], [98], [137], [220],
[221], [222], [223], [224], [225], [226], [227], [228], [229],
[230], [231], [232], [233], [234], [235], [236], [237], [238],
[239], [240], [241], [242], [243], [244], [245], [246], [247],
[248], [249], [250]. Figure 20 shows the distributions of the
textual and visual featurization methods in the general field
between 2014-2020. We also compared the text and vision
featurization in general if the multi-modal structure followed
Sahani et al. [23] to show whether the methods utilized in the
general field influenced the researchers in medical VQA.

From Figure 18, it is clear that in terms of the text
featurization, LSTM was the most widely used technique
from 2014-2017, with a big difference rate with other meth-
ods. However, its use was then reduced by approximately
30% from 2018-2020. But this was not the case in the
medical field, where 42% of models utilized LSTM as shown
in Figure 11. Researchers preferred using the GRU from
2018-2020 instead. However, the GRU was rarely used in
medical VQA, with a rate of 6% from the proposed methods
included in this review. On the other hand, general VQA
models usedVGGNet as the vision featurizationmethod from
2014-2017, but from 2018-2020, the general VQA reduced
using VGGNet by approximately 75%, increasing the use
of ResNet by approximately 66.7% compared to previously.
This analysis shows that researchers in the medical field did
not follow the general development of VQA.

B. SWOT ANALYSIS
This section presents a SWOT analysis for medical
VQA datasets to show their main characteristics, helping
researchers to create new datasets or find methods that can
overcome their existing limitations. It also presents a SWOT

analysis of the existing multi-modal VQA in the medical
field, as well as vision and language pre-trained models.

1) MEDICAL VQA DATASET
VQA requires a vast dataset. Simple data with no complex
questions will lead to a simple model that cannot answer
complex problems. In medical VQA, while recent data
is made available annually by ImageCLEF-Med, allowing
researchers to either enhance existing data or generate new
data, this data remains insufficient in terms of developing
a robust and practical model used in the real world [8].
The limitation comes down to the size of the detail, which
needs to be sufficiently large to handle various questions.
Furthermore, limited data with insufficient information
regarding the images or patient history limits the real-world
medical VQA-agent system [8]. Although Kovaleva et al. [9]
proposed patient history data, this was extracted the based on
only one sentence. Furthermore, unbalanced data or biased
data are two other data limitations, while the automatic data
generation methods used fail to create robust data [10]. These
various data barriers sufficiently affect the performance of
VQA models. While researchers have proposed different
solutions and multi-models to exceed existing borders and
enhance overall performance, these efforts remain ineffective.

Table 17 shows a summary of the medical VQA dataset
SWOT analysis.

2) MEDICAL VQA SWOT ANALYSIS
Medical VQA is a new field that requires comprehensive
analysis in order to achieve a practical VQA-agent that can
be trusted by medical staff. Although it represents a new area
of research, existing studies have made significant progress,
as demonstrated by enhanced performance over the last four
years. Various techniques have been developed for the fusion
phase of VQA. However, in terms of medical VQA, various
weaknesses remain, and the level of performance in the field
is still considered too poor to be deployed in real-world
settings. A great deal of work must be done to improve
performance, especially given the insufficient explanations
provided thus far for the errors and model behavior proposed.
The leaking of vast trusted datasets that specialists validate
also remains an ongoing concern. No V+L pre-trained model
has been designed specifically for the medical field, opening
opportunities for researchers to find solutions.

The metrics used for VQA are ineffective in terms of
open questions, so developing a new metric especially for
those question types, is in demand. One limitation related to
VQA in the medical field concerns having a large, manually
validated dataset, which is a key requirement for creating a
trusted medical VQA-agent. Table 18 and Table 19 show the
SWOT analysis summary of the V+L pre-trained models and
the medical VQA, respectively.

C. CHALLENGES AND RECOMMENDATIONS
According to the SWOT analysis detailed in the previous
section, we propose a number of challenges facing VQA
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TABLE 17. SWOT analysis on medical VQA dataset.

TABLE 18. SWOT analysis on medical VQA.

TABLE 19. SWOT analysis on VQA V+L pre-trained models.

in the medical field and provide recommendations to future
researchers.

1) LIMITED DATASETS SIZE
This limitation requires researchers to expand the dataset,
either by using other existing datasets or creating a new
dataset. Automatic dataset generation helps in creating a
vast dataset, but this method has drawbacks. The related

limitations are a leak of specialists who validate the new or
expanding dataset, original dataset errors, and bias. Another
solution regarding the limited dataset size is dataset augmen-
tation classical methods or Generative Adversarial Networks
(GANs). We suggest a dataset augmentation method that has
not been applied yet. 1this method is based on questions
and answers can be paraphrased to augment the dataset.
However, even if this approach expands the dataset, it still
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may lead to a bias barrier. These challenges mean researchers
must spend considerable efforts on creating solutions to the
medical dataset generation problem. Transfer learning is one
potential solution that may help in solving limited dataset
size dilemmas. According to state-of-the-art examples, only
one study has utilized a V+L pre-trained model. We rec-
ommend using V+L pre-trained models because they are
pre-trained on vast V+L datasets and the text is aligned with
images.

2) QUESTION DIVERSITY
VQA-RAD [10] and SLAKE [32] have the most diversity
among all medical VQA datasets, as shown in Table 4,
whereas others suffer from diversity limitations. Future
researchers should increase the diversity of the question
when creating a new dataset, as insufficient diversity will
lead to impractical medical VQA-agents. Increasing the
question diversity of the dataset can be achieved via an
external source, such as knowledge bases, books, another
dataset, or patients’ histories. Augmentation using negative
or question combinations of more than one question using
logical conductive rules increases the dataset diversity. The
new dataset, which has more questions diversity than those in
the original dataset, needs to be validated by experts. Besides,
combining more than one dataset with different question
types will increase the diversity.

3) UNIMODALITY BIAS PROBLEM
This limitation denotes the ability to avoid one modality
of the multi-modality with significant performance, such
as Lubna et al. [186], who achieved 84.6% on VQA-Med
2019 without using the text part in pre-training the model.
This limitation can reduce the model’s robustness. The bias
in text modality is called text prior. Creating a new dataset,
or expanding an existing dataset to remove the bias, is one
solution to this problem. However, since creating a vast
medical VQA benchmark is difficult, researchers need to find
methods that contribute to robust the model while reducing
bias sensitivity. The ensemble method has been shown to
reduce the dataset bias [57], while a variety of methods have
been proposed in the general VQA field to aid bias reduction
[251], [252], [253], [254], [255]. Yuan’s survey has proposed
language bias in VQA [256].

4) MULTI-MODALITY DATASET
Most existing medical VQA datasets are multi-modality
datasets containing different image formats, i.e., MRI, X-
ray, and CT. This multi-modality increases learning difficulty.
Splitting the dataset into several single modality datasets and
training each one with a different model configurationmay be
an effective method. However, this approach may exacerbate
barriers regarding the limited size of the dataset due to its
existence in the original dataset. To solve this limitation, see
subsection VIII-A.

5) EXTERNAL KNOWLEDGE
Disease diagnosis may depend on patient history, lab tests,
and other information about both the disease itself and its
intersection with other diseases. As all existing datasets
do not have this information, it would be better to use
external knowledge to improve the learning capabilities
of future models. Zhou et al. [109] and Liu et al. [32]
have built models based on the external knowledge-base.
We recommend that the researchers use external knowledge
and multiple resources to make the model more practical.

6) MULTIPLE IMAGE
One necessary procedure used in medicine is to follow up on
patients’ progress by periodically checking their radiology
images. As no model has been developed thus far for this,
we recommend creating a dataset with multiple images and
developing a robust and practical modal to follow up on
patient progress.

7) NON-EQUIVALENT CLASSES
The dataset contains non-equivalent classes, meaning that
not all classes present in the training set are included in
the testing set. This case poses challenges in effectively
evaluating the model’s performance. For instance, in the
case of VQA-RAD and SLAKE, which are predominantly
utilized in med-VQA, the training and testing sets consist of
473 and 121 classes and 221 and 33 classes, respectively. This
variance of the class number between testing and training sets
can not give a trust model performance comparisons because
one model may predict the classes are not in the testing set
better than those in the testing set, and it is considered poor
performance compared to another model that can not detect
classes that are not in the testing set. On the other hand,
by increasing the examples in the testing set with new classes,
the first model, which is considered poorer than the second
model, outperforms the second one. Therefore, we encourage
researchers to generate, extend, and utilize equivalent class
datasets.

8) INTEGRITY WITH AN APPLICABLE MEDICAL APPLICATION
The primary purpose of a medical VQA is to build practical
AI-Agents that support the specialist in their decision-making
regarding diseases, medical students in their studies, and
patients in interpreting their radiology images without the
need of specialists. These aims cannot be realized until a
robust model with a meager error rate and high generalization
has been developed. Researchers must consider all previous
comments and threats, as mentioned in Table 9-11.

9) MODEL INTERPRETATION
Model interpretation represents a major challenge for
researchers. One obstacle is that there is no explicit model
behavior, nor any explanation regarding the reasons for
selecting a specific answer. As the model is manipulated as
a black box, most existing models have been designed based
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TABLE 20. Abbreviation and acronyms.
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on trial and error to select and configure the multi-modality
parts. Vu et al. [7] have drawn attention to focus areas that can
help to select or generate answers. Although this approach
was correct in some samples, the result was not, and the
researchers could not explain the reasons why.

