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ABSTRACT Due to the limitations of traditional time series models in handling semantic values and
small-scale data, the concept of fuzzy time series forecasting has been introduced in academia. This model
performs exceptionally well on fuzzy datasets, prompting many researchers to delve into this field. The
general process of fuzzy time series analysis consists of the following stages: 1) domain partitioning;
2) formation of fuzzy sets for fuzzifying data; 3) extraction of fuzzy relationships; and 4) forecasting and
defuzzification. Domain partitioning and the extraction of fuzzy relationships have always been crucial
components of fuzzy time series forecasting. Until now, neural networks have been less commonly applied
in the step of determining fuzzy relationships. Some researchers have attempted to utilize the Pi-Sigma
neural network for the determination of fuzzy relationships. However, due to the fixed network structure
that Pi-Sigma neural networks cannot adapt to changes over time, it has been indicated that it is not a
universal approximator. Its performance in handling complex dynamic time series has not been satisfactory.
In this paper, we utilize Fuzzy C-Means Clustering (FCM) to partition the domain into unequal-length
intervals and employ a high-order dynamic neural network known as Dynamic Ridge Polynomial Neural
Network (DRPNN). This network can start with a small basic structure and gradually increase its structural
complexity as learning progresses until it achieves the required task accuracy, which demonstrates superior
performance in handling complex time series data. During the training process, we employ a novel gradient
descent training algorithm with penalty terms. We conducted tests on this algorithm using nine real-world
datasets and performed Friedman and Bonferroni-Dunn tests to ensure that the proposed algorithm exhibits
statistical performance superiority compared to other methods in the literature. The results indicate that our
algorithm outperforms those from other studies.

INDEX TERMS Dynamic ridge polynomial neural network, fuzzy time series, fuzzy C-means clustering,
penalty term.

I. INTRODUCTION
Time series data refers to data collected over time, describing

the process and patterns of change in things. It typically refers

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhigao Zheng.

to precise data with general patterns, such as population,
economy, food production, etc. By analyzing and discovering
the inherent laws of the data, people try to make predictions
about possible future occurrences as accurately as possible.
In recent years, many researchers have applied time series
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prediction in different fields, and have also proposed many
methods.

It is believed that the origin of time series analysis can be
traced back to the Auto Regressive (AR) model proposed by
British statistician G. U. Yule in 1927. Subsequently in 1931,
Walker established the MA (Moving Average) model and
ARMA (Autoregressive Moving Average) model inspired by
the AR model. Thanks to the research by many scientists,
the ‘Box-Jenkins’ method [1] proposed by Box and Jenkins
pioneered the traditional time series prediction; Hamilton [2],
Durbin and Koopman [3], Aly [4] and others also proposed
using state space equations and Kalman filters for time series
prediction. Although these classical methods can be used for
various time series predictions, they all require time series
to be univariate, homoscedastic linear models, normally dis-
tributed, etc. It has been found that these assumptions do
not hold in some cases, and these models may not be able
to predict complex real-world time series. With the rise of
machine learning and artificial neural networks (ANN), clas-
sical SVM, BN have also achieved good results in time series
prediction. Al-Hadeethi et al. [5] applied SVM to signal time
series for epilepsy seizure diagnosis. Zhao et al. [6] and others
proposed using Bayesian ensemble algorithms to detect time
series in satellites. Farahani and Hajiagha [7] and Ali et al. [8],
among others, used ensemble ANN to predict stock prices and
financial time series. Jin et al. [9] used Bayesian networks for
the prediction of massive time series data. Although the above
methods can handle most real problems, some problems still
cannot be solved. These problems usually contain fuzzy and
unclear uncertainties. In recent years, many time series pre-
diction methods tend to be based on fuzzy methods based on
fuzzy set theory.

In 1965, Negoita [10] proposed the concept of fuzzy the-
ory and fuzzy logic, and initially established a model for
problems with uncertain, fuzzy linguistic variables. In 1994,
Song and Chissom built a prediction model for fuzzy time
series based on this [11] and [12], pioneering the theoretical
and applied research on fuzzy time series. Many researchers
have made tremendous efforts in different steps of fuzzy
time series prediction. For example, in fuzzy partition of
domains, there were initially average partition methods repre-
sented by Song [11] and [12], Chen [13] and Lee et al. [14];
subsequently, scholars represented by Huarng and Yu [15],
Chen et al. [16] and Yan et al. [17] proposed methods to
partition domains based on the distribution of sample data;
currently common methods are clustering algorithms [18],
[19], [20], [21], [22], [23], which utilize algorithms to clus-
ter sample data and determine partition based on clustering
results. In recent years’ research on fuzzy time series predic-
tion, many scholars have also improved Song’s method [24],
[25], [26], [27], [28], [29] and achieved good prediction
results.

