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Spatio-Temporal Context Graph Transformer Design
for Map-Free Multi-Agent Trajectory Prediction
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Abstract—Predicting the motion of surrounding vehicles is an
important function of autonomous vehicles. However, most of the
current state-of-the-art trajectory prediction models rely heavily
on map information. In order to overcome the shortcomings of the
existing models, our paper proposes a map-free trajectory predic-
tion model and names it TR-Pred (Trajectory Relative two-stream
Prediction). The trajectory stream employs LSTM to embedding
the trajectory information of each agent. Subsequently, it utilizes
graph neural networks (GNN) to extract latent traffic information
in the current scenario, such as lane lines, drivable areas, and
traffic control conditions. The relative stream utilizes temporal
transformer to capture the local relative movement among agents.
Subsequently, it employs GNN to extract the interaction informa-
tion of all target agent. We augment the temporal transformer
through refine initialization of its class token. This refined thereby
enable enhanced modeling of inter-agent relative motion correla-
tions between the agents. The decoder predicts the target agent by
incorporating the historical interaction information among agents
with latent traffic information. We validate TR-Pred on the Ar-
goverse dataset, the highD dataset and the rounD dataset. The
results show that TR-Pred performs better in the minimum Av-
erage Displacement Error compared to the main map-base model
use in 2020, 2021. Experiments on Argoverse results show that
our framework achieves a 16.3%/19.7%/24.4% improvement in
minADE/minFDE(minimum Final Displacement Error)/MR(Miss
Rate) compared to CRAT-Pred. The experimental results on highD
and rounD show that, compared to the map-free version HiVT,
our framework achieves improvements of 18.8%/18.8%/25.0% and
8.3%/8.5%/7.4% in minADE/minFDE/MR, respectively.

Index Terms—Autonomous driving, trajectory prediction,
motion forecasting, machine learning, deep learning, map-free
trajectory prediction.

I. INTRODUCTION

W ITH the development and application of advanced au-
tonomous vehicles (AVs) technologies, safety and ef-

ficiency have become more and more important in AV sys-
tems. In complex driving scenes such as intersections scenes,
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roundabouts scenes and highway on-ramp merging scenes, there
are a large number of agents around AV. While encountering
those scenarios, AV need to predict the future trajectory of
agents around them and speculate on multi-agent interactions.
However, because of uncertain future scenarios, agents might
operate variably under the same scene [1], [2]. Hence, multi-
modal trajectory prediction (MTP) needs to generate various
feasible trajectories of an agent. By incorporating MTP, the per-
formance of the planning module is greatly enhanced, ensuring
a more robust and reliable AVs system. For these reasons, agent
trajectory prediction has attracted constant interest in the area
of autonomous vehicles.

With the development and gradual adoption of high-definition
(HD) maps, more and more companies and institutions begin
to incorporate HD maps into downstream tasks for AVs. The
emergence of datasets like Argoverse further facilitates related
research by the researchers [3]. In order to obtain better perfor-
mance in trajectory prediction, researchers have begin to focus
their research on how to represent HD map better [4], [5], [6], [7].
Wayformer [8] uses cross-attention to encode information such
as maps, traffic control, and trajectory. LaneGCN [9] works by
refining lane centreline information as nodes of a graph neural
network (GNN) and using lane changes as edges of the graph.
Vectornet [10] interacts with global information through trans-
formers by treating each lane line, footpath and other element
as a node of the graph. However, the above models do not have
a well-designed module for extracting trajectories information.
Once these models lose the semantic information of the HD map,
they either do not work or their prediction accuracy is severely
degraded.

In practice, the HD map faces enormous challenges. HD map
are difficult for numerous applications because of their high
acquisition and update costs and large storage overhead [11].
Moreover, the issues concerning precise positioning in AVs also
influence the utilization of HD maps. Both high-rise buildings
and elevated structures can cause signal interference. Similarly,
in tunnels, the loss of satellite signals further exacerbates this
issue, and HD maps are unavailable in such situations. Moreover,
the sudden failure of HD maps after AV systems have been acti-
vated can severely deteriorate the performance of trajectory pre-
diction. This deterioration of trajectory prediction can critically
impair the safety of automated driving. Therefore, map-based
trajectory prediction has some limitations in practice. The key
difference between map-free and map-based trajectory predic-
tion is that map-free methods do not rely on HD map and accurate
vehicle localization. It does not need the HD map information
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as input. Map-free methods depend only on target information
provided by sensors, giving them wider applicability compared
to map-based methods. When AVs drive in scenarios where HD
map is unavailable map-based trajectory prediction methods
often cannot function. Thus, map-free methods have greater
versatility for AVs in diverse environments lacking HD map.

For these reasons, it becomes necessary to develop a map-free
model in trajectory prediction. In such cases, it becomes imper-
ative to rely on the constraints derived from the surrounding
agents’ interaction and motion data to constrain the predicted
trajectories. By using this crucial information, the system can
accurately predict the trajectories of other agents. In this work,
we propose a two-stream map-free prediction method. It can
consider the multimodal information of the trajectories, the
interaction and the relative motion information between agents.
Because its two streams are the trajectory stream and the relative
stream, we term it “Trajectory Relative two-stream Prediction
(TR-Pred).” This work is dedicated to predicting the future
trajectory of multi-agent scenes without map information. The
framework is validated and tested on the ArgoverseV1.1 dataset.
The results indicate that our model achieves state-of-the-art
(SOTA) performance compared to previous map-free models.
In summary, our main contributions are:
� We propose a map-free vehicle trajectory prediction

method. This method represents the historical trajectories
as a trajectory stream and a relative stream. In each stream
of the TR-Pred, we use a GNN with the transformer mech-
anism for the information interaction between the agents.