10) EVALUATION
Accuracy ismostly used inVQA. Even though it fails in terms
of BLEU when used with short sentences, as is the case in
VQA, it is usually used as a performance metric regarding
this problem. Manmadhan and Kovoor suggest using Ngram
EVAluation (NEVA), which was proposed by Forsbom in
2003, because NEVA is better suited to short sentences than
BLEU while being similar in other aspects [1]. Proposing a
new metric that achieves the need for VQA evaluation is a
demanding proposition [1], [7], [14], [92]. Paraphrased sen-
tences resulting from the answer generation have to be classi-
fied as correct answers. Developing a performance metric for
VQA therefore remains an open, ongoing area of concern.

IX. CONCLUSION
VQA is a vision and language field that concerns answering
natural language questions about a given image, with medical
VQA used to answer questions about medical images.
This paper has comprehensively reviewed numerous medical
VQA models, structures, and datasets, as well as V+L pre-
trained models by comparing more than 75 models with their
statistical and SWOT analysis. It also statistically analyzed
multi-modality parts in general fields, highlighting howVQA
researchers in medical contexts are not inspired by general
VQA research. The combination of text and vision methods
was analyzed. According to the statistical analysis, 42%,
14%, and 12% of the models studied used LSTM, Non-
text, and BiLSTM methods for text encoding, respectively.
The most used vision methods were VGG, ResNet, and
Ensemble, with rates of 40%, 22%, and 16%, respectively.
In terms of the fusion phase, no method was used 14%
of the time, while SAN and concatenation methods were
used at rates of 13%, and 10%, respectively. We found
that LSTM-VGGNet and LSTM-ResNet combinations were
primarily used in medical VQA, with 18% and 15% rates,
respectively. Besides the statistical analysis of medical VQA
2018-2023, a statistical analysis of medical VQA in each
separate year was performed, showing that LSTM and
VGGNet were the main methods utilized for text and vision,
respectively, in every year except 2018, where ResNet was
most utilized.

This analysis shows a clear difference in methods used
across different VQA domains. Our SWOT analysis can
help future researchers to identify both the strengths and
weaknesses they need to be aware of in this field, while also
detailing how these weaknesses can create opportunities for
them to contribute solutions. Based on the SWOT analysis,
recommended areas of future research are as follows: limited
datasets size, question diversity, unimodal bias problems,
multi-modal datasets, external knowledge, multiple images,

integrity in terms of practical medical applications, model
interpretation, and evaluation.

ACKNOWLEDGMENT
The authors would like to thank King Saud University and the
College of Computer and Information Sciences. Additionally,
the authors would like to thank the Deanship of Scientific
Research at King Saud University for funding and supporting
this research through the initiative of DSR Graduate Students
Research Support (GSR). This work was supported in part
by KSU and the Center for Complex Engineering Systems
(jointly between MIT and KACST).

ABBREVIATION
The following abbreviations are used in this manuscript:

REFERENCES
[1] S. Manmadhan and B. C. Kovoor, ‘‘Visual question answering: A state-

of-the-art review,’’ Artif. Intell. Rev., vol. 53, no. 8, pp. 5705–5745,
Apr. 2020.

[2] D. H. Park, L. A. Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell,
and M. Rohrbach, ‘‘Multimodal explanations: Justifying decisions and
pointing to the evidence,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Salt Lake City, UT, USA, Jun. 2018, pp. 8779–8788.

[3] S. A. Hasan, Y. Ling, O. Farri, J. Liu, H. Müller, and M. Lungren,
‘‘Overview of ImageCLEF 2018 medical domain visual question
answering task,’’ in Proc. CLEF Working Notes, Sep. 2018, pp. 1–9.

[4] Y. Xi, Y. Zhang, S. Ding, and S. Wan, ‘‘Visual question answering model
based on visual relationship detection,’’ Signal Process., Image Commun.,
vol. 80, Feb. 2020, Art. no. 115648.

[5] X. Wang, Y. Liu, C. Shen, C. C. Ng, C. Luo, L. Jin, C. S. Chan,
A. van den Hengel, and L. Wang, ‘‘On the general value of evidence,
and bilingual scene-text visual question answering,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Vancouver, BC, Canada,
Jun. 2020, pp. 10123–10132.

[6] S.-H. Chou, W.-L. Chao, W.-S. Lai, M. Sun, and M.-H. Yang, ‘‘Visual
question answering on 360deg images,’’ in Proc. IEEE/CVF winter Conf.
Appl. Comput. Vis., Jul. 2020, pp. 1607–1616.

[7] M. H. Vu, T. Löfstedt, T. Nyholm, and R. Sznitman, ‘‘A question-centric
model for visual question answering in medical imaging,’’ IEEE Trans.
Med. Imag., vol. 39, no. 9, pp. 2856–2868, Sep. 2020.

[8] X. He, Y. Zhang, L. Mou, E. Xing, and P. Xie, ‘‘PathVQA: 30000+ ques-
tions for medical visual question answering,’’ 2020, arXiv:2003.10286.

[9] O. Kovaleva, C. Shivade, S. Kashyap, K. Kanjaria, J. Wu, D. Ballah,
A. Coy, and A. Karargyris, ‘‘Towards visual dialog for radiology,’’ in
Proc. 19th SIGBioMed Workshop Biomed. Lang. Process. Stroudsburg,
PA, USA: Association for Computational Linguistics (ACL), Jul. 2020,
pp. 60–69.

[10] J. J. Lau, S. Gayen, A. B. Abacha, and D. Demner-Fushman, ‘‘Data
descriptor: A dataset of clinically generated visual questions and answers
about radiology images,’’ Sci. Data, vol. 5, no. 1, pp. 1–10, Nov. 2018.

[11] W. Jifara, F. Jiang, S. Rho, M. Cheng, and S. Liu, ‘‘Medical image
denoising using convolutional neural network: A residual learning
approach,’’ J. Supercomput., vol. 75, no. 2, pp. 704–718, Feb. 2019.

[12] B. D. Nguyen, T.-T. Do, B. X. Nguyen, T. Do, E. Tjiputra, and Q. D. Tran,
‘‘Overcoming data limitation in medical visual question answering,’’
in Proc. MICCAI 22nd Int. Conf. Med. Image Comput. Comput.-
Assist. Intervent., Shenzhen, China, Cham, Switzerland: Springer, 2019,
pp. 522–530.

[13] L.-M. Zhan, B. Liu, L. Fan, J. Chen, and X.-M. Wu, ‘‘Medical visual
question answering via conditional reasoning,’’ in Proc. 28th ACM Int.
Conf. Multimedia, Seattle, WA, USA, Oct. 2020, pp. 2345–2354.

[14] F. Ren and Y. Zhou, ‘‘CGMVQA: A new classification and generative
model for medical visual question answering,’’ IEEE Access, vol. 8,
pp. 50626–50636, 2020.

[15] Q. Wu, D. Teney, P. Wang, C. Shen, A. Dick, and A. van den Hengel,
‘‘Visual question answering: A survey of methods and datasets,’’Comput.
Vis. Image Understand., vol. 163, pp. 21–40, Oct. 2017.

136534 VOLUME 11, 2023



S. Al-Hadhrami et al.: Critical Analysis of Benchmarks, Techniques, and Models in Medical VQA

[16] K. Kafle and C. Kanan, ‘‘Visual question answering: Datasets, algo-
rithms, and future challenges,’’Comput. Vis. ImageUnderstand., vol. 163,
pp. 3–20, Oct. 2017.

[17] A. K. Gupta, ‘‘Survey of visual question answering: Datasets and
techniques,’’ 2017, arXiv:1705.03865.

[18] D. Zhang, R. Cao, and S. Wu, ‘‘Information fusion in visual question
answering: A survey,’’ Inf. Fusion, vol. 52, pp. 268–280, Dec. 2019.

[19] C. Patil and M. Patwardhan, ‘‘Visual question generation: The state of the
art,’’ ACM Comput. Surveys, vol. 53, no. 3, pp. 1–22, May 2021.

[20] Y. Srivastava, V.Murali, S. R. Dubey, and S.Mukherjee, ‘‘Visual question
answering using deep learning: A survey and performance analysis,’’ in
Proc. 5th Int. Conf. Comput. Vis. Image Process. (CVIP). Prayagraj, India,
Singapore: Springer, 2020, pp. 75–86.

[21] Y. Zou and Q. Xie, ‘‘A survey on VQA: Datasets and approaches,’’ in
Proc. 2nd Int. Conf. Inf. Technol. Comput. Appl. (ITCA), Guangzhou,
China, Dec. 2020, pp. 289–297.

[22] H. Sharma and A. S. Jalal, ‘‘A survey of methods, datasets and evaluation
metrics for visual question answering,’’ Image Vis. Comput., vol. 116,
Dec. 2021, Art. no. 104327.

[23] M. Sahani, P. Singh, S. Jangpangi, and S. Kumar, ‘‘A survey on
representation learning in visual question answering,’’ in Proc. Int.
Conf. Mach. Learn. Big Data Analytics (IMLBDA). Cham, Switzerland:
Springer, 2021, pp. 326–336.

[24] Z. Lin, D. Zhang, Q. Tao, D. Shi, G. Haffari, Q. Wu, M. He,
and Z. Ge, ‘‘Medical visual question answering: A survey,’’ 2021,
arXiv:2111.10056.

[25] M. S. Sunny and W. Katiyar, ‘‘A survey on visual questioning answering:
Datasets, approaches and models,’’ Int. J. Sci. Technol. Res., vol. 9, no. 2,
pp. 3919–3923, Jan. 2020.

[26] S. S. N. Mohamed and K. Srinivasan, ‘‘A comprehensive interpretation
for medical VQA: Datasets, techniques, and challenges,’’ J. Intell. Fuzzy
Syst., vol. 44, no. 4, pp. 5803–5819, Apr. 2023.

[27] Z. Lin, D. Zhang, Q. Tao, D. Shi, G. Haffari, Q. Wu, M. He, and
Z. Ge, ‘‘Medical visual question answering: A survey,’’ Artif. Intell. Med.,
vol. 143, Sep. 2023, Art. no. 102611.