When dealing with complex fuzzy time series, we can use
different types of ANN models in the analysis process to
extract and analyze the time series, such as Multilayer Per-
ceptron (MLP) with additive neuron structure, Multiplicative
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Neuron Model Neural Network (MNM-ANN) with multi-
plicative neuron structure. However, MLP and some other
neural network models have relatively complex architec-
tures that require a lot of weights to be obtained through
training, which leads to slower convergence when dealing
with complex problems [30]. Therefore, in recent years,
Bas et al. [31] and others have proposed using Pi-Sigma
(PSNN), a high-order neural network with fewer weights,
to determine fuzzy relationships and this network has fewer
weights compared to other neural networks, allowing it to
converge more quickly. However, PSNN cannot dynamically
change its network structure over time, for some more com-
plex nonlinear time series, the accuracy of prediction by a
single neural network may be affected. DRPNN [32] neural
network is a generalization of Pi-Sigma which retains the
advantage of fewer weights of PSNN, and can better predict
complex time series.

In this research, Firstly, we propose a novel approach that
utilizes a high-order neural network known as DRPNN to
define fuzzy relationships in high-order fuzzy time series.
Next, we employ FCM clustering for domain partitioning.
an improved gradient training algorithm based on penalty
terms to train the network weights. Finally, we apply this
approach to nine commonly used real-time series datasets,
comparing the results with other methods and conducting
Friedman and Bonferroni-Dunn tests to demonstrate the sta-
tistical performance superiority of the proposed method.

The structure of this paper is as follows: Section two
introduces fuzzy time series. Section three presents the FCM
clustering algorithm. Section four introduces the DRPNN
neural network, while Section five presents an improved
gradient descent algorithm based on penalty terms. Section
six introduces the newly proposed method. Section seven
carries out experimental testing, comparing it with other
literature methods and conducting Friedman and Bonferroni-
Dunn tests. The final section summarizes the conclusions of
this study and discusses some potential future methods for
fuzzy time series forecasting.

Il. FUZZY TIME SERIES MODEL
Fuzzy time series were first proposed by Song and Chinssom
(1993), who regarded dynamic processes with semantic val-
ues as fuzzy time series and described the fuzzy time series
by fuzzy relational equations.

Definition 1: Suppose U is the universe of discourse,
U = {uy,up,u3...,u,}, The fuzzy set A on U is defined
as follows:

:fA(u1)+fA(u2)+fA(u3)+m+fA(un)
u u us3 Uy

A

ey

where f4 (-) is the affiliation function of the fuzzy set A, fj :
U — [0, 1], f4 (;) denotes the affiliation of u; on the fuzzy
set A.

Definition 2: Let Y (t) be the universe of discourse on
which fuzzy sets f; (¢) (i = 1, 2, 3, ...) are defined, if F' (¢) is
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PSNN

FIGURE 1. DRPNN architecture diagram.

TABLE 1. Definitions of variables.

Variables Definitions
T, (t ) Overall input function at time ¢
X (t) k-th initial input at time ¢
y (t - 1) Output of the network at the previous moment
F (t ) Output of the i-#4# PSNN unit at time ¢
S () Nonlinear activation function
N Total number of PSNN units
h{'/' (t ) Output value of the j-th node in the i-zh PSNN block at time ¢
M Number of initial inputs
Wiy ([ ) Weight between the j-#4 node in the i-#2 PSNN unit and the k-th input node at time ¢
0 Length of the test set
H ([ ) Mean square error function at time ¢
E (t) Mean square error function with penalty terms at time ¢
/l(t ) Dynamic penalty factor

Scaling factor

Learning rate

the set of f; (1), then F' (¢) is called a fuzzy time series defined
onY (7).

Definition 3: If there is a fuzzy logical relation F (¢) that
can be caused by F (¢ — 1), then this relation can be defined
as: F(t — 1) — F(t), and this model is called a first-order
fuzzy time series model.

Definition 4: If F (t) canbe caused by F(t — 1), F(t — 2),
..., F (t — n), the ny, order fuzzy time series model can be
definedas F (t —n),F(t—n+1),...,F (@ —1).

Fuzzy C-Means Clustering

The Fuzzy C-Means Clustering (FCM) algorithm is a clus-
tering algorithm that uses affiliation to determine the degree
to which each data point belongs to a certain cluster. It was
proposed by Bezdek et al. [33] and improves on the earlier
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hard clustering (HCM) method. It takes into account the
ambiguity of attributes and considers that samples can belong
to more than one class at the same time, but have differ-
ent degrees of subordination to these classes, i.e., different
degrees of affiliation.