� We propose a new temporal transformer. This module uses
LSTM encoding to initialize the class token. We find that
LSTM encoding helps the temporal transformer to focus
on temporal motion from the input.

� TR-Pred achieves SOTA performance in map-free predic-
tion method. Meanwhile, TR-Pred outperforms map-based
prediction models, which are proposed in the previous two
years, in the minADE metric.

The rest of this paper is organized as follows: Section II
describes the related work on trajectory prediction research.
Section III discusses the current research problem and gives
detailed definitions. Section IV provides the structure of the
model. Section V provides the ablation experiments, visual-
ization results and comparison results. Finally, conclusions are
presented in Section VI.

II. RELATED WORK

Trajectory prediction methods include physics-based meth-
ods, classical machine learning-based methods, deep learning-
based methods, and reinforcement learning-based methods.
However, current long sequence forecasting predominantly
leverages deep learning. Among these methods, we have cat-
egorized the representation of agents into three forms.

Rasterization-based approaches: These methods use Bird’s-
Eye-View (BEV) image and require complex representation
rules to create the rasterization image [12], [13]. Yuning Chai
et al. perform feature extraction and state analysis on different
agents from the BEV perspective, and agents interact through

multi-level Convolutional Neural Networks (CNN) [4]. Lin-
hui Li et al. predict raster map and historical trajectories by
constructing a raster map and subsequently employing a CNN
network with a Multilayer Perceptron (MLP) [14]. In rasterized
BEV maps, one has the flexibility to insert and use a variety of
information, including both trajectories and maps, while using
a variety of common image-processing backbone networks.
Thomas Gilles et al. obtain a raster heat map containing fu-
ture trajectory possibilities by encoding a rasterized BEV map
through a replaceable CNN backbone network [15]. However,
rasterization techniques have some limitations. For instance,
while coarser raster grids may reduce computational complexity,
they can also lead to substantial loss of information. Moreover,
too detailed rasterization can lead to difficulties in data pre-
processing and a rapid rise in computational complexity, leading
to the inability to real-time [13]. Therefore, people begin to find
a new way of processing information.

Node-based approaches: This method is inspired by the de-
velopment of GNN and the problems in Rasterization-based
approaches. Researchers use a graph to represent the information
of agents and maps [9], [16]. This way solves the problem
of redundant information and high computation brought on by
rasterization [17]. Lots of approaches are proposed, representing
each agent as a node and then aggregating context via GNN,
including Graph Convolutional Networks (GCNs) [18], Graph
Attention Networks (GATs) [19], [20], and transformers [21],
[22]. Kunpeng Zhang et al. construct a motion graph of the agent
at each moment directly after the video inputs [23]. Dongwei
Xu et al. construct a traffic target map for each moment centered
on the target agent and subsequently encode the information
through a GNN [24]. Theodor Westny et al. obtain the target’s
future trajectory by constructing a traffic map for each mo-
ment, which is decoded by attentive Graph-GRU and Kalman
filter [25]. However, Node-based approaches exhibit two core
deficiencies: first, they are incapable of representing the relative
motion between objects at each moment in time; second, they
possess a relative lack of clarity in the representation of nodes
other than the center object.

Vector-based approaches: Vector representations are demon-
strated to effectively encode map information. Inspired by the
OpenDrive [26], researchers use a vector to represent the in-
formation of agents. Moreover, the vectorized information is
permutation invariant so that it can be easily combined with
transformers, GCN, and other GNN mechanisms. So, much
SOTA work is carried out using vectorized information in com-
bination with GNN [27]. For instance, The work by Jiyang Gao
et al. pioneered the application of vectorized trajectory and lane
boundary information to the task of trajectory prediction [10].
Zhibo Wang et al. encode and distillation learns the inputs
by vectorized agent history trajectories and vectorized center
lanes [28].

The above-mentioned methods apply to both map-based ap-
proaches and map-free approaches. However, among all SOTA
models tend to use a combination of trajectory and map infor-
mation. Yuxuan Han et al. achieve better results by combining
the map with traffic rules and historical vehicle trajectories [29].
After graphing the HD map, Xing Gao et al. reach SOTA by
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combining historical trajectories and HD map [30]. The work of
Zhou et al., which win in the competitions for the ArgoverseV1.1
and ArgoverseV2, fully accounts for map and trajectories and
uses interactions between agents and map [31]. However, HD
maps have started to reveal some issues in their usage. Similar
to other AVs systems, researchers also begin investigating how
to perform trajectory prediction without relying on HD maps.
Julian Schmidt et al., in their work, achieves good results in
the ArgoverseV1.1 competitions only using historical trajecto-
ries [32]. Jing lian et al. achieve better results than crat-pred
using only historical trajectories through GAT, IDCNN, and
multi-attention mechanisms [27]. Our work is related to that of
Julian Schmidt et al. [32] and Zhou et al. [33]. In our framework,
the interactions between each agent at every time step are fully
taken into account, and the corresponding traffic rules can be
inferred from the trajectories of surrounding agents.

Due to the multimodality of agent trajectory prediction, re-
searchers tend to make a priori assumptions about the probability
of trajectories. The earliest models tend to use the Gaussian
mixture model (GMM) [4], [34], [35]. Recently, there have
been frameworks that use Laplace distribution for fitting [33].
Both models have been shown to perform well in multimodal
prediction of trajectories. Also, both probabilistic models are
equally well adapted to different datasets, such as Argoverse,
Waymo [3], [36]. Therefore, in our work, we use the Laplace
distribution.