[28] S. Tascon-Morales, P. Márquez-Neila, and R. Sznitman, ‘‘Consistency-
preserving visual question answering in medical imaging,’’ in Proc.
25th Int. Conf. Med. Image Comput. Comput. Assist. Intervent.–MICCAI,
Singapore, Cham, Switzerland: Springer, 2022, pp. 386–395.

[29] M. Sarrouti, A. Ben Abacha, and D. Demner-Fushman, ‘‘Goal-driven
visual question generation from radiology images,’’ Information, vol. 12,
no. 8, p. 334, Aug. 2021.

[30] M. Sarrouti, A. Ben Abacha, and D. Demner-Fushman, ‘‘Visual question
generation from radiology images,’’ in Proc. 1st Workshop Adv. Lang. Vis.
Res., 2020, pp. 12–18.

[31] A. B. Abacha, S. A. Hasan, V. V. Datla, J. Liu, D. Demner-Fushman,
and H. Müller, ‘‘VQA-med: Overview of the medical visual question
answering task at ImageCLEF 2019,’’ in Proc. CLEF, Sep. 2019,
pp. 1–11.

[32] B. Liu, L.-M. Zhan, L. Xu, L. Ma, Y. Yang, and X.-M. Wu, ‘‘Slake:
A semantically-labeled knowledge-enhanced dataset for medical visual
question answering,’’ inProc. IEEE 18th Int. Symp. Biomed. Imag. (ISBI),
Nice, France, Apr. 2021, pp. 1650–1654.

[33] H. Gong, G. Chen, S. Liu, Y. Yu, and G. Li, ‘‘Cross-modal self-attention
with multi-task pre-training for medical visual question answering,’’
2021, arXiv:2105.00136.

[34] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, ‘‘Microsoft COCO: Common objects
in context,’’ in Proc. Comput. Vis.–ECCV 13th Eur. Conf., Zurich,
Switzerland, Cham, Switzerland: Springer, Sep. 2014, pp. 740–755.

[35] A. B. Abacha, V. V. Datla, S. A. Hasan, D. Demner-Fushman, and
H. Müller, ‘‘Overview of the VQA-med task at ImageCLEF 2020: Visual
question answering and generation in the medical domain,’’ in Proc.
CLEF Conf. Labs Eval. Forum, 2020, pp. 1–9.

[36] P. Porwal, S. Pachade, R. Kamble, M. Kokare, G. Deshmukh,
V. Sahasrabuddhe, and F.Meriaudeau, ‘‘Indian diabetic retinopathy image
dataset (IDRiD): A database for diabetic retinopathy screening research,’’
Data, vol. 3, no. 3, p. 25, Jul. 2018.

[37] Y. Huang, X. Wang, F. Liu, and G. Huang, ‘‘OVQA: A clinically
generated visual question answering dataset,’’ in Proc. 45th Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., Madrid, Spain, Jul. 2022,
pp. 2924–2938.

[38] L. Seenivasan, M. Islam, A. K. Krishna, and H. Ren, ‘‘Surgical-VQA:
Visual question answering in surgical scenes using transformer,’’ in Proc.
25th Int. Conf. Med. Image Comput. Comput. Assist. Intervent.–MICCAI,
Singapore, Cham, Switzerland: Springer, Sep. 2022, pp. 33–43.

[39] E. Decencière, G. Cazuguel, X. Zhang, G. Thibault, J.-C. Klein, F. Meyer,
B. Marcotegui, G. Quellec, M. Lamard, R. Danno, D. Elie, P. Massin,
Z. Viktor, A. Erginay, B. Laÿ, and A. Chabouis, ‘‘TeleOphta: Machine
learning and image processing methods for teleophthalmology,’’ IRBM,
vol. 34, no. 2, pp. 196–203, Apr. 2013.

[40] M. Allan, S. Kondo, S. Bodenstedt, S. Leger, R. Kadkhodamohammadi,
I. Luengo, F. Fuentes, E. Flouty, A. Mohammed, and M. Pedersen, ‘‘2018
Robotic scene segmentation challenge,’’ 2020, arXiv:2001.11190.

[41] M. Islam, L. Seenivasan, L. C. Ming, and H. Ren, ‘‘Learning and reason-
ing with the graph structure representation in robotic surgery,’’ in Proc.
23rd Int. Conf. Med. Image Comput. Comput. Assist. Intervent.–MICCAI,
Lima, Peru, Cham, Switzerland: Springer, Oct. 2020, pp. 627–636.

[42] A. P. Twinanda, S. Shehata, D. Mutter, J. Marescaux, M. de Mathelin,
and N. Padoy, ‘‘EndoNet: A deep architecture for recognition tasks on
laparoscopic videos,’’ IEEE Trans. Med. Imag., vol. 36, no. 1, pp. 86–97,
Jan. 2017.

[43] J. Huang, Y. Chen, Y. Li, Z. Yang, X. Gong, F. L. Wang, X. Xu, and
W. Liu, ‘‘Medical knowledge-based network for patient-oriented visual
question answering,’’ Inf. Process. Manage., vol. 60, no. 2, Mar. 2023,
Art. no. 103241.

[44] Z. Wu and M. Palmer, ‘‘Verb semantics and lexical selection,’’ 1994,
arXiv:cmp-lg/9406033.

[45] G. Soğancıoğlu, H. Öztürk, and A. Özgür, ‘‘BIOSSES: A semantic
sentence similarity estimation system for the biomedical domain,’’
Bioinformatics, vol. 33, no. 14, pp. i49–i58, Jul. 2017.

[46] A. B. Abacha, S. Gayen, J. J. Lau, S. Rajaraman, and
D. Demner-Fushman, ‘‘NLM at ImageCLEF 2018 visual question
answering in the medical domain,’’ in Proc. Work. Notes CLEF Conf.
Labs Eval. Forum, Lugano, Switzerland, 2018, pp. 1–10.

[47] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, ‘‘BLEU: A method
for automatic evaluation of machine translation,’’ in Proc. 40th Annu.
Meeting Assoc. Comput. Linguistics, Philadelphia, PA, USA, 2002,
pp. 311–318.

[48] D. G. Lowe, ‘‘Object recognition from local scale-invariant features,’’ in
Proc. 7th IEEE Int. Conf. Comput. Vis., vol. 2, Aug. 1999, pp. 1150–1157.

[49] N. Dalal and B. Triggs, ‘‘Histograms of oriented gradients for human
detection,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), San Diego, CA, USA, Jul. 2005, pp. 886–893.

[50] R. Lienhart and J. Maydt, ‘‘An extended set of Haar-like features for
rapid object detection,’’ in Proc. Int. Conf. Image Process., Sep. 2002,
pp. 900–903.

[51] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[52] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[53] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston, MA,
USA, Jun. 2015, pp. 1–9.

[54] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[55] Z. Liao, Q. Wu, C. Shen, A. van den Hengel, and J. Verjans, ‘‘AIML
at VQA-Med 2020: Knowledge inference via a skeleton-based sentence
mapping approach for medical domain visual question answering,’’ in
Proc. Work. Notes CLEF Conf. Labs Eval. Forum, Thessaloniki, Greece,
Sep. 2020, pp. 1–14.

[56] T. Do, B. X. Nguyen, E. Tjiputra, M. Tran, Q. D. Tran, and
A. Nguyen, ‘‘Multiple meta-model quantifying for medical visual
question answering,’’ 2021, arXiv:2105.08913.

[57] H. Gong, R. Huang, G. Chen, andG. Li, ‘‘SYSU-HCP at VQA-Med 2021:
A data-centric model with efficient training methodology for medical
visual question answering,’’ Proc. Work. Notes CLEF Conf. Labs Eval.
Forum, vol. 201, Sep. 2021, pp. 1–11.

[58] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, andM. Rohrbach,
‘‘Multimodal compact bilinear pooling for visual question answering
and visual grounding,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process., Austin, TX, USA, 2016, pp. 457–468.

VOLUME 11, 2023 136535



S. Al-Hadhrami et al.: Critical Analysis of Benchmarks, Techniques, and Models in Medical VQA

[59] J.-H. Kim, K.-W. On, W. Lim, J. Kim, J.-W. Ha, and B.-T. Zhang,
‘‘Hadamard product for low-rank bilinear pooling,’’ inProc. 5th Int. Conf.
Learn. Represent. (ICLR), Oct. 2016, pp. 1–6.

[60] H. Ben-Younes, R. Cadene, M. Cord, and N. Thome, ‘‘MUTAN:
Multimodal tucker fusion for visual question answering,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Venice, Italy, Oct. 2017,
pp. 2631–2639.

[61] H. K. Verma and S. Ramachandran, ‘‘Harendrakv at VQA-med 2020:
Sequential VQAwith attention formedical visual question answering,’’ in
Proc. Work. Notes CLEF Conf. Labs Eval. Forum, Thessaloniki, Greece,
Sep. 2020, pp. 1–7.

[62] R. Bounaama and M. E. A. Abderrahim, ‘‘Tlemcen university at
ImageCLEF 2019 visual question answering task,’’ in Proc. Work. Notes
CLEF Conf. Labs Eval. Forum, Lugano, Switzerland, Sep. 2019, pp. 1–6.

[63] G. A. Miller and W. G. Charles, ‘‘Contextual correlates of semantic
similarity,’’ Lang. Cognit. Processes, vol. 6, no. 1, pp. 1–28, Jan. 1991.

[64] C. Eckart and G. Young, ‘‘The approximation of one matrix by another
of lower rank,’’ Psychometrika, vol. 1, no. 3, pp. 211–218, Sep. 1936.

[65] W. Xu and A. Rudnicky, ‘‘Can artificial neural networks learn language
models?’’ in Proc. 6th Int. Conf. Spoken Lang. Process. (ICSLP), Beijing,
China, Oct. 2000, pp. 1–4.