FCM takes into account the fuzzy characteristics and dis-
tribution characteristics of the data points, so the results
obtained by FCM can well reflect the aggregation character-
istics of the data, and the objective function and constraints
of FCM clustering are as follows:

N C
Tp V) =" > ()" Il xi = vy |17 )

i=1 j=1
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0<uwy=<1Vij
C

wi = 1,Yj
. j; y=5w 3)
N

0<> u; <N,Vi
i=1

where, x; is the data value, N is the number of data points,
C is the number of clusters, m is the fuzzy coefficient,
m € (1, 00), u;; represents the degree of membership of the
i, data point belonging to the jy, cluster, V represents the
set of cluster centers, v; represents the cluster center of
the jy, cluster, ||-|| is the Euclidean norm.

The FCM clustering algorithm uses an iterative approach
to obtain the optimal cluster centers. The iteration formula is
as follows:

. g( <q>)
K % ( <q>)

=1

—_

| 1
u ™ = = ®)

< (1=21Y
=\

where g represents the number of iterations. The iteration
stopping criteria is that the objective function is less than a
given value or the number of iterations reaches a given value.

Ill. DYNAMIC RIDGE POLYNOMIAL NEURAL NETWORK
Dynamic Ridge Polynomial Neural Network (DRPNN) is a
recurrent neural network that not only has the expanded archi-
tecture and functionality of RPNN [34], but also incorporates
feedback connections from the output layer to the input layer.
Due to the addition of feedback connections, compared to
RPNN and many other current higher order neural networks,
DRPNN can better simulate the dynamic changes of fuzzy
time series [35], [36].

DRPNN uses an asynchronous update rule based on Pi-
Sigma units, and consists of multiple PSNNs acting as hidden
layer nodes. DRPNN starts from a small basic structure, and
as the number of iterations increases, PSNNs with increasing
order are added to the hidden layer of DRPNN to achieve
growth in network complexity, until the requirements of the
mapping task are met.

The architecture of DRPNN is shown in Fig.1. The feed-
back connections between the input layer and output layer
feedback the network’s output to the PSNNs in the hid-
den layer, thereby learning the output result of the previous
sample. Regarding the connection weights, only the weights
between the input layer and hidden layer are learnable, the
rest of the weights are 1, which reduces the complexity of
the network and can mitigate the risk of overfitting to some
extent.
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The input function is as follows:

X (1), fl<k=<M
Tr(t)=11, ifk=M+1 6)
yt—1), ifk=M+2
The output function is as follows:
M
hij = D wigOTk (1) + wor+ni +y (0 = D warr2yi
k=1
(7N
i
Pi(t)=[]hy® ®)
j=1

S
Y =f (Z P; (r)) ©)
i=1

A. GRADIENT DESCENT TRAINING ALGORITHM WITH
REGULARIZATION TERM
In the training process of DRPNN, we used a gradient descent
algorithm with a penalty term, which accelerated the net-
work’s iteration speed and reduced the risk of overfitting.
Assuming D is the desired output of the network, the root
mean square error (RMSE) function with a penalty term is as
follows:

e®)=D=y() (10)
0
1 2
E(r>=@;[(e@<r>) +A@) ||w(r>||2] (11)

Taking into account the issue of underfitting caused by an
excessively large penalty term, we used a dynamic penalty
factor, and the dynamic penalty factor function is as follows:

A =cA(t—1) (12)

From equation (11), the gradient algorithm with a penalty
term is as follows:

Awgij
_IE®)
N 8Wkij
0
1 AP
= —néz [—e@ o f (ZP( )) (’)+/x (&) wij (r)}
g=1
(13)
where
AP;i(t)  dPi(t) dhy (1) (14)
dweg  Ohyj (1) dwgy
130429
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From (6) and (14), we can deduce the following:

ayt —1) .
X () +wag2)ij () ——,ifl <k <M
0 a(ta¥@
—v l—I—W(M_;,_z)U(l‘)y—,lﬂCZM-l—l
awkij awkij
ayt—1 .
Y@ — 1)+ w12y () T ifk =M +2
Wkij
(15)
From (14) and (15), we can deduce the following:
aP; (1) i dy(t —1)
S = T )| T+ woray () =5 —
Wk’/ u=1,u#j 8wkij
(16)

Substituting (15) and (16) into equation (14), we finally
obtain:

Awygj
i
[T A

12 (<
=—n§§, -2 o) f(;jPi(r)) I
9= i= u=1,u#j

9 -1
X [Tk O+ (w+2ij (1)) (%k))] +2 (1) wiij (t)}
ij

a7

IV. THE PROPOSED METHOD

This study proposes a novel approach. First, it utilizes the
FCM clustering method for domain partitioning based on data
fuzziness to obtain optimal cluster centers. This ensures that
dispersed data points are gathered around the cluster centers
to the greatest extent possible. Compared to previous methods
with uniform domain partitioning, this non-uniform domain
partitioning can more effectively extract data distribution
characteristics, resulting in the formation of optimal fuzzy
sets.