III. PROBLEM FORMULATION

In this paper, there are N traffic participants, so we can use

Phist = {ρh1
, ρh2

, . . ., ρhM
, . . ., ρhN

} (1)

for the traffic participants, where Phist denotes the set of his-
torical trajectories for all agents in the current prediction task,
ρhN

represents the trajectory of the ego vehicle, [ρh1
, . . ., ρhM

]
represent the historical trajectories of agents that need to be
predicted, M is the number of prediction targets. Each historical
trajectory in Phist can be represented by :

ρhi
=
{
ρic , ρig , ρ

t
i, ρ

t+1
i , . . ., ρ

Tf

i

}
, (2)

where ρhi
denotes the history trajectory of the ith agent, tmeans

the start frame of the ith agent, Tf means the end frame of the
ith agent, and ρic denotes the difference in coordinates between
the agent and the ego at frame t, ρig denotes the agent’s position
in the global coordinate system at frame t. With the introduction
of ρic and ρig , our network has Permutation Invariance. Each
frame of the ith agent is

ρti = [xt, yt], (3)

where (xt, yt) denotes the centroid position of the agent in the
local coordinate system at timestamp t.

Some studies have found that outputting a single predicted
trajectory can be deemed unreasonable. A single trajectory does
not yet accurately express the likely future trajectory of the target
and, thus, the target’s intentions. Therefore, during the trajectory
prediction task, we conduct multimodal trajectory predictions
for all agents at the same moment. So when we predict the

trajectory Pp, we can represent results as

Pp = {ρp1
, ρp2

, . . ., ρpM
} . (4)

where M is the number of targets for which single object
predictions can be made. The prediction for the ith agent can
be denoted by:

ρpi =
{
ρ1pi, ρ

2
pi, . . ., ρ

U
pi

}
, (5)

where U denotes the total number of trajectories we need to
predict. Each predicted trajectory

ρjpi = {(x0, y0), (x1, y1), . . ., (xH , yH)}. (6)

where j is the jth predicted trajectory, (xi, yi) is the estimated
coordinates and H denotes the number of steps we need to
predict. In the prediction, since the output time step is determined
according to the dataset or actual usage requirements, it is not
necessary to predict the time for each step.

IV. METHODOLOGY

A. Overall Model

The general structure for the trajectory prediction network is
shown in Fig. 1. TR-Pred comprises two streams: a trajectory
stream and a relative stream. The trajectory stream includes
two modules: the trajectory feature extraction module and the
global trajectory interaction module. The core of the trajectory
feature extraction module is an LSTM encoder. The input of
the trajectory feature extraction module is a single trajectory.
The core of the global trajectory interaction module is a GNN
module using the transformer mechanism. It uses the output
from the trajectory feature extraction module to get U global
interactivity feature for each agent. In this module, the main
role of the GNN is to infer the latent traffic context of the
current road from the trajectory of each vehicle. This includes
the drivable area, traffic control, and some lane information. This
enables the token corresponding to the target vehicle to contain
information about the relevant traffic states. The main modules in
the relative stream are the local encoder module and the relative
motion global interaction module. The local encoder consists
of a graph feature encoder, an Agent relative motion encoder
(AR encoder) module and a temporal transformer module. The
GNN module uses a transformer mechanism containing edge
information for local information aggregation and the temporal
transformer for extracting full-time features of the center target.
The relative interaction module is a GNN module using the
transformer mechanism. It uses the output from the relative
encoder module to get the U global interactivity feature for each
agent. In this module, the primary role of GNN is to aggregate
information from each local scene. Consequently, the model
can obtain global interactive information between each target
agent and other agents. This enables the target agent token to
access information about the target vehicle’s interaction with
other vehicles. Finally, an MLP decodes use the inputs from
both streams and directly generates the trajectories within the
next H steps.
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Fig. 1. Architecture of TR-Pred. This figure illustrates the two-stream structure of our model, where data passes through two distinct encoders and contextual
aggregators prior to decoding. Key: Rel encoder: relative encoder; Rel-Interactivity: relative interactivity; Traj-Interactivity: global trajectory interactivity.

B. LSTM Encoder

In order to improve the generalization performance, we rotate
the trajectory by a suitable angle. So, We use the rotated and
normalized agent historical trajectory as the LSTM encoder
input. However, the agent’s trajectory does not always start
at timestamp 0. In contrast to other networks [9], [32], we
incorporate relative moments as inputs so that trajectories that
are not at the moment 0 can also be added to the input. Since
the sampling period of the dataset is not always uniformly
distributed, the network cannot simply take in the number of
sampling steps as input like other networks [32], [33]. We need
to also incorporate the timestamp as inputs for learning the
acceleration, deceleration, and other behaviors of the agents.
The concrete representation of the input information can be
represented by

ρhist =
{
ρti, ρ

t+1
i , . . ., ρ

Tf

i

}
, (7)

with ρhist denotes the input trajectory, ρji being the relative po-
sition at moment j and ρji = [xj ; yj ]. Based on this information,
a single layer LSTM encoder can be used to capture temporal
information for the agent itself, and the encoder weights are
shared. The LSTM can be denoted by:

ht
i = LSTM(ρji , h

t−1
i , ct−1

i ) (8)

with output ht
i, hidden state ct−1

i and previous moment output
ht−1
i are vector of size dm. dm is 128, and LSTM finally output

id hi.