[66] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781.

[67] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Dis-
tributed representations of words and phrases and their compositionality,’’
in Proc. Adv. neural Inf. Process. Syst., vol. 26, 2013, pp. 1–6.

[68] Google. (2013). Word2Vec. Accessed: Nov. 2023. [Online]. Available:
https://code.google.com/archive/p/word2vec/

[69] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[70] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder–decoder for statistical machine translation,’’ in Proc.
Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2014,
pp. 1724–1734.

[71] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), Doha, Doha, Qatar, 2014, pp. 1532–1543.

[72] (2020). Challenge-Pathology Visual Question Answering-
Grand Challenge. Accessed Nov. 2023. [Online]. Available:
https://pathvqachallenge.grand-hallenge.org/PathVQA_challenge/

[73] I. Allaouzi, B. Benamrou,M. Benamrou, andM. B. Ahmed, ‘‘Deep neural
networks and decision tree classifier for visual question answering in the
medical domain,’’ in Proc. CLEF (Working Notes), Sep. 2018, pp. 1–7.

[74] Y. Zhou, X. Kang, and F. Ren, ‘‘Employing inception-ResNet-v2 and Bi-
LSTM for medical domain visual question answering,’’ in Proc. Work.
Notes CLEF Conf. Labs Eval. Forum, Avignon, France, Sep. 2018,
pp. 1–11.

[75] B. Talafha and M. Al-Ayyoub, ‘‘Just at VQA-med: A VGG-Seq2Seq
model,’’ in Proc. Work. Notes CLEF Conf. Labs Eval. Forum, Avignon,
France, Sep. 2018, pp. 1–8.

[76] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R. Urtasun,
and S. Fidler, ‘‘Skip-thought vectors,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 28, 2015, pp. 3294–3302.

[77] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and
Q. V. Le, ‘‘XLNet: Generalized autoregressive pretraining for language
understanding,’’ in Proc. 33rd Adv. Neural Inf. Process. Syst., Vancouver,
BC, Canada, 2019, pp. 5753–5763.

[78] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[79] S. Eslami, G. de Melo, and C. Meinel, ‘‘Teams at VQA-Med 2021:
BBN-orchestra for long-tailed medical visual question answering,’’ in
Proc. Work. Notes CLEF Conf. Labs Eval. Forum, Bucharest, Romania,
Sep. 2021, pp. 1211–1217.

[80] R. Schilling, P. Messina, D. Parra, and H. Löbel, ‘‘PUC Chile team at
VQA-Med 2021: Approaching VQA as a classification task via fine-
tuning a pretrained CNN,’’ in Proc. Work. Notes CLEF Conf. Labs Eval.
Forum, Bucharest, Romania, Sep. 2021, pp. 1346–1351.

[81] Z. Yu, J. Yu, C. Xiang, J. Fan, and D. Tao, ‘‘Beyond bilinear: Generalized
multimodal factorized high-order pooling for visual question answering,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 12, pp. 5947–5959,
Dec. 2018.

[82] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and
D. Parikh, ‘‘VQA: Visual question answering,’’ in Proc. ICCV, Araucano
Park, Chile, 2015, pp. 2425–2433.

[83] M. Malinowski, M. Rohrbach, and M. Fritz, ‘‘Ask your neurons: A deep
learning approach to visual question answering,’’ Int. J. Comput. Vis.,
vol. 125, nos. 1–3, pp. 110–135, Dec. 2017.

[84] K. Saito, A. Shin, Y. Ushiku, and T. Harada, ‘‘DualNet: Domain-
invariant network for visual question answering,’’ inProc. IEEE Int. Conf.
Multimedia Expo (ICME), Hong Kong, Jul. 2017, pp. 829–834.

[85] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, ‘‘Neural module
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).
Las Vegas, NV, USA: Caesars Palace, Jun. 2016, pp. 39–48.

[86] H. Noh, P. H. Seo, and B. Han, ‘‘Image question answering using
convolutional neural network with dynamic parameter prediction,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV,
USA: Caesars Palace, Jun. 2016, pp. 30–38.

[87] J.-H. Kim, S.-W. Lee, D. Kwak, M.-O. Heo, J. Kim, J.-W. Ha, and
B.-T. Zhang, ‘‘Multimodal residual learning for visual QA,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 29, 2016, pp. 1–6.

[88] M. Lao, Y. Guo, H. Wang, and X. Zhang, ‘‘Cross-modal multistep fusion
network with co-attention for visual question answering,’’ IEEE Access,
vol. 6, pp. 31516–31524, 2018.

[89] Y. Bai, J. Fu, T. Zhao, and T. Mei, ‘‘Deep attention neural tensor network
for visual question answering,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
Munich, Germany, Sep. 2018, pp. 20–35.

[90] M. Narasimhan and A. G. Schwing, ‘‘Straight to the facts: Learning
knowledge base retrieval for factual visual question answering,’’ in
Proc. Eur. Conf. Comput. Vis. (ECCV), Munich, Germany, Sep. 2018,
pp. 451–468.

[91] L. Chen, X. Yan, J. Xiao, H. Zhang, S. Pu, and Y. Zhuang, ‘‘Counterfac-
tual samples synthesizing for robust visual question answering,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 10797–10806.

[92] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang, ‘‘Visu-
alBERT: A simple and performant baseline for vision and language,’’
Aug. 2019, arXiv:1908.03557.

[93] Y. Peng, F. Liu, andM. P. Rosen, ‘‘UMASS at ImageCLEFmedical visual
question answering (Med-VQA) 2018 task,’’ in Proc. Work. Notes CLEF
Conf. Labs Eval. Forum, Avignon, France, Sep. 2018, pp. 1–9.

[94] J. Lu, J. Yang, D. Batra, and D. Parikh, ‘‘Hierarchical question-image
co-attention for visual question answering,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 29, 2016, pp. 289–297.

[95] K. Chen, J. Wang, L.-C. Chen, H. Gao, W. Xu, and R. Nevatia,
‘‘ABC-CNN: An attention based convolutional neural network for visual
question answering,’’ 2015, arXiv:1511.05960.

[96] Y. Shi, T. Furlanello, S. Zha, and A. Anandkumar, ‘‘Question type
guided attention in visual question answering,’’ in Proc. ECCV, Munich,
Germany, Sep. 2018, pp. 151–166.

[97] K. J. Shih, S. Singh, and D. Hoiem, ‘‘Where to look: Focus regions for
visual question answering,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR). Las Vegas, NV, USA: Caesars Palace, Jun. 2016,
pp. 4613–4621.

[98] J.-H. Kim, J. Jun, and B.-T. Zhang, ‘‘Bilinear attention networks,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp. 1–6.

[99] D.-K. Nguyen and T. Okatani, ‘‘Improved fusion of visual and language
representations by dense symmetric co-attention for visual question
answering,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Salt Lake City, UT, USA, Jun. 2018, pp. 6087–6096.

[100] Z. Yu, J. Yu, Y. Cui, D. Tao, and Q. Tian, ‘‘Deep modular co-
attention networks for visual question answering,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA,
Jun. 2019, pp. 6274–6283.

[101] L. Huang, W. Wang, J. Chen, and X.-Y. Wei, ‘‘Attention on attention for
image captioning,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Seoul, South Korea, Oct. 2019, pp. 4633–4642.

[102] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, ‘‘Language modeling
with gated convolutional networks,’’ in Proc. Int. Conf. Mach. Learn.,
2017, pp. 933–941.

[103] M. H. Vu, R. Sznitman, T. Nyholm, and T. Löfstedt, ‘‘Ensemble of
streamlined bilinear visual question answering models for the imageclef
2019 challenge in the medical domain,’’ in Proc. CLEF Conf. Labs Eval.
Forum, Lugano, Switzerland, vol. 2380, Sep. 2019, pp. 1–6.

136536 VOLUME 11, 2023



S. Al-Hadhrami et al.: Critical Analysis of Benchmarks, Techniques, and Models in Medical VQA

[104] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Miami, FL, USA, Jun. 2009, pp. 248–255.

[105] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘RoBERTa: A robustly optimized
BERT pretraining approach,’’ 2019, arXiv:1907.11692.

[106] Y.-C. Chen, L. Li, L. Yu, A. E. Kholy, F. Ahmed, Z. Gan, Y. Cheng,
and J. Liu, ‘‘Uniter: Universal image-text representation learning,’’ in
Proc. Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer,
Sep. 2020, pp. 104–120.

[107] H. Tan and M. Bansal, ‘‘LXMERT: Learning cross-modality encoder
representations from transformers,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process. 9th Int. Joint Conf. Natural Lang. Process.
(EMNLP-IJCNLP), 2019, pp. 5100–5111.

[108] J. Lu, D. Batra, D. Parikh, and S. Lee, ‘‘ViLBERT: Pretraining task-
agnostic visiolinguistic representations for vision-and-language tasks,’’
2019, arXiv:1908.02265.

[109] L. Zhou, H. Palangi, L. Zhang, H. Hu, J. Corso, and J. Gao, ‘‘Unified
vision-language pre-training for image captioning and VQA,’’ in Proc.
AAAI Conf. Artif. Intell., 2020, vol. 34, no. 7, pp. 13041–13049.

[110] W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai, ‘‘VL-
BERT: Pre-training of generic visual-linguistic representations,’’ 2019,
arXiv:1908.08530.

[111] J. Guo, C. Zhu, Y. Zhao, H. Wang, Y. Hu, X. He, and D. Cai, ‘‘LAMP:
Label augmented multimodal pretraining,’’ 2020, arXiv:2012.04446.

[112] J. Cho, J. Lu, D. Schwenk, H. Hajishirzi, and A. Kembhavi, ‘‘X-
LXMERT: Paint, caption and answer questions with multi-modal
transformers,’’ 2020, arXiv:2009.11278.