Next, it employs DRPNN to define fuzzy relationships in
high-order fuzzy time series and utilizes an improved gradi-
ent descent algorithm with a penalty term to train network
weights. We compared this approach with existing methods
and found that it offers higher prediction accuracy and better
statistical performance.

Below, we present the specific steps of this algorithm and
a numerical example to illustrate its implementation.

Step 1. Utilize the Fuzzy C-Means (FCM) clustering
algorithm to partition the domain.

Algorithm 1 demonstrates clustering the dataset using
the Fuzzy C-Means (FCM) algorithm and determining the
domain partition based on the clustering results.

Step 2. Fuzzify the dataset.

Based on the domain A obtained in Step 1, obtain the fuzzy
sets < Hy,Hy...Hc >. Here, C represents the number of
clusters, and triangular functions are used to define the fuzzy
sets. The expression is as follows:

1 0 0 0 0

H=—t—t+—+—+..+—
al ar as aq ac
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Algorithm 1 FCM Cluster
Input: Number of data points (N), Number of clusters (C),
Number of iterations (Q)
Output: Domain set A
1 //Initialize membership degree yij(.o) for each data point x;
across different classes.

2 fori=1toN do

3 forj=11 C do

4 Initialize the membership degree vector: y;; = —1.0 +
(1.0 — (—1.0)) * rand () JRAND_MAX

5 end for

6 end for

7 fori=1t0 Qdo

8 forj= 11t C do

9 forz=117 N do

10 Update the cluster centers v;

11 end for

12 end for

13 forj=1t N do

14 for z = 1toC do

15 Update the membership degree vector u;;,
16 end for

17 end for

18 end for

19 //Sort v; in ascending order

20 fori=1t0oC do

21  Determine the domain boundaries 0; < (vi + v,-_,_l) /2.0,
partition the domain into different subintervals using
the domain boundaries.

22  end for
23  return A
0 1 0 0 0
H=—+t—4+—+—4+...+—
ay ar as 4 ac
0 0 0 0 0
Ho=—+—4+—+...+ + — (18)
ai ap as ac—1 ac

When fuzzifying data points in the dataset, you assign
each data point to the fuzzy set for which it has the highest
membership degree. For example, if a data point has the high-
est membership degree in interval 1, then the corresponding
fuzzy set for that data point is H. Through the steps described
above, you have transformed the time series into a fuzzy time
series with fuzzy attributes.

Step 3. Extract logical fuzzy relationships.

The extraction of logical fuzzy relationships depends on
confirming different orders for various categories within the
time series dataset. For instance, a second-order logical fuzzy
relationship can be denoted as H;i, Hp — H;

Step 4. Train the DRPNN network.

Use the subscripts representing the antecedents of logical
fuzzy relationships as input values for training data, and use
the subscripts representing the fuzzy set in the consequent as
output values for training data. This process will result in a
trained DRPNN neural network.

Step S. Prediction.

Divide the time series into a training set and a prediction
set. Similarly, use the antecedents of the prediction set’s data
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as input values for prediction, and use the output values as the
indices of fuzzy sets to complete the prediction.

Step 6. Defuzzification.

If the obtained output is 1, it signifies that the prediction
corresponds to fuzzy set Hj. In such a case, you can choose
the midpoint of this subinterval as the defuzzied prediction
value. The defuzzification process for other output results
follows a similar approach.

Step 7. Evaluate the effectiveness of the model.

This study employed three evaluation metrics to assess
the effectiveness of the model, namely the root mean square
error (RMSE), symmetric mean absolute percentage error
(SMAPE), and mean absolute scaled error (MASE). The
formulas for these metrics are represented as (19), (20),
and (21).

RMSE = |~ (yi = 5i) (19)
1 lyi — il
SMAPE = - —— (20
n ; (Iyil + |9i]) /2
MASE = MAE 1)
N MAEnaive

n represents the dataset size, y; represents the actual output,
and y; represents the standard output.

A. NUMERICAL EXAMPLE

1) STEP 1. UTILIZE THE FUZZY C-MEANS (FCM) CLUSTERING
ALGORITHM TO PARTITION THE DOMAIN

First, we need to use the FCM clustering algorithm
to partition the domain of the dataset in the SunSpot
dataset, N = 288,C = 7,0 = 250, First, obtain
7 cluster centers and arrange them in ascending order:
{7.89,24.16,42.16, 64.30, 85.51, 110.91, 149.96}. Accord-
ing to Algorithm 1, the subintervals of the domain partition
are as follows:

a; = [0, 16.021]

a, = [16.021, 33.16]
as = [33.16, 53.23]
as = [53.23,74.90]
as = [74.90, 98.21]
ae = [98.21, 130.43]
a7 = [130.43, 190.2]

2) STEP 2. FUZZIFY THE DATASET

According to Equation (18), each data point is assigned the
fuzzy set for which it has the highest membership degree.
For example, if the value of data point 1 is 5 and it has the
highest membership degree in subinterval a, then the corre-
sponding fuzzy set for that data point should be H;. Through
this step, we perform fuzzification on all data points in the
dataset.
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3) STEP 3. EXTRACT LOGICAL FUZZY RELATIONSHIPS

In this data experiment, a fifth-order fuzzy logic relationship
was used for prediction, which means there are 5 antecedents
and 1 consequent. Table 2 is obtained based on Definition 4.