C. Trajectory Interactivity

Obtaining spatial interactions is a crucial challenge in tra-
jectory prediction. The GAT method cannot flexibly extract
interaction information of interest. Therefore, inspired by the
Graph Transformer [37], we use a transformer with relative

positional embedding to extract interaction features. Since we
have normalized the trajectories of each agent, it is necessary
to select a key feature point within each trajectory point for
the construction of edges in GNN. We select the feature points
through:

ρic =

{
ρti if t < Tf ;

ρ
Tf

i otherwise.
(9)

Similar to the Graph Transformer, we extend the transformer
to add information about the edges between nodes. We use
MLP Ψrel(·) to obtain edge embeddings eij from agent i to
agent j. So, we construct information about the edges between
two different trajectories i and j by ρic , ρjc ,Δθij , where Δθij
denotes θi − θj ,Roti ∈ R2×2, eij ∈ Rdm, θi and θj denotes the
angle of rotation.

eij = Ψrel

([
Rot�i

(
ρ�ic − ρ�jc

)
; cos (Δθij) ; sin (Δθij)

])
.

(10)

In (11), x ∈ [1, 2, . . ., dk], WQTraj

x ∈Rdm×dh, WKTraj

x ∈
R2dm×dh, WV Traj

x ∈R2dm×dh are the learnable matrices,
where dh = dm/dk. dk represents the number of attention
heads used in the transformer.

q̃xi = hiW
QTraj

x ,

k̃xij = [hj ; eij ]W
KTraj

x ,

ṽxij = [hj ; eij ]W
V Traj

x , (11)

We then put the q̃xi , k̃
x
ij , ṽ

x
ij into the scaled dot product attention

module to obtain the aggregated information. The scaled dot
product attention module is formulated as follows:

mx
i =

∑
j∈Ni

softmax

(
q̃xi√
dk

·
[{

k̃x�ij
}
j∈Ni

])
ṽxij (12)
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Fig. 2. Architecture of the Local Encoder.

where Ni is the set of all trajectories except i, mx
i ∈ Rdh.

mtraj
i = concat(m1

i ,m
2
i , . . .,m

dk
i ) + hi (13)

The MLP module is followed by the dot product attention
module.

li = Relu(MLP (mtraj
i )) +mtraj

i (14)

li is vector of dm. Notably, we applied layer normalization
before formulas (11) and (14).

D. Related Encoder

The related encoder consists of one or more local encoder
components in parallel. Fig. 2 provides a detailed illustration of
the structure of each module in Local Encoder. The local encoder
has four main modules:
� Time Slice
� Graph Build
� Agent Relative Encoder, AR Encoder
� Temporal Transformer
Time Slice is aimed at providing Rotate-Translation Invari-

ance. Rotate-Translation Invariance [33] is essential for en-
abling our network to have the simultaneous output of trajectory
information from multiple agents. In the module, we choose
the appropriate rotation matrix Rot based on the trajectory of
the center agent. Then, rotate both the center agent i and the
surrounding agents accordingly. So we can be represented input
Γpi

by:

Γpi
=
{
Rot, γ0

pi
, γ1

pi
, . . ., γ

Tf
pi

}
. (15)

where γt
pi

denotes the set of agent local coordinates within
the center agent’s region at t time step, the origin of the local
coordinate system is situated at the center agent’s position at
time 0. In Γpi

,

γt
pi

=
{
t,Φt

i,
{
Φt

ij

}
j∈Ai

}
, (16)

Ai denotes the local coordinates of surrounding agents within
the center agent’s region, Φt

i represents the position displace-
ment of the center agent from time 0 to the current time step
t, and Φt

ij = (xi
j , y

i
j), where (xi

j , y
i
j) is the local coordinate for

agent j.
Graph Build consists of two blocks, namely, the center agent

embedding and the surrounding agent embedding. Two different
MLPs are used to obtain each embedding. In these MLPs,
(Φt

i − Φt−1
i ) and (Φt

j − Φt−1
j ) is the motion information of

the agent between adjacent moments, (Φt
j − Φt

i) is the relative
distance coordinates between the surrounding agent and the
center agent at the current moment. ai and aj are semantic
attributes of agent i and agent j, respectively. Each MLP can
be represented by:

zi = Ψc

([
Rot�i

(
Φt

i − Φt−1
i

)�
; ai

])
, (17)

zij = Ψn

([
Rot�i

(
Φt

j − Φt−1
j

)�
;Rot�i

(
Φt

j − Φt
i

)�
; aj

])
,

(18)

where, zti ∈ Rdm, ztij ∈ Rdm, Ψc(·) and Ψn(·) are different
MLPs.

AR Encode aggregates information of the constructed graph
through the graph transformer module. In this module, we use
the center agent embedding to generate the query vector and use
the surrounding agents to generate the key and value vectors.
These are denoted as qarix , k

ar
ijx

, varijx . In (19),WQAR

x ∈ Rdm×dh,

WKAR

x ∈ Rdm×dh,WV AR

x ∈ Rdm×dh are the learnable matrices.

qarix = ziW
QAR

x , karijx = zijW
KAR

x , varijx = zijW
V AR

x ,

(19)

Then, we feed these values into the scaled dot product attention
mechanism to compute:

mar
ix

=
∑
j∈Ai

softmax

(
qarix√
dk

·
[{

kar�ijx

}
j∈Ai

])
varijx (20)
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In the previous research, it is found that the gating unit has a
specific effect enhancement for information extraction [38], so
we also included the gating unit as the input and the fusion of
the extracted information.

mar
i = concat(mar

i1
,mar

i2
, . . .,mar

idk
) (21)

gi = sigmoid
(
[zi;m

ar
i ]W gate

)
, (22)

ẑi = gi �W self zi + (1− gi)�mar
i , (23)

where W gate ∈ R2dm×1, W self ∈ Rdm×dm are the learnable
matrices. The MLP module is followed by the dot product
attention module.