[113] Y. Li, Y. Pan, T. Yao, J. Chen, and T. Mei, ‘‘Scheduled sampling in vision-
language pretraining with decoupled encoder–decoder network,’’ 2021,
arXiv:2101.11562.

[114] Z. Huang, Z. Zeng, B. Liu, D. Fu, and J. Fu, ‘‘Pixel-BERT: Aligning
image pixels with text by deep multi-modal transformers,’’ 2020,
arXiv:2004.00849.

[115] F. Yu, J. Tang, W. Yin, Y. Sun, H. Tian, H. Wu, and H. Wang, ‘‘ERNIE-
ViL: Knowledge enhanced vision-language representations through scene
graph,’’ 2020, arXiv:2006.16934.

[116] S. Zhang, T. Jiang, T. Wang, K. Kuang, Z. Zhao, J. Zhu, J. Yu,
H. Yang, and F.Wu, ‘‘DeVLBert: Learning deconfounded visio-linguistic
representations,’’ in Proc. 28th ACM Int. Conf. Multimedia, Oct. 2020,
pp. 4373–4382.

[117] F. Luo, P. Yang, S. Li, X. Ren, and X. Sun, ‘‘CAPT: Contrastive
pre-training for learning denoised sequence representations,’’ 2020,
arXiv:2010.06351.

[118] W. Li, C. Gao, G. Niu, X. Xiao, H. Liu, J. Liu, H. Wu, and H. Wang,
‘‘UNIMO: Towards unified-modal understanding and generation via
cross-modal contrastive learning,’’ 2020, arXiv:2012.15409.

[119] P. Zhang, X. Li, X. Hu, J. Yang, L. Zhang, L. Wang, Y. Choi, and J. Gao,
‘‘VinVL: Revisiting visual representations in vision-languagemodels,’’ in
Proc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. (CVPR), Montreal,
QC, Canada, Jun. 2021, pp. 5575–5584.

[120] C. Li, M. Yan, H. Xu, F. Luo, W. Wang, B. Bi, and S. Huang, ‘‘SemVLP:
Vision-language pre-training by aligning semantics at multiple levels,’’
2021, arXiv:2103.07829.

[121] C. Kervadec, G. Antipov,M. Baccouche, and C.Wolf, ‘‘Weak supervision
helps emergence of word-object alignment and improves vision-language
tasks,’’ 2019, arXiv:1912.03063.

[122] J. Lin, A. Yang, Y. Zhang, J. Liu, J. Zhou, and H. Yang, ‘‘InterBERT:
Vision-and-language interaction for multi-modal pretraining,’’ 2020,
arXiv:2003.13198.

[123] X. Li, X. Yin, C. Li, P. Zhang, X. Hu, L. Zhang, L.Wang, H. Hu, L. Dong,
and F. Wei, ‘‘OSCAR: Object-semantics aligned pre-training for vision-
language tasks,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit.
(CVPR). Cham, Switzerland: Springer, 2020, pp. 121–137.

[124] E. Bugliarello, R. Cotterell, N. Okazaki, and D. Elliott, ‘‘Multimodal
pretraining unmasked: A meta-analysis and a unified framework of
vision-and-language BERTs,’’ Trans. Assoc. Comput. Linguistics, vol. 9,
pp. 978–994, Sep. 2021.

[125] W. Kim, B. Son, and I. Kim, ‘‘ViLT: Vision-and-language transformer
without convolution or region supervision,’’ 2021, arXiv:2102.03334.

[126] M. Zhuge, D. Gao, D.-P. Fan, L. Jin, B. Chen, H. Zhou, M. Qiu,
and L. Shao, ‘‘Kaleido-BERT: Vision-language pre-training on fashion
domain,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 12642–12652.

[127] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, and J. Clark, ‘‘Learning transferable
visual models from natural language supervision,’’ in Proc. Int. Conf.
Mach. Learn., Jul. 2021, pp. 8748–8763.

[128] J. Li, R. Selvaraju, A. Gotmare, S. Joty, C. Xiong, and S. C. H. Hoi,
‘‘Align before fuse: Vision and language representation learning with
momentum distillation,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 34,
2021, pp. 1–6.

[129] L. Yuan, D. Chen, Y.-L. Chen, N. Codella, X. Dai, J. Gao, H. Hu,
X. Huang, B. Li, and C. Li, ‘‘Florence: A new foundation model for
computer vision,’’ 2021, arXiv:2111.11432.

[130] C. Alberti, J. Ling, M. Collins, and D. Reitter, ‘‘Fusion of detected objects
in text for visual question answering,’’ 2019, arXiv:1908.05054.

[131] Y. Wang, S. Joty, M. R. Lyu, I. King, C. Xiong, and S. C. H. Hoi,
‘‘VD-BERT: A unified vision and dialog transformer with BERT,’’ 2020,
arXiv:2004.13278.

[132] V. Murahari, D. Batra, D. Parikh, and A. Das, ‘‘Large-scale pretraining
for visual dialog: A simple state-of-the-art baseline,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer, Aug. 2020,
pp. 336–352.

[133] W. Hao, C. Li, X. Li, L. Carin, and J. Gao, ‘‘Towards learning a generic
agent for vision-and-language navigation via pre-training,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 13134–13143.

[134] D. Qi, L. Su, J. Song, E. Cui, T. Bharti, and A. Sacheti, ‘‘ImageBERT:
Cross-modal pre-training with large-scale weak-supervised image-text
data,’’ 2020, arXiv:2001.07966.

[135] Q. Xia, H. Huang, N. Duan, D. Zhang, L. Ji, Z. Sui, E. Cui, T. Bharti,
and M. Zhou, ‘‘XGPT: Cross-modal generative pre-training for image
captioning,’’ in Proc. CCF Int. Conf. Natural Lang. Process. Chin.
Comput., Qingdao, China, Cham, Switzerland: Springer, Oct. 2021,
pp. 786–797.

[136] T. Scialom, P. Bordes, P.-A. Dray, J. Staiano, and P. Gallinari, ‘‘Bert
can see out of the box: On the cross-modal transferability of text
representations,’’ 2020, arXiv:2002.10832.

[137] J. Yu, Z. Zhu, Y. Wang, W. Zhang, Y. Hu, and J. Tan, ‘‘Cross-modal
knowledge reasoning for knowledge-based visual question answering,’’
Pattern Recognit., vol. 108, Dec. 2020, Art. no. 107563.

[138] H. Singh and S. Shekhar, ‘‘STL-CQA: Structure-based transformers
with localization and encoding for chart question answering,’’ in Proc.
Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2020,
pp. 3275–3284.

[139] R. Tanaka, K. Nishida, and S. Yoshida, ‘‘VisualMRC: Machine reading
comprehension on document images,’’ 2021, arXiv:2101.11272.

[140] M.-J. Chiou, R. Zimmermann, and J. Feng, ‘‘Visual relationship detection
with visual-linguistic knowledge from multimodal representations,’’
IEEE Access, vol. 9, pp. 50441–50451, 2021.

[141] J. Lu, V. Goswami, M. Rohrbach, D. Parikh, and S. Lee, ‘‘12-in-
1: Multi-task vision and language representation learning,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 10434–10443.

[142] J. Cho, J. Lei, H. Tan, and M. Bansal, ‘‘Unifying vision-and-language
tasks via text generation,’’ in Proc. Int. Conf. Mach. Learn., Qingdao,
China, Oct. 2021, pp. 1931–1942.

[143] C. Ross, B. Katz, and A. Barbu, ‘‘Measuring social biases in grounded
vision and language embeddings,’’ 2020, arXiv:2002.08911.

[144] J. Yang, J. Duan, S. Tran, Y. Xu, S. Chanda, L. Chen, B. Zeng,
T. Chilimbi, and J. Huang, ‘‘Vision-language pre-training with
triple contrastive learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), New Orleans, LA, USA, Jun. 2022,
pp. 15650–15659.

[145] T. Wang, W. Jiang, Z. Lu, F. Zheng, R. Cheng, C. Yin, and P.
Luo, ‘‘VLMixer: Unpaired vision-language pre-training via cross-modal
cutmix,’’ in Proc. Int. Conf. Mach. Learn., Baltimore, MD, USA,
Jul. 2022, pp. 22680–22690.

[146] F. Liu, X. Wu, S. Ge, X. Ren, W. Fan, X. Sun, and Y. Zou, ‘‘DiMBERT:
Learning vision-language grounded representations with disentangled
multimodal-attention,’’ACMTrans. Knowl. Discovery fromData, vol. 16,
no. 1, pp. 1–19, Feb. 2022.

[147] Y. Li, H. Wang, and Y. Luo, ‘‘A comparison of pre-trained vision-and-
language models for multimodal representation learning across medical
images and reports,’’ in Proc. IEEE Int. Conf. Bioinf. Biomed. (BIBM),
Dec. 2020, pp. 1999–2004.

VOLUME 11, 2023 136537



S. Al-Hadhrami et al.: Critical Analysis of Benchmarks, Techniques, and Models in Medical VQA

[148] E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, D. Jin,
T. Naumann, and M. B. A. McDermott, ‘‘Publicly available clinical
BERT embeddings,’’ 2019, arXiv:1904.03323.

[149] J. Li, D. Li, C. Xiong, and S. Hoi, ‘‘BLIP: Bootstrapping language-image
pre-training for unified vision-language understanding and generation,’’
in Proc. Int. Conf. Mach. Learn., Baltimore, MD, USA, Jul. 2022,
pp. 12888–12900.

[150] P. Wang, A. Yang, R. Men, J. Lin, S. Bai, Z. Li, J. Ma, C. Zhou, J. Zhou,
andH.Yang, ‘‘OFA:Unifying architectures, tasks, andmodalities through
a simple sequence-to-sequence learning framework,’’ in Int. Conf. Mach.
Learn., Baltimore, MD, USA, Jul. 2022, pp. 23318–23340.