4) STEP 4. TRAIN THE DRPNN NETWORK
In this experiment, the dataset is divided into a training set
with 245 data points and a test set with 43 data points.

Input nodes M = 7, the number of PSNN units § = 1,
learning rate n = 0.01, the initial value of the dynamic
penalty factor A(#) = 100, the reduction coefficient ¢ = 0.9.
Obtain the trained DRPNN network.

5) STEP 5. PREDICTION

Input the antecedents of the test set as input data into the
network, and the output values should correspond to the
indices of the predicted fuzzy sets.

6) STEP 6. DEFUZZIFICATION

If the obtained output is 1, it signifies that the prediction
corresponds to fuzzy set Hj. In such a case, you can choose
the midpoint of this subinterval as the defuzzied prediction
value. The defuzzification process for other output results
follows a similar approach.

7) STEP 7. EVALUATE THE EFFECTIVENESS OF THE MIODEL
Three evaluation metrics were employed to assess the effec-
tiveness of the model. Table 3 presents the test data from
the SunSpot dataset and the predicted data from differ-
ent methods. Fig.2. provides a visual representation of the
prediction performance of various methods through a line
chart.

V. EMPIRICAL ANALYSIS AND DISCUSSION

To conduct experimental validation, this study considered
9 time series datasets with different characteristics, as shown
in Table 4. These datasets were sourced from the time
series data library [37] and included the Taiwan Capital-
ization Weighted Stock Index (TAIEX) [38] closing data
from 2006 to 2008. Table 5 provides the statistical features
of each dataset. To assess the effectiveness of the proposed
method, it was compared with five existing methods, and
statistical analysis demonstrated the superior performance of
the proposed method.

We divided the original dataset into two parts: a train-
ing set and a test set. Due to the varying characteristics of
each dataset, the training input order differs, as indicated in
Table 6. Regarding the prediction results, we first analyzed
the results using three different performance metrics.

A. THE EFFICIENCY METRIC RMSE

This section analyzes the prediction accuracy of different
methods in different datasets using the RMSE metric. RMSE
is sensitive to outlier data and is also dependent on the
dataset’s scale. Table 7 presents the average RMSE results
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TABLE 2. Notations for fifth order fuzzy time series.

F(t—5) F@—4) F@—3) F@—2) F(@—1) F@)

Inputl Input2 Input3 Input4  Input5 Target

H, H, H, H, H, H,
H, H, H, H, H, H,
H, H, H, H, H, H,
H, H, H, H, H, H,

1 1 1 2 3 4
1 1 2 3 4 2
1 2 3 4 2 2
2 3 4 2 2 1

TABLE 3. Forecasts of different methods on test set of sunspot time series.