Si = Relu(MLP (ẑi)) + ẑi (24)

Si is vector of dm. Notably, we apply layer normalization before
formulas (19) and (24).

Temporal Transformer is used to obtain the temporal features
of the center agents. This is because the input vector Si is
just the positional feature at a single timestamp. Our module
differs from Detr and Hivt in that we did not use learnable
parameters [33], [39]. We use LSTM embedding to initialize
class tokens instead of learnable parameters. In (25), we add the
positional embedding (TA) with the Si.

Ŝi = Si + TA, (25)

where Ŝi ∈ R(Tf+1)×dm, TA ∈ R(Tf+1)×dm, TA is a learnable
parameter.

qtime
ix

= ŜiW
Qtime

x , ktime
ix

= ŜiW
K time

x , vtime
ix

= ŜiW
V time

x ,
(26)

where WQtime

x ∈Rdm×dh,WK time

x ∈Rdm×dh,WV time

x∈
Rdm×dh, are learnable matrix.

S̃ix = softmax

(
qtime
ix

ktime
ix

�
√
dk

+Mask

)
vtime
ix

, (27)

muv =

{−∞ if u < v;
0 otherwise,

(28)

Mask =

⎡
⎢⎢⎢⎢⎣
0 −∞ · · · −∞
0 0 · · · −∞
...

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎦
(Tf+1)×(Tf+1)

(29)

where we use theMask to make the model pay more attention to
the information from the previous timestamps. The MLP module
is followed by the dot product attention module.

S̃i = Relu(MLP (concat(S̃i1 , S̃i2 , . . .,
˜Sidk))) + Ŝi (30)

Same as the AR encoder, we apply layer normalization before
formulas (26) and (30).

E. Global Interactivity

Region features are obtained through the local encoder, ne-
cessitating a global interaction module to capture the remote
dependencies in the scene. Similar to the Trajectory Interaction

module, we employ the graph transformer for global information
aggregation. However, in contrast to the trajectory interaction
module, each center agent must possess trajectory information
in the final frame T of the historical trajectory. The geometric
relationship between agent i and agent j can be represented in
the following way:

Eij = Ψr

([
Rot�i

(
ρ
Tf

j − ρ
Tf

i

)�
; cos (Δθij) ; sin (Δθij)

])
.

(31)

where Ψr(·) is MLP layer, Eij ∈ Rdm.

qgix = S̃iW
QG

x , kgijx = [S̃i;Eij ]W
KG

x , vgijx = [S̃i;Eij ]W
V G

x ,

(32)

where WQG

x ∈Rdm×dh,WKG

x ∈R2dm×dh,WV G

x∈R2dm×dh,
are learnable matrix.

M̃ix =
∑
j∈Ni

softmax

(
qg�ix√
dk

·
[{

kgijx
}
j∈Ni

])
vgijx (33)

In (34) Ni donate the set of all trajectories except i. It is worth
noting that the Ni here is sometimes inconsistent with the Ni of
the Trajectory Interaction Module, as not all trajectories can be
represented with center embeddings.

Li = Relu(MLP (concat(M̃i1 , M̃i2 , . . ., M̃idk))) + S̃i (34)

Same as the AR encoder, we apply layer normalization before
formulas (32) and (34).

F. Decoder

The most important characteristic of the future trajectory of a
vehicle is its multimodality. Therefore, the output of multimodal
trajectories is the core of trajectory prediction tasks. We use the
Laplace distribution to fit the uncertainty of the trajectory. The
model predicts trajectories using an MLP where the inputs are
concatenated with the features extracted from the two streams.

P̂p = Relu(MLP ([l;L; S̃])) (35)

The model outputs P̂p a tensor of size [U,M,H, 4], where U
denotes the number of outputs required for multimodal outputs,
M denotes the number of agents in the current scene that
can meet the requirements for predicting a trajectory, and H
represents the number of steps that need to be predicted in the
contemporary scene. To aid in training, we use another MLP
and a softmax function to predict the mixing coefficients for
each agent’s mixing model in the shape of [U,M ]. The specific
model architecture of the decoder is shown in the Fig. 3.

G. Training

The loss function consists of two parts. One part is a regression
loss function, and the other part is a classification loss function.
The negative log-likelihood function of the Laplace distribution
serves as the regression loss function. The cross-entropy loss
serves as the classification loss function. Their ratio is 1:1.

L = Lreg + Lcls , (36)
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Fig. 3. Specific structure of the decoder is shown to obtain the final output
trajectory through the inputs of the two modes.

In (37) P (·|·) denote the Laplace distribution, µ̂t
i, b̂

t
i are denoted

the location of the optimal trajectory and uncertainty, respec-
tively.

Lreg =− 1

NH

N∑
i=1

Tf+H∑
t=Tf+1

logP

(
Rot�i

(
ρti−ρ

Tf

i

)�
| µ̂t

i, b̂
t
i

)
.

(37)

We compute Lcls utilizing the cross-entropy loss function. It is
worth noting that we only optimize the best-predicted trajectory
each time. The best trajectories are selected by 2-paradigm
selection.