[151] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu,
‘‘CoCa: Contrastive captioners are image-text foundation models,’’ 2022,
arXiv:2205.01917.

[152] W. Wang, H. Bao, L. Dong, J. Bjorck, Z. Peng, Q. Liu, K. Aggarwal,
O. K. Mohammed, S. Singhal, S. Som, and F. Wei, ‘‘Image as a
foreign language: BEIT pretraining for vision and vision-language tasks,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Vancouver, BC, Canada, Jun. 2023, pp. 19175–19186.

[153] X. Chen, X. Wang, S. Changpinyo, A. J. Piergiovanni, P. Padlewski,
D. Salz, S. Goodman, A. Grycner, B. Mustafa, and L. Beyer,
‘‘PaLI: A jointly-scaled multilingual language-image model,’’ 2022,
arXiv:2209.06794.

[154] J. Li, D. Li, S. Savarese, and S. Hoi, ‘‘BLIP-2: Bootstrapping language-
image pre-training with frozen image encoders and large language
models,’’ 2023, arXiv:2301.12597.

[155] Y. Zhou, X. Kang, and F. Ren, ‘‘TUA1 at ImageCLEF 2019 VQA-Med:
A classification and generation model based on transfer learning,’’ in
Proc. Work. Notes CLEF Conf. Labs Eval. Forum, Lugano, Switzerland,
Sep. 2019, pp. 1–7.

[156] X. Yan, L. Li, C. Xie, J. Xiao, and L. Gu, ‘‘Zhejiang university at
ImageCLEF 2019 visual question answering in the medical domain,’’ in
Proc. Work. Notes CLEF Conf. Labs Eval. Forum, Lugano, Switzerland,
Sep. 2019, pp. 1–6.

[157] A. Thanki and K. Makkithaya, ‘‘Mit Manipal at ImageCLEF 2019
visual question answering in medical domain,’’ in Proc. Work. Notes
CLEF Conf. Labs Eval. Forum, Lugano, Switzerland, Sep. 2019,
pp. 1–9.

[158] A. Turner and A. Spanier, ‘‘LSTM in VQA-med, is it really needed? JCE
study on the ImageCLEF 2019 dataset,’’ inProc.Work. Notes CLEFConf.
Labs Eval. Forum, Lugano, Switzerland, Sep. 2019, pp. 1–9.

[159] M. Bansal, T. Gadgil, R. Shah, and P. Verma, ‘‘Medical visual
question answering at image clef 2019-VQA med,’’ in Proc. Work.
Notes CLEF Conf. Labs Eval. Forum, Lugano, Switzerland, Sep. 2019,
pp. 1–9.

[160] L. Shi, F. Liu, and M. P. Rosen, ‘‘Deep multimodal learning for medical
visual question answering,’’ in Proc. Work. Notes CLEF Conf. Labs Eval.
Forum, Lugano, Switzerland, Sep. 2019, pp. 1–6.

[161] S. Liu, X. Ou, J. Che, X. Zhou, and H. Ding, ‘‘An Xception-GRU model
for visual question answering in the medical domain,’’ in Proc. Work.
Notes CLEF Conf. Labs Eval. Forum, Lugano, Switzerland, Sep. 2019,
pp. 1–9.

[162] T. Kornuta, D. Rajan, C. Shivade, A. Asseman, and A. S. Ozcan,
‘‘Leveragingmedical visual question answeringwith supporting facts,’’ in
Proc. Work. Notes CLEF Conf. Labs Eval. Forum, Lugano, Switzerland,
Sep. 2019, pp. 1–6.

[163] I. Allaouzi, M. B. Ahmed, and B. Benamrou, ‘‘An encoder–decoder
model for visual question answering in the medical domain,’’ in Proc.
Work. Notes CLEF Conf. Labs Eval. Forum, Lugano, Switzerland,
Sep. 2019, pp. 1–9.

[164] A. Al-Sadi, B. Talafha, M. Al-Ayyoub, Y. Jararweh, and F. Costen, ‘‘Just
at ImageCLEF 2019 visual question answering in themedical domain,’’ in
Proc. Work. Notes CLEF Conf. Labs Eval. Forum, Lugano, Switzerland,
Sep. 2019, pp. 1–6.

[165] A. B. Abacha, M. Sarrouti, D. Demner-Fushman, S. A. Hasan, and
H. Müller, ‘‘Overview of the VQA-Med task at Imageclef 2020: Visual
question answering and generation in the medical domain,’’ in Proc.
Work. Notes CLEF Conf. Labs Eval. Forum, Bucharest, Romania, 2021,
pp. 1–9.

[166] M. Sarrouti, ‘‘NLM at VQA-Med 2020: Visual question answering and
generation in the medical domain,’’ in Proc. Work. Notes CLEF Conf.
Labs Eval. Forum, Thessaloniki, Greece, Sep. 2020, pp. 1–6.

[167] H. Umada and M. Aono, ‘‘Kdevqa at VQA-med 2020: Focusing on
GLU-based classification,’’ in Proc. Work. Notes CLEF Conf. Labs Eval.
Forum, Thessaloniki, Greece, Sep. 2020, pp. 1–9.

[168] S. Liu, H. Ding, and X. Zhou, ‘‘Shengyan at VQA-med 2020: An
encoder–decoder model for medical domain visual question answering
task,’’ in Proc. Work. Notes CLEF Conf. Labs Eval. Forum, Thessaloniki,
Greece, Sep. 2020, pp. 1–9.

[169] B. Jung, L. Gu, and T. Harada, ‘‘Bumjun_Jung at VQA-med 2020: VQA
model based on feature extraction and multi-modal feature fusion,’’ in
Proc. Work. Notes CLEF Conf. Labs Eval. Forum, Thessaloniki, Greece,
Sep. 2020, pp. 1–9.

[170] G. Chen, H. Gong, and G. Li, ‘‘HCP-MIC at VQA-med 2020: Effective
visual representation for medical visual question answering,’’ in Proc.
Work. Notes CLEF Conf. Labs Eval. Forum, Thessaloniki, Greece,
Sep. 2020, pp. 1–9.

[171] A. Al-Sadi, Hana’Al-Theiabat, and M. Al-Ayyoub, ‘‘The inception team
at VQA-med 2020: Pretrained VGG with data augmentation for medical
VQA and VQG,’’ in Proc. Work. Notes CLEF Conf. Labs Eval. Forum,
Thessaloniki, Greece, Sep. 2020, pp. 1–9.

[172] Q. Xiao, X. Zhou, Y. Xiao, and K. Zhao, ‘‘Yunnan university at VQA-med
2021: Pretrained biobert for medical domain visual question answering,’’
inProc. Work. Notes CLEFConf. Labs Eval. Forum, Bucharest, Romania,
Sep. 2021, pp. 1–9.

[173] J. Li and S. Liu, ‘‘Lijie at ImageCLEFmed VQA-med 2021: Attention
model based on efficient interaction between multimodality,’’ in Proc.
Work. Notes CLEF Conf. Labs Eval. Forum, Bucharest, Romania,
Sep. 2021, pp. 1–10.

[174] Y. Li, Z. Yang, and T. Hao, ‘‘TAM at VQA-med 2021: A hybrid model
with feature extraction and fusion formedical visual question answering,’’
Work. Notes CLEF, Tech. Rep., Sep. 2021.

[175] N. M. S. Sitara and S. Kavitha, ‘‘SSN MLRG at VQA-med 2021: An
approach for VQA to solve abnormality related queries using improved
datasets,’’ in Proc. CEUR Workshop, Sep. 2021, 1329–1335.

[176] I. Chebbi, ‘‘VGG16: Visual generation of relevant natural language
questions from radiology images for anomaly detection,’’ Preprint Res.
Gate, Tech. Rep., Sep. 2021.

[177] D. Gupta, S. Suman, and A. Ekbal, ‘‘Hierarchical deep multi-modal
network for medical visual question answering,’’ Exp. Syst. Appl.,
vol. 164, Feb. 2021, Art. no. 113993.

[178] W. Zheng, L. Yan, F.-Y. Wang, and C. Gou, ‘‘Learning from the
guidance: Knowledge embedded meta-learning for medical visual
question answering,’’ in Proc. Int. Conf. Neural Inf. Process., Bangkok,
Thailand, Cham, Switzerland: Springer, Nov. 2020, pp. 194–202.

[179] B. Liu, L.-M. Zhan, and X.-M. Wu, ‘‘Contrastive pre-training and
representation distillation for medical visual question answering based on
radiology images,’’ in Proc. 24th Int. Conf. Med. Image Comput. Comput.
Assist. Intervent.–MICCAI, Strasbourg, France, Cham, Switzerland:
Springer, Sep. 2021, pp. 210–220.

[180] Y. Khare, V. Bagal, M. Mathew, A. Devi, U. D. Priyakumar, and
C. Jawahar, ‘‘MMBERT: Multimodal BERT pretraining for improved
medical VQA,’’ in Proc. IEEE 18th Int. Symp. Biomed. Imag. (ISBI),
Nice, France, Apr. 2021, pp. 1033–1036.

[181] C. Dhanush, D. P. Kumar, and A. Kanavalli, ‘‘A VQA system for medical
image classification using transfer learning,’’ in Data Engineering and
Intelligent Computing: Proceedings of ICICC 2020, Bengaluru, India,
Cham, Switzerland: Springer, Sep. 2021, pp. 249–257.

[182] F. Cong, S. Xu, L. Guo, and Y. Tian, ‘‘Caption-aware medical VQA via
semantic focusing and progressive cross-modality comprehension,’’ in
Proc. 30th ACM Int. Conf. Multimedia, New York, NY, USA, Oct. 2022,
pp. 3569–3577.