Tlm[f):astzrles Aladag et al. [39]  Aladag [40] Ei]sr}:aﬁil] Basetal. [31] Gupta and Kumar [42] proposed method
332 45.0 95.0 94.2 95.0 83.2 432
92.6 75.0 95.0 94.2 95.0 83.2 86.6
151.6 135.0 95.0 94.2 95.0 83.2 114.3
136.3 105.0 95.0 94.2 95.0 83.2 160.3
134.7 105.0 95.0 94.2 95.0 83.2 160.3
83.9 105.0 95.0 94.2 95.0 83.2 114.3
69.4 45.0 95.0 94.2 95.0 83.2 86.6
31.5 45.0 95.0 94.2 95.0 83.2 432
13.9 15.0 95.0 94.2 95.0 83.2 24.6
44 15.0 95.0 94.2 95.0 83.2 24.6
38.0 15.0 95.0 94.2 95.0 83.2 432
141.7 75.0 95.0 94.2 95.0 83.2 86.6
190.2 165.0 95.0 94.2 95.0 83.2 160.3
184.8 75.0 95.0 90.6 95.0 83.2 160.3
159.0 75.0 95.0 90.6 95.0 83.2 160.3
112.3 45.0 95.0 94.2 95.0 83.2 114.3
539 45.0 95.0 94.2 95.0 83.2 86.6
37.5 45.0 95.0 94.2 95.0 83.2 43.2
27.9 45.0 95.0 94.2 95.0 83.2 432
10.2 15.0 95.0 94.2 95.0 83.2 24.6
15.1 15.0 95.0 94.2 95.0 83.2 24.6
47.0 105.0 95.0 94.2 95.0 83.2 432
93.8 165.0 95.0 94.2 95.0 83.2 86.6
105.9 45.0 95.0 94.2 95.0 83.2 114.3
105.5 75.0 95.0 94.2 95.0 83.2 114.3
104.5 105.0 95.0 94.2 95.0 83.2 1143
66.6 75.0 95.0 94.2 95.0 83.2 1143
68.9 45.0 95.0 94.2 95.0 83.2 64.1
38.0 45.0 95.0 94.2 95.0 83.2 64.1
34.5 45.0 95.0 94.2 95.0 83.2 43.2
15.5 45.0 95.0 94.2 95.0 83.2 432
12.6 15.0 95.0 94.2 95.0 83.2 432
27.5 45.0 95.0 94.2 95.0 83.2 43.2
92.5 15.0 95.0 94.2 95.0 83.2 64.1
155.4 165.0 95.0 94.2 95.0 83.2 1143
154.7 105.0 95.0 94.2 95.0 83.2 160.3
140.5 75.0 95.0 94.2 95.0 83.2 160.3
1159 105.0 95.0 94.2 95.0 83.2 1143
66.6 45.0 95.0 94.2 95.0 83.2 86.6
459 45.0 95.0 94.2 95.0 83.2 432
17.9 45.0 95.0 94.2 95.0 83.2 432
13.4 15.0 95.0 94.2 95.0 83.2 24.6
29.2 15.0 95.0 94.2 95.0 83.2 24.6

RMSE 90.176 56.74 56.73 70.6 53.99 21.7
SMAPE 180.65 69.28 69.33 73.4 68.71 32.6
MASE 2.741 1.10 1.86 091 1.78 0.65

obtained after 50 simulations for each dataset group. From
Table 7, it can be observed that the proposed method out-
performs other methods in 8 out of the 9 time series, with
Aladag [40] achieving the best performance in one time
series.

130432

B. THE EFFICIENCY METRIC SMAPE

In this section, the prediction accuracy of different methods
in different datasets is analyzed using the SMAPE metric.
Table 7 provides the SMAPE results obtained after 50 simula-
tions for each dataset group. From Table 8, it can be observed
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FIGURE 2. Predicted and actual values of different methods in the sunspot time series

data.
TABLE 4. Dataset description.
Data set name Description
Gasoline Monthly gasoline demand Ontario gallon millions Jan 1960 — Dec 1975
Lynx Number of lynx trapped annually in Mackenzie river from 1821 to 1934
Passenger International airline passengers total in thousand (Jan-49 to Dec-60)
Rainfall Total annual rainfall (in inches), London, England from 1813 to 1912
Sunspot Annual wolf Sunspot number from 1700 to 1987
Traffic Monthly traffic fatalities in Ontario from 1960 to 1974
TAIEX2006 Daily closing Taiwan Capitalization Weighted Stock Index (TAIEX) data in year 2006
TAIEX2007 Daily closing Taiwan Capitalization Weighted Stock Index (TAIEX) data in year 2007
TAIEX2008 Daily closing Taiwan Capitalization Weighted Stock Index (TAIEX) data in year 2008

TABLE 5. Statistical information of time series.

Standard

Time series Minimum Maximum Mean . Kurtosis Skewness
Deviation

Gasoline 86890 255920 162060 41662 2.2569 0.32
Lynx 39 6991 1538 1585.8 446 1.34
Passenger 104 622 280.3 119.97 2.60 0.57
Rainfall 16.93 38.1 24.82 421 3.30 0.67
Sunspot 0 190.2 48.43 39.42 3.65 1.03
Traffic 55 256 132.23 39.01 2.69 0.28
TAIEX2006 6257.8 7823.7 6841.1 374.39 2.64 0.76
TAIEX2007 7344.6 9809.9 8509.9 648.69 1.86 0.35
TAIEX2008 4089.9 9295.2 7020.6 1609.1 1.81 -0.46

that the proposed method outperforms other methods in all
9 time series.

C. THE EFFICIENCY METRIC MASE

In this section, the prediction accuracy of different methods in
different datasets is analyzed using the MASE metric. Table 8
provides the MASE results obtained after 50 simulations for
each dataset group. From Table 9, it can be observed that
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the proposed method outperforms other methods in all 9 time
series.

D. ALGORITHM PERFORMANCE EVALUATION

In the experiments mentioned above, we studied the per-
formance of the six algorithms separately on nine datasets.
However, it’s also important to assess the performance of
the proposed algorithm overall, considering the datasets as
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TABLE 6. Data split and order of the time series dataset.