V. EXPERIMENTS

A. Experimental Setup

1) Dataset: Our framework is trained and validated on the
Argoverse dataset. We submit to Evalai’s public leaderboard1

(07/06/2023). The task of Argoverse Motion ForecastingV1.1 is
to predict the target’s trajectory for the next 3 seconds from the
first 2 seconds of the agent’s historical trajectory. The dataset
contains 323,557 real-vehicle driving scenarios in Miami and
Pittsburgh, divided into training, validation, and test sets roughly
in a ratio of 5:1:2 (train: 205,942; val: 39,472; test: 78,143). In
addition, experiments are also conducted on the highD [40] and
RounD [41] datasets. The highD dataset is collected on German
highways, with vehicle speeds generally above 80 km/h and
maximum speeds exceeding 160 km/h. The RounD dataset is
collected at German roundabouts using drones, with more com-
plex traffic situations and increased interaction between agent
motions compared to other scenarios. Since the sampling rates
of these two datasets are 25 Hz, which does not meet trajectory
prediction requirements, we resampled them to 12.5 Hz. We
predict the next 30 sample points based on the first 20 points,
for a total prediction time of 4 s. We spilt these two datasets

1[Online]. Available: https://eval.ai/web/challenges/challenge-page/454/
overview

into training, testing, and validation sets. The roundD dataset
has 4,366, 541 and 569 data points in the training, testing,
and validation sets, respectively. The highD dataset has 11,848,
1,536 and 1,564 data points in the training, testing, and validation
sets, respectively. The spilting ratio for both datasets is 8:1:1.

2) Metrics: We choose standard metrics for motion predic-
tion to evaluate our model. The standard metrics include mini-
mum Average Displacement Error (minADE), minimum Final
Displacement Error (minFDE), and Miss Rate (MR). Using
these metrics, we need to predict K possible trajectories for
the target. The minADE measures the accuracy of the predicted
trajectory by calculating the l2 distance between the best pre-
dicted trajectory τ̂ ti,k and the actual trajectory τ ti . The specific
calculations are as follows

minADEK =
1

N

1

H

K
min
k=1

N∑
i=1

H∑
t=1

∥∥p̂tpi,k − ptpi
∥∥
2
. (38)

The minFDE is calculated as the minimum final displacement
error between the best predicted endpoints and the actual end-
points over K predictions.

minFDEK =
1

N

K
min
k=1

N∑
i=1

∥∥p̂Hpi,k − pHpi
∥∥
2

(39)

In (38) and (39), N is the total number of agents, and K denotes
that we generate K predictions for each agent.

MR is calculated as the ratio of the predicted endpoints less
than 2 meters from the actual endpoint.

3) Implementation Details: The model is trained with 64
epochs by the ADAMw optimizer. The hidden layer size is 128,
the batch size is 128, the initial learning rate is 10−4, and the
weight decay and drop-out rates are 10−4 and 0.1, respectively.
We use the cosine annealing scheduler to attenuate the learning
rate. In the trajectory stream, we use one layer of the LSTM
module and three layers of the trajectory interaction module
in the trajectory stream. In the relative stream, we use a layer
of local modules, four layers of temporal transformer modules,
and three layers of trajectory interaction modules in our relative
stream. The number of heads for the multi-head attention is 8,
and the number of predictive modes K is set to 6. The radius of
all local regions is 50 meters. We train for 7 hours on a single
RTX3090, with one epoch taking around 5 minutes.

B. Results

1) Qualitative Results: We present qualitative results for TR-
pred on the Argoverse validation set. For the sake of an intuitive
presentation, we have visualized the predictions. We have se-
lected a few representative scenarios for demonstration, which
include vehicle acceleration, deceleration, turning, lane chang-
ing, and traveling straight. Interestingly, despite the absence of
semantic information from the map, our model still accurately
predicts the vehicle’s actions, such as lane changing and lane
centering. We can predict the acceleration and deceleration of
vehicles at intersections even in the absence of map and traffic
control information, as depicted in Fig. 4. Our model likewise
accurately determines vehicle lane changes without relying on a

https://eval.ai/web/challenges/challenge-page/454/overview
https://eval.ai/web/challenges/challenge-page/454/overview
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Fig. 4. This figure demonstrates accurate prediction results for several common driving scenarios, including vehicle acceleration/deceleration, turning, lane
changing, and traveling straight. In this depiction, various elements are color-coded for clarity: blue is the ego vehicle, light brown is the neighboring traffic
participant, magenta is the historical trajectory, red is the true trajectory, green is the predicted trajectory, and the dotted line is the center line of the lane line. With
the exception of the predicted vehicle, all agents drew only the first two seconds of trajectory.

map. Remarkably, we found that even without map information
and despite the vehicle having no intention of changing lanes,
our model infer the possibility of making a left or right turn in the
current lane based on the trajectories of surrounding vehicles,
as shown in Fig. 5. These observations indirectly validate the
effectiveness of the interaction module in our model.

2) Comparison With State-of-The-Art: In order to validate
the proposed framework, we compare the results obtained on
the Argoverse dataset with those of several SOTA models from
recent years. We uniformly compare the results obtained by these
models on the validation set with the number of predicted tra-
jectories, K set to 6. Our model is compared with the following
map-free prediction methods:
� Nearest neighbors (NN) baseline [3].
� Crystal Graph Convolutional Neural Networks with Multi-

Head Self-Attention (CRAT) [32].
� Encoding the intrinsic interaction information for vehicle

trajectory prediction (Liannet) [27].
� Multi-Agent Tensor Fusion for Contextual Trajectory Pre-

diction (MATF) [42].
� Diverse and Admissible Trajectory Forecasting through

Multimodal Context Understanding (CAM) [43].
� Towards Safe Autonomy in Hybrid Traffic: Detecting Un-

predictable Abnormal Behaviors of Human Drivers via
Information Sharing (MEATP) [44].