[183] M. Wang, X. He, L. Liu, L. Qing, H. Chen, Y. Liu, and C. Ren,
‘‘Medical visual question answering based on question-type reasoning
and semantic space constraint,’’ Artif. Intell. Med., vol. 131, Sep. 2022,
Art. no. 102346.

[184] H. Wang, H. Pan, K. Zhang, S. He, and C. Chen, ‘‘M2FNet:
Multi-granularity feature fusion network for medical visual question
answering,’’ in Proc. PRICAI Trends Artif. Intell. 19th Pacific Rim Int.
Conf. Artif. Intell., Shanghai, China, Cham, Switzerland: Springer, Non.
2022, pp. 141–154.

[185] T. Kornuta, ‘‘PyTorchPipe: A framework for rapid prototyping of
pipelines combining language and vision,’’ 2019, arXiv:1910.08654.

[186] A. Lubna, S. Kalady, and A. Lijiya, ‘‘MoBVQA: A modality based
medical image visual question answering system,’’ in Proc. IEEE Region
10 Conf. (TENCON). Kochi, India: Institute of Electrical and Electronics
Engineers, Oct. 2019, pp. 727–732.

136538 VOLUME 11, 2023



S. Al-Hadhrami et al.: Critical Analysis of Benchmarks, Techniques, and Models in Medical VQA

[187] D. Sharma, S. Purushotham, and C. K. Reddy, ‘‘MedFuseNet: An
attention-based multimodal deep learning model for visual question
answering in the medical domain,’’ Sci. Rep., vol. 11, no. 1, pp. 1–18,
Oct. 2021.

[188] A. Al-Sadi, M. Al-Ayyoub, Y. Jararweh, and F. Costen, ‘‘Visual question
answering in the medical domain based on deep learning approaches:
A comprehensive study,’’ Pattern Recognit. Lett., vol. 150, pp. 57–75,
Oct. 2021.

[189] K. Gasmi, I. B. Ltaifa, G. Lejeune, H. Alshammari, L. B. Ammar,
and M. A. Mahmood, ‘‘Optimal deep neural network-based model
for answering visual medical question,’’ Cybern. Syst., vol. 53, no. 5,
pp. 403–424, Jul. 2022.

[190] S. S. N. Mohamed and K. Srinivasan, ‘‘ImageCLEF 2020: An approach
for visual question answering using VGG-LSTM for different datasets,’’
in Proc. Work. Notes CLEF Conf. Labs Eval. Forum, Thessaloniki,
Greece, Sep. 2020, pp. 1–9.

[191] H. T. Haridas, M. M. Fouda, Z. M. Fadlullah, M. Mahmoud, B. M. ElHa-
lawany, and M. Guizani, ‘‘MED-GPVS: A deep learning-based joint
biomedical image classification and visual question answering system
for precision e-health,’’ in Proc. IEEE Int. Conf. Commun., Seoul, South
Korea, May 2022, pp. 3838–3843.

[192] S. Al-Hadhrami, M. E. B. Menai, S. Al-Ahmadi, and A. Alnafessah,
‘‘An effective med-VQAmethod using a transformer with weights fusion
of multiple fine-tuned models,’’ Appl. Sci., vol. 13, no. 17, p. 9735,
Aug. 2023.

[193] Figshare. (2017). Brain Tumor Dataset. Accessed: Nov. 2023. [Online].
Available: https://figshare.com/articles/dataset/brain_tumor_dataset/
1512427/5

[194] L. Seenivasan, M. Islam, G. Kannan, and H. Ren, ‘‘SurgicalGPT: End-
to-end language-vision GPT for visual question answering in surgery,’’
2023, arXiv:2304.09974.

[195] Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei, ‘‘Visual7W: Grounded
question answering in images,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 4995–5004.

[196] D. Yu, J. Fu, T.Mei, andY. Rui, ‘‘Multi-level attention networks for visual
question answering,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Honolulu, HI, USA, Jul. 2017, pp. 4187–4195.

[197] Z. Yu, J. Yu, J. Fan, and D. Tao, ‘‘Multi-modal factorized bilinear pooling
with co-attention learning for visual question answering,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Venice, Italy, Oct. 2017, pp. 1839–1848.

[198] I. Schwartz, A. Schwing, and T. Hazan, ‘‘High-order attention models for
visual question answering,’’ in Proc. Adv. Neural Inf. Process. Syst., vol.
30, 2017, pp. 1–6.

[199] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola, ‘‘Stacked attention
networks for image question answering,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 21–29.

[200] R. Li and J. Jia, ‘‘Visual question answering with question representation
update (QRU),’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016,
pp. 1–9.

[201] B. Zhou, Y. Tian, S. Sukhbaatar, A. Szlam, and R. Fergus, ‘‘Simple
baseline for visual question answering,’’ 2015, arXiv:1512.02167.

[202] M.Malinowski,M. Rohrbach, andM. Fritz, ‘‘Ask your neurons: A neural-
based approach to answering questions about images,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Santiago, CL, USA, Dec. 2015, pp. 1–9.

[203] H. Xu and K. Saenko, ‘‘Ask, attend and answer: Exploring question-
guided spatial attention for visual question answering,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), Amsterdam, The Netherlands, Cham,
Switzerland: Springer, Oct. 2016, pp. 451–466.

[204] M. Ren, R. Kiros, and R. Zemel, ‘‘Exploring models and data for image
question answering,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 28,
2015, pp. 1–9.

[205] L. Ma, Z. Lu, and H. Li, ‘‘Learning to answer questions from image using
convolutional neural network,’’ in Proc. 13th AAAI Conf. Artif. Intell.,
Arizona, USA, Feb. 2016, pp. 1–6.

[206] H. Gao, J. Mao, J. Zhou, Z. Huang, L.Wang, andW. Xu, ‘‘Are you talking
to a machine? Dataset and methods for multilingual image question,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 28, 2015, pp. 1–9.

[207] I. Ilievski, S. Yan, and J. Feng, ‘‘A focused dynamic attention model for
visual question answering,’’ 2016, arXiv:1604.01485.

[208] P. Wang, Q. Wu, C. Shen, A. van den Hengel, and A. Dick, ‘‘Explicit
knowledge-based reasoning for visual question answering,’’ 2015,
arXiv:1511.02570.

[209] P. Wang, Q. Wu, C. Shen, A. Dick, and A. van den Hengel, ‘‘FVQA:
Fact-based visual question answering,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 40, no. 10, pp. 2413–2427, Oct. 2018.

[210] C. Xiong, S. Merity, and R. Socher, ‘‘Dynamic memory networks for
visual and textual question answering,’’ in Proc. Int. Conf. Mach. Learn.,
2016, pp. 2397–2406.

[211] L. Yu, E. Park, A. C. Berg, and T. L. Berg, ‘‘Visual madlibs:
Fill in the blank image generation and question answering,’’ 2015,
arXiv:1506.00278.

[212] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 27, 2014, pp. 1–9.

[213] C. Zhu, Y. Zhao, S. Huang, K. Tu, and Y. Ma, ‘‘Structured attentions
for visual question answering,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Honolulu, HI, USA, Oct. 2017, pp. 1300–1309.

[214] Q. Wu, C. Shen, P. Wang, A. Dick, and A. V. D. Hengel, ‘‘Image
captioning and visual question answering based on attributes and external
knowledge,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 6,
pp. 1367–1381, Jun. 2018.

[215] A. Jabri, A. Joulin, and L. van Der Maaten, ‘‘Revisiting visual question
answering baselines,’’ in Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9912. Berlin, Germany: Springer Verlag, 2016,
pp. 727–739.

[216] V. Kazemi and A. Elqursh, ‘‘Show, ask, attend, and answer: A strong
baseline for visual question answering,’’ 2017, arXiv:1704.03162.

[217] X. Lin and D. Parikh, ‘‘Leveraging visual question answering for image-
caption ranking,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Amsterdam,
The Netherlands, Cham, Switzerland: Springer, Oct. 2016, pp. 261–277.

[218] H. Xu and K. Saenko, ‘‘Dual attention network for visual question
answering,’’ in Proc. ECCV 2nd Workshop Storytelling Images Videos
(VisStory), Amsterdam, The Netherlands, Oct. 2016, pp. 1–6.

[219] L. Cao, L. Gao, J. Song, X. Xu, and H. T. Shen, ‘‘Jointly learning
attentions with semantic cross-modal correlation for visual question
answering,’’ in Proc. Australas. Database Conf., Brisbane, QLD,
Australia, Cham, Switzerland: Springer, Sep. 2017, pp. 248–260.

[220] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and
L. Zhang, ‘‘Bottom-up and top-down attention for image captioning
and visual question answering,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Honolulu, HI, USA, Jun. 2018, pp. 6077–6086.

[221] J. Song, P. Zeng, L. Gao, and H. T. Shen, ‘‘From pixels to objects: Cubic
visual attention for visual question answering,’’ in Proc. 27th Int. Joint
Conf. Artif. Intell., Stockholm, Sweden, Jul. 2018, pp. 906–912.

[222] A. Osman and W. Samek, ‘‘Dual recurrent attention units for visual
question answering,’’ 2018, arXiv:1802.00209.

[223] C. Ma, C. Shen, A. Dick, Q. Wu, P. Wang, A. V. D. Hengel, and
I. Reid, ‘‘Visual question answering with memory-augmented networks,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake City,
UT, USA, Jun. 2018, pp. 6975–6984.

[224] V. Lioutas, N. Passalis, and A. Tefas, ‘‘Explicit ensemble attention
learning for improving visual question answering,’’ Pattern Recognit.
Lett., vol. 111, pp. 51–57, Aug. 2018.