Dataset information training set test set Order of the time series data
Gasoline 163 29 10
Lynx 97 17 6
Passenger 123 21 13
Rainfall 85 15 3
Sunspot 245 43 5
Traffic 153 27 7
TAIEX2006 210 37 7
TAIEX2007 206 37 4
TAIEX2008 211 37 4

TABLE 7. Mean RMSE on test set (Bold face denotes best values).

Time series Date A;f d[e;gg]e t Aladag [40] K]il;gra[i(i] Ba[s3e1t]a1. Ig;l rﬁ t; 2[1:11;1] proposed method
Gasoline 22434496 57299.00 49789.83 37202.00 57031.52 14280.86
Lynx 1784.22 3750.80 2296.16 3750.80 1977.69 508.31
Passenger 463.14 173.16 85.20 117.49 192.98 39.36
Rainfall 20.91 5.04 5.57 5.06 5.27 4.36
Sunspot 90.18 56.74 56.73 70.6 53.99 21.7
Traffic 158.00 41.85 41.83 76.47 41.97 19.79
TAIEX2006 7488.45 408.09 344.88 410.27 344.88 112.89
TAIEX2007 8432.23 381.25 385.7 382.43 212.85 252.83
TAIEX2008 4437.63 2376.80 373.45 2376.80 813.41 254.02
TABLE 8. Mean SMAPE on test set (Bold face denotes best values).
Time series Date Aali d['c;)%]e t Aladag [40] Kl?llrill‘elltra[léll(i] Ba[s;it]al. ISI I:E; ?2(21] proposed method
Gasoline 199.96 26.51 17.24 16.08 20.71 5.36
Lynx 198.35 124.50 102.97 124.50 98.08 50.58
Passenger 194.60 38.75 13.34 25.30 34.58 6.14
Rainfall 144.94 16.24 18.79 16.31 17.42 12.70
Sunspot 180.65 69.28 69.33 73.35 68.71 32.6
Traffic 190.52 22.30 22.42 37.52 22.32 11.12
TAIEX2006 199.44 5.20 2.31 5.24 4.16 1.154
TAIEX2007 199.26 3.53 1.94 3.62 1.94 1.43
TAIEX2008 198.93 42.16 7.52 42.16 16.57 4.71
TABLE 9. Mean MASE on test set (Bold face denotes best values).
Time series Date Aalf d[z;gg]e t Aladag [40] K]?;ri}:ra[r:l(i] Ba[s3elt]a1. I?u I;IP;:; ?23] proposed method
Gasoline 13.70 2.02 1.51 1.79 2.31 0.72
Lynx 2.26 0.40 3.39 0.41 2.90 0.37
Passenger 9.68 2.27 1.32 2.24 2.55 0.49
Rainfall 5.06 1.35 1.20 1.36 1.10 0.78
Sunspot 2.74 1.10 1.86 0.91 1.78 0.65
Traffic 5.55 1.45 1.24 1.11 1.23 0.57
TAIEX2006 175.72 1.56 4.16 1.57 7.22 1.43
TAIEX2007 73.56 1.47 1.28 1.48 1.42 0.58
TAIEX2008 60.07 0.75 4.66 0.75 10.84 0.70
a whole. In this section, we utilized the Friedman and We first conducted the Friedman test on three effi-
Bonferroni-Dunn tests for this analysis. ciency metrics: RMSE, SMAPE, and MASE, to ensure the
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TABLE 10. Average rank table.

efficiency metric

rankings Aladag et al. [39]  Aladag [40]  Bisht and Kumar [41] Basetal. [31] Gupta and Kumar [42] proposed method
Average Rank of
RMSE 5.55 3.89 3.17 4.11 3.17 1.11
Average Rank of
SMAPE 6 3.78 3.06 4.11 3.06 1
Average Rank of
MASE 5.78 3.39 3.56 3.17 4.11 1
TABLE 11. Friedman test table (RMSE).
Algorithm Sample size Median Standard deviation Statistic P the value of Cohen's f
Aladag et al. [39] 9 1784.22 73900.373
Aladag [40] 9 381.25 18845.073
Bisht and Kumar [41] 9 171.48 16480.844
28.227 0.000%** 0.27
Gupta and Kumar [42] 9 212.85 18869.051
Bas et al. [31] 9 382.43 12171.105
proposed method 9 112.89 4712.626
Note: *** ** * represent significance levels of 1%, 5%, and 10% respectively
TABLE 12. Friedman test table (SMAPE).
Algorithm Sample size Median Standard deviation Statistic P the value of Cohen's
Aladag et al. [39] 9 198.35 17.894
Aladag [40] 9 26.51 38.062
Bisht and Kumar [41] 9 13.87 34,71
33.147 0.000*** 2.052
Gupta and Kumar [42] 9 253 38.917
Bas et al. [31] 9 20.71 31.765
proposed method 9 6.14 16.634
Note: *** ** * represent significance levels of 1%, 5%, and 10% respectively
TABLE 13. Friedman test table (MASE).
Algorithm Sample size Median Standard deviation Statistic P the value of Cohen's
Aladag et al. [39] 9 9.68 57.841
Aladag [40] 9 1.45 0.579
Bisht and Kumar [41] 9 1.48 1.378
25.516 0.000*** 0.617
Gupta and Kumar [42] 9 1.35 0.561
Bas et al. [31] 9 231 3.328
proposed method 9 9.68 57.841