Fig. 5. Picture shows an interesting result, which we have specially selected.
Primarily, it illustrates the capacity of our model to leverage information from
the surrounding agents. In this depiction, various elements are color-coded for
clarity: blue is the ego vehicle, light brown is the neighboring traffic participant,
magenta is the historical trajectory, red is the true trajectory, green is the predicted
trajectory, and the dotted line is the center line of the lane line. With the exception
of the predicted vehicle, all agents drew only the first two seconds of trajectory.

� A Fast and Map-Free Model for Trajectory Prediction in
Traffics (F 2 net) [45].
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TABLE I
PERFORMANCE EVALUATION OF SEVERAL MAP-BASED PREDICTION METHODS

ON THE ARGOVERSE TEST SET

TABLE II
PERFORMANCE EVALUATION OF SEVERAL MAP-BASED PREDICTION METHODS

ON THE ARGOVERSE VALIDATION SET

� Learning Lane Graph Representations for Motion Fore-
casting (LaneGCN) [9].

� Efficient Baselines for Motion Prediction in Autonomous
Driving (EBMP) [46].

� HiVT: Hierarchical Vector Transformer for Multi-Agent
Motion Predictions (HiVT) [33].

Additionally, our proposed model is also compared with the
following map-based prediction methods:
� Planning-Inspired Hierarchical Trajectory Prediction Via

Lateral-Longitudinal Decomposition for Autonomous
Driving (PiH) [47].

� Heatmap Output for future Motion Estimation (HOME)
[15].

� Graph-Heatmap Output for future Motion Estimation (GO-
HOME) [17].

� Target-driven Trajectory Prediction (TNT) [48].
� End-to-end Trajectory Prediction from Dense Goal Sets

(DenseTNT) [49].
� Distributed Representations for Graph-Centric Motion

Forecasting (LaneRCNN) [50].
The results in Tables I and III are from the 15 July 2023

Argoverse leaderboard. Our results are submitted on 7 July
2023.

Compared to conventional map-based approaches, our model
attains superior performance on the minADE metric. Never-
theless, it exhibits suboptimal results on the minFDE and MR
metrics. In light of this phenomenon, we conduct an analysis.
Regarding the role of maps in trajectory prediction, we put
forward the following hypothesis: In most cases, agents are
traveling near the centerline of the road, except for situations
such as lane changing or lane shifting. HD maps impose con-
straints on the agent’s localization, enhancing the precision of the
agent regarding the horizontal position and ameliorating errors.

TABLE III
PERFORMANCE EVALUATION OF SEVERAL MAP-FREE PREDICTION METHODS

ON THE ARGOVERSE TEST SET

TABLE IV
PERFORMANCE EVALUATION OF SEVERAL MAP-FREE PREDICTION METHODS

ON THE HIGHD TEST SET

Moreover, map cues can help enhance the model’s understanding
of the agent’s intention to turn and change lanes. However,
our model has some advantages over other map-based methods
regarding the quality of the generated trajectories. These results
indicate that our model exhibits comparable performance to
other map-based approaches in inferring the agent’s intent. Our
model can acquire the agent’s intent through limited information
and has stronger processing capabilities for the agent’s trajectory
information. Specific results are shown in Tables I and II.

Compared to recent map-free prediction methods, our pro-
posed model achieves SOTA performance and surpasses other
methods on minADE, minFDE, and MR metrics. Specific re-
sults are shown in Table III. Compared to the recently pro-
posed method CRAT, our model demonstrates improvements
of 0.171, 0.369, and 6.3 on the minADE, minFDE, and MR
metrics, respectively. In particular, relative to F 2 net, another
concurrently proposed map-free prediction method, our model
achieves respective improvements of 5.5%, 5.8%, and 8.9% on
the minADE, minFDE, and MR metrics.

For the experiments on the highD and rounD datasets, the
models used for comparison are modified from their official
git to allow training on these datasets. Our experiments results
show that our model achieves the best performance on highway
scene (highD dataset) and roundabout scene (RounD dataset).
As shown in Table IV, our model achieves nearly zero loss rate
on the highD dataset, with minFDE less than 0.25 m. Compared
to the best performing map-free version of HIVT, our model
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TABLE V
PERFORMANCE EVALUATION OF SEVERAL MAP-FREE PREDICTION METHODS

ON THE ROUND TEST SET

TABLE VI
PERFORMANCE EVALUATION OF SEVERAL MAP-FREE PREDICTION METHODS

ON THE ARGOVERSE VALIDATION SET

improves minADE and minFDE by nearly 20%. On the more
complex traffic conditions of the RounD dataset, our model
achieves the best performance compared to other models on all
three metrics of minADE, minFDE, and MR. Compared to the
well-performing HIVT model, our model improves these three
metrics by 8.3%, 8.5%, and 6.7% respectively. The performance
of each model on the rounD dataset is presented in Table V.

3) Compare the Results of the Validation Set With the Results
of the Test Set: During the experiments, we observe some inter-
esting phenomena that indicate that our model has a stronger
learning ability. We compare the results of the map-free predic-
tion method on the validation set. Our model achieves the best
results in terms of minADE and minFDE metrics. However, in
the MR metric, our model performs even worse than F 2 net. Spe-
cific data is shown in Table VI. These results diverge from those
attained on the test set. The problem of performance degradation
of our model is minimal. For this reason, we specifically look at
the difference between the test set, validation set, and training
set. We find that scenarios overlap in the test set training set much
more. The test has many different or even new scenarios. Most
of the models suffer from more or less overfitting, resulting in
models that cannot extract valid information when confronted
with new scenarios. Our model has better generalization and
can be used to extract more usable information from the data.
More helpful information can be extracted when confronted
with unfamiliar scenarios. This is due to our effective model
design, which allows us to extract the features of the scene
better. Despite utilizing both input modalities similar to F 2

Net, our two-stream architecture enables superior generaliza-
tion capabilities and performance metrics. The specific differ-
ence between the validation set and test set data is shown in
Table VII.