[225] P. Gao, H. Li, S. Li, P. Lu, Y. Li, S. C. H. Hoi, and X. Wang, ‘‘Question-
guided hybrid convolution for visual question answering,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), Munich, Germany, Sep. 2018, pp. 469–485.

[226] J. Liang, L. Jiang, L. Cao, L.-J. Li, and A. Hauptmann, ‘‘Focal visual-
text attention for visual question answering,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA, Jun. 2018,
pp. 6135–6143.

[227] D. Teney, P. Anderson, X. He, and A. V. D. Hengel, ‘‘Tips and tricks
for visual question answering: Learnings from the 2017 challenge,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake City,
UT, USA, Jun. 2018, pp. 4223–4232.

[228] L. Jiang, J. Liang, L. Cao, Y. Kalantidis, S. Farfade, and
A. Hauptmann, ‘‘MemexQA: Visual memex question answering,’’
2017, arXiv:1708.01336.

[229] Z. Su, C. Zhu, Y. Dong, D. Cai, Y. Chen, and J. Li, ‘‘Learning visual
knowledge memory networks for visual question answering,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT,
USA, Jun. 2018, pp. 7736–7745.

[230] W. Zhang, J. Yu, H. Hu, H. Hu, and Z. Qin, ‘‘Multimodal feature fusion
by relational reasoning and attention for visual question answering,’’ Inf.
Fusion, vol. 55, pp. 116–126, Mar. 2020.

VOLUME 11, 2023 136539



S. Al-Hadhrami et al.: Critical Analysis of Benchmarks, Techniques, and Models in Medical VQA

[231] B. Sun, Z. Yao, Y. Zhang, and L. Yu, ‘‘Local relation network with
multilevel attention for visual question answering,’’ J. Vis. Commun.
Image Represent., vol. 73, Nov. 2020, Art. no. 102762.

[232] X. Zhu, Z. Mao, Z. Chen, Y. Li, Z. Wang, and B. Wang, ‘‘Object-
difference drived graph convolutional networks for visual question
answering,’’ Multimedia Tools Appl., vol. 80, no. 11, pp. 16247–16265,
May 2021.

[233] S. Hashemi Hosseinabad, M. Safayani, and A. Mirzaei, ‘‘Multiple
answers to a question: A new approach for visual question answering,’’
Vis. Comput., vol. 37, no. 1, pp. 119–131, Jan. 2021.

[234] Z. Bai, Y. Li, M. Woźniak, M. Zhou, and D. Li, ‘‘DecomVQANet:
Decomposing visual question answering deep network via tensor
decomposition and regression,’’ Pattern Recognit., vol. 110, Feb. 2021,
Art. no. 107538.

[235] W. Zhang, J. Yu, Y. Wang, and W. Wang, ‘‘Multimodal deep fusion for
image question answering,’’ Knowl.-Based Syst., vol. 212, Jan. 2021,
Art. no. 106639.

[236] Y. Liu, X. Zhang, F. Huang, Z. Zhou, Z. Zhao, and Z. Li, ‘‘Visual question
answering via combining inferential attention and semantic space
mapping,’’ Knowl.-Based Syst., vol. 207, Nov. 2020, Art. no. 106339.

[237] Y. Liu, X. Zhang, Z. Zhao, B. Zhang, L. Cheng, and Z. Li, ‘‘ALSA:Adver-
sarial learning of supervised attentions for visual question answering,’’
IEEE Trans. Cybern., vol. 52, no. 6, pp. 4520–4533, Jun. 2022.

[238] L. Gao, L. Cao, X. Xu, J. Shao, and J. Song, ‘‘Question-led object
attention for visual question answering,’’ Neurocomputing, vol. 391,
pp. 227–233, May 2020.

[239] H. Zhong, J. Chen, C. Shen, H. Zhang, J. Huang, and X.-S. Hua, ‘‘Self-
adaptive neural module transformer for visual question answering,’’ IEEE
Trans. Multimedia, vol. 23, pp. 1264–1273, 2021.

[240] J. Hong, S. Park, and H. Byun, ‘‘Selective residual learning for
visual question answering,’’ Neurocomputing, vol. 402, pp. 366–374,
Aug. 2020.

[241] S. Lobry, D. Marcos, J. Murray, and D. Tuia, ‘‘RSVQA: Visual question
answering for remote sensing data,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 12, pp. 8555–8566, Dec. 2020.

[242] P. Lu, H. Li, W. Zhang, J. Wang, and X. Wang, ‘‘Co-attending free-
form regions and detections with multi-modal multiplicative feature
embedding for visual question answering,’’ in Proc. AAAI Conf. Artif.
Intell., New Orleans, LA, USA, Feb. 2018, pp. 1–6.

[243] K. R. Chandu, M. A. Pyreddy, M. Felix, and N. N. Joshi, ‘‘Textually
enriched neural module networks for visual question answering,’’ 2018,
arXiv:1809.08697.

[244] J. Singh, V. Ying, and A. Nutkiewicz, ‘‘Attention on attention: Architec-
tures for visual question answering (VQA),’’ 2018, arXiv:1803.07724.

[245] L. Peng, Y. Yang, Y. Bin, N. Xie, F. Shen, Y. Ji, and X. Xu, ‘‘Word-
to-region attention network for visual question answering,’’ Multimedia
Tools Appl., vol. 78, no. 3, pp. 3843–3858, Feb. 2019.

[246] A. S. Toor, H. Wechsler, and M. Nappi, ‘‘Question action relevance and
editing for visual question answering,’’ Multimedia Tools Appl., vol. 78,
no. 3, pp. 2921–2935, Feb. 2019.

[247] D. Teney and A. van den Hengel, ‘‘Visual question answering as a
meta learning task,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Munich,
Germany, Sep. 2018, pp. 219–235.

[248] D. Yu, X. Gao, and H. Xiong, ‘‘Structured semantic representation for
visual question answering,’’ in Proc. 25th IEEE Int. Conf. Image Process.
(ICIP), Athens, Greece, Oct. 2018, pp. 2286–2290.

[249] M. Malinowski, C. Doersch, A. Santoro, and P. Battaglia, ‘‘Learning
visual question answering by bootstrapping hard attention,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), Munich, Germany, Sep. 2018, pp. 3–20.

[250] N. Ruwa, Q. Mao, L. Wang, J. Gou, and M. Dong, ‘‘Mood-aware visual
question answering,’’Neurocomputing, vol. 330, pp. 305–316, Feb. 2019.

[251] Y. Niu, K. Tang, H. Zhang, Z. Lu, X.-S. Hua, and J.-R. Wen,
‘‘Counterfactual VQA: A cause-effect look at language bias,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 12695–12705.

[252] N. Ouyang, Q. Huang, P. Li, Y. Cai, B. Liu, H.-F. Leung, and Q. Li,
‘‘Suppressing biased samples for robust VQA,’’ IEEE Trans. Multimedia,
vol. 24, pp. 3405–3415, 2022.

[253] C. Yang, S. Feng, D. Li, H. Shen, G. Wang, and B. Jiang, ‘‘Learning
content and context with language bias for visual question answering,’’
in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Jul. 2021, pp. 1–6.

[254] Z. Liang, H. Hu, and J. Zhu, ‘‘LPF: A language-prior feedback objective
function for de-biased visual question answering,’’ in Proc. 44th Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., Jul. 2021, pp. 1955–1959.

[255] R. Cadene, C. Dancette, M. Cord, and D. Parikh, ‘‘RUBi: Reducing
unimodal biases for visual question answering,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, 2019, pp. 1–12.

[256] D. Yuan, ‘‘Language bias in visual question answering: A survey and
taxonomy,’’ 2021, arXiv:2111.08531.

SUHEER AL-HADHRAMI received themaster’s degree in computer science
from King Saud University, in 2016, where she is currently pursuing
the Ph.D. degree with the Department of Computer Science. She is an
Assistant Teacher with Hadhramout University. Her research interests
include computer vision, NLP, machine learning, and assistive technology.

MOHAMED EL BACHIR MENAI received the
Ph.D. degree in computer science from the Men-
touri University of Constantine, Algeria, and the
University of Paris VIII, France, in 2005, and
the Ph.D. degree Habilitation Universitaire in
computer science from the Mentouri University of
Constantine, in 2007 (it is the highest academic
qualification in Algeria, France, and Germany).
He is currently a Professor with the Department
of Computer Science, King Saud University. His

main research interests include satisfiability and optimization problems,
natural language processing, machine learning, and AI in medicine.

SAAD AL-AHMADI is currently an Associate
Professor with the Department of Computer Sci-
ence, College of Computer and Information Sci-
ences, King Saud University, Saudi Arabia. Also,
he is a part-time consultant in many agencies.
He has published many papers in reputable jour-
nals and conferences. His current research interests
include AI for healthcare, the IoT security, and
adversarial machine learning.

AHMED ALNAFESSAH is the general manager
of the Smart Cities Technologies Institute at
King Abdulaziz City for Science and Technology
(KACST). He is also an AI Lead in the Centre
for the C4IR KSA in Affiliation with the World
Economic Forum WEF. He was a Senior AI
and Cloud Computing Engineer at the National
Centre for AI and Big Data Technologies, KACST,
from 2009 to 2017. His research interests include
performance engineering for big data systems and

AI, specifically on in-memory platforms. He is interested in cognitive city
systems, digital twins, big data, AI, the IoT, HPC, and complex distributed
systems. He has a strong background and experience in applying AI
solutions for architecture design, continuous integration, and continuous
delivery (ci/cd), DevOps testing tools, and runtime services management
with international (Europe, U.K., and Silicon Vally) and local experience.
He was a team member who developed the AI DevOps framework called
RADON. This DevOps framework helps the European software industry
to adopt serverless function as a service (FaaS) technology while avoiding
lock-in within a specific FaaS provider by utilizing AI/ML and DevOps.

136540 VOLUME 11, 2023