Note: *** ** * represent significance levels of 1%, 5%, and 10% respectively

significance of algorithm performance. To do this, we ranked
the performance of different algorithms on different datasets
based on the goodness of fit for the three efficiency metrics.
This ranking is shown in Table 10.

Then, we employed the Friedman test to deter-
mine whether there is a significant difference in the
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performance of these six algorithms. Tables 11, 12, and 13
respectively present the results of the Friedman test
for the three efficiency metrics: RMSE, SMAPE, and
MASE.

As shown in Tables 11, 12, and 13, the p-values are
0.000%* * *x for all cases. Therefore, the statistical results are
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TABLE 14. Critical values for the two-tailed Bonferroni-Dunn test; the number of classifiers include the control classifier.

classifiers 2 3 4 5 6 7 8 9 10
90.05 1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.724 2.773
9o0.10 1.645 1.960 2.128 2.241 2.326 2.394 2.450 2.498 2.539

critical difference (RMSE)

proposed method <

Gupta and Kumar(2019)

Bas et al.(2018)

Bisht and Kumar(2016)

Aladag(2013)

Aladag et al.(2009)

(1]

FIGURE 3. CD diagram for the RMSE efficiency metric.

Rank

critical difference (SMAPE)

proposed method <

Gupta and Kumar(2019)

Bas et al.(2018)

Bisht and Kumar(2016)
Aladag(2013) i

Aladag et al.(2009)

FIGURE 4. CD diagram for the SMAPE efficiency metric.

Rank

critical difference (MASE)

proposed method <

Gupta and Kumar(2019)

Bas et al.(2018)

Bisht and Kumar(2016)

Aladag(2013)

Aladag et al.(2009)

FIGURE 5. CD diagram for the MASE efficiency metric.

significant. There are significant differences in the perfor-
mance of the 6 algorithms.

Next, we will use the Bonferroni-Dunn test with a 90%
confidence level for post hoc testing. The proposed algorithm
will be compared separately with the remaining 5 algo-
rithms. The difference between the average ranks of each
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Rank

algorithm will be compared with the critical difference (CD)
threshold. If the difference is greater than CD, it indicates
that the algorithm with the higher average rank is statis-
tically superior to the one with the lower average rank.
Otherwise, there is no statistical difference between the two
algorithms.
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The formula for the critical difference (CD) is as follows:

k(k +1)
D= du ~"en—

k is the number of algorithms, N is the number of datasets.

From Table 14 and equation (22), we can obtain the CD
diagrams for different efficiency metrics, as shown in Fig.3,
Fig.4, and Fig.5. We find that the proposed method is sig-
nificantly better than the other algorithms in terms of RMSE,
SMAPE, and MASE, which ensures the statistical superiority
of the proposed method over the other algorithms.

(22)

VI. CONCLUSION

Determining fuzzy relationships has always been a key
research focus in fuzzy time series forecasting. This study
proposes a fuzzy time series forecasting method based on
FCM clustering and a high-order DRPNN neural network
(incorporated with a penalized gradient descent algorithm).
FCM clustering is used to divide the domains by clustering
the dataset, allowing more precise partitioning that is bene-
ficial for improving prediction performance. The high-order
DRPNN network is then used to determine fuzzy relation-
ships. A penalized gradient descent algorithm is utilized
during network training to accelerate convergence and reduce
overfitting risks to some extent. Compared to other methods
in the literature, this method provides superior prediction
performance. Friedman and Bonferroni-Dunn tests are con-
ducted to ensure the statistical significance of the algorithm’s
superiority based on different efficiency metrics.

The main contribution of this study is the usage of the
DRPNN network to determine fuzzy relationships. Compared
to Bas etal. [31] who used PSNN to determine fuzzy relation-
ships, DRPNN can better simulate the intricate dynamics of
complex fuzzy time series while retaining the advantages of
fewer weights and lower complexity.

In future studies, deep learning methods could be used to
determine fuzzy relationships, and different ANNs can be
tried in various stages of the fuzzy time series framework.

In our future work, we will continuously track the latest
methods and compare our approach to the new methods.
And we will gradually expand the scope of application of
this method, further find the limitations of this method and
improve and perfect it.
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