4) Inference Speed: The computational complexity of our
model is approximately 0.139 GFLOPs. It is comparable to
LaneGCN and about 25% of DenseTNT’s complexity [51].

TABLE VII
DIFFERENCE BETWEEN VALIDATION SET AND TEST SET

TABLE VIII
INFERENCE SPEED ON VALIDATION SET

TABLE IX
ABLATION EXPERIMENTS ON THE ARGOVERSE VALIDATION SET

We evaluate the inference speed of the model on a part of the
Argoverse validation set using an RTX 3090 GPU. The inference
speed of our model for single-agent trajectory prediction tasks
is comparable to that of conventional models. When predicting
trajectories for multi-agents, the inference speed is much faster
than models that cannot inference multi-agents trajectories at
the same time. The inference speeds are shown in Table VIII.

C. Ablation Studies

All ablation experiments are validated at Argoverse. Unless
specified, the class token is initialized through the LSTM output
in the temporal transformer. In this subsection, we conduct
detailed ablation experiments to validate the effectiveness of
each module. It is shown in Table IX.

1) Trajectory Stream: In the experiments with the trajectory
stream, our relative stream uses the whole framework for em-
bodying the adaptation of the model to the relative stream. For
trajectory stream’s ablation experiments, we investigated the
effects of LSTM Encode and Trajectory-Interactions on model
performance separately. In the case of the relative stream, LSTM
can be a further performance improvement for the framework.
The Global Information Interaction Module can further improve
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TABLE X
ABLATION EXPERIMENTS FOR TRAJECTORY STREAM ON THE ARGOVERSE

VALIDATION SET

TABLE XI
ABLATION EXPERIMENTS FOR RELATIVE STREAM ON THE ARGOVERSE

VALIDATION SET

the model’s performance because it focuses on vehicle interac-
tion information in a larger region. It is shown in Table X.

2) Relative Stream: In our experiments with relative stream,
our trajectory stream uses to represent the adaptation of the
model to the trajectory stream. We demonstrate the contribution
of each module to the prediction performance by alternately
removing one of the components. If maxout is used instead of
the temporal transformer, we can find that the performance of
the model decreases very seriously. This is because Temporal
Transform can fully incorporate the long-distance trajectory
information to fuse the information of the surrounding envi-
ronment at each moment. Like the trajectory stream, removing
the global interaction module leads to decreased model perfor-
mance. This is due to the global interaction module’s superior
ability to capture relationships between different agents. It is
shown in Table XI.

3) Relative Stream and Trajectory Stream: In this paragraph,
our relative stream and trajectory stream utilize a full-framework
model. It can be observed that a single stream exhibits ade-
quate performance. The model’s performance is also enhanced
after the fusion between the two streams. This phenomenon
demonstrates that the framework’s performance can be fully
augmented by sharing information between different modalities.
It also provides evidence for the validity of representing relative
motion temporally and prolonged motion trajectory. The specific
performance of the model is shown in Table XII.

4) Class-Token Initialization: In this paragraph, we evalu-
ate the impact of using two different class token initialization
methods on model performance. We find that the method utiliz-
ing LSTM initialization achieved superior performance. Conse-
quently, we posit the following conjecture. Learnable parameters
can provide some a priori knowledge, as in Detr [39], and
extract more appropriate features. Therefore, this form requires
extensive training iterations and stacked Transformer modules
to realize its full potential. With limited transformer stacks and

TABLE XII
ABLATION EXPERIMENTS FOR TWO-STREAM ON THE ARGOVERSE VALIDATION

SET

TABLE XIII
ABLATION EXPERIMENTS FOR CLASS-TOKEN ON THE ARGOVERSE VALIDATION

SET

epochs in our model, LSTM initialization achieves superior
performance by reducing these requirements. The performance
of the class-token initialization is shown in Table XIII.

5) Summaries: This subsection presents ablation studies to
assess the contribution of each module and its influence on the
holistic model performance. The results also demonstrate the
effectiveness and rationality of our modifications to pertinent
model components. The performance of all ablation experiments
is shown in Table IX.

VI. CONCLUSION

This paper proposes a two-stream map-free trajectory predic-
tion network that achieves excellent prediction results. The core
idea of the framework is to correlate context information through
two different modal representations of the same information.
Although the two modes of agent trajectory can be independently
predicted to achieve acceptable performance, the collective use
significantly enhances the overall effectiveness, showing strong
complementarity. In each stream, we use a message encoding
followed by a global interaction for contextual messages. The
extensive ablation studies further validate the efficacy of the
proposed solutions in enhancing predictive performance. The
context interaction module adopts a graph transformer. In the
Argoverse dataset, map-free prediction methods achieve for the
first time within 20% (19.5%) in MR and within 0.9 (0.88) in
minADE. This result paves the way for potential applications of
map-free prediction methods. In the highway and roundabout
traffic scenarios, our model also exhibits good performance.
Future research can proceed in the following directions: (1)
knowledge distillation can be utilized to acquire enhanced con-
straint information; (2) incorporating interactive motions be-
tween agents during prediction may improve prediction quality.
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