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ABSTRACT The traditional fault diagnosis methods generally present poor diagnosis accuracy and
robustness when faced with complex conditions that involve noisy interference and domain shift. Therefore,
a new weight-based dual domain adaptation transfer model for bearing fault diagnosis is proposed. First,
based on continuous wavelet transform, the temporal signals are transformed into time-frequency images
(TFIs) for enhancing feature representation. Second, the TFIs are used as the input of the improved network
which is based on dense and residual connections to complete feature extraction. Third, the proposed transfer
model uses local maximummean discrepancy (LMMD) to adjust data distribution between different working
domains and batch nuclear-norm maximization (BNM) to improve the discriminability and diversity of the
output matrix. Moreover, the weight controller is used to trade off the contributions of LMMD and BNM
during training. Finally, the proposed frequency domain cut can be seen as a simple moving and cutting
method to adjust each frequency spectrum of TFIs. In this process, the controlled weight factor is involved
to further alleviate noise interference. Case studies show that the proposed model outperforms other methods
and works well even in complex conditions mixed by noise and cross-domain.

INDEX TERMS Fault diagnosis, dual domain adaptation, transfer learning, rotor bearing.

I. INTRODUCTION
Rotating machinery plays a crucial role in various industries.
The bearings are widely served in almost all rotating
machinery, such as motor vehicles, wind turbines, high-speed
trains, and mine hoists. Once the bearings fail without fault
alarm in advance, it may cause huge economic losses and
even the casualties of operators. Therefore, the effectiveness
and robustness of bearing fault diagnosis have attracted
significant attention in recent years [1], [2], [3].

With the rapid progress in artificial intelligence, there are
many breakthroughs in machine learning techniques, such
as object detection [4], [5], image classification [6], [7],
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natural language processing [8], and control engineering [9].
Consequently, a large number of researchers have applied
deep learning techniques to mechanical fault diagnosis
[10], [11]. However, the supervised learning methods need
numerous labeled samples as the input to train a uniquemodel
and a better detection performance only can be obtained
in the dataset which has the same data distribution with
training samples. In practical applications, the collection of
labeled fault signals is difficult, especially for those key
components in heavy machinery, such as the mine hoist
spindle bearings. In addition, the collected samples often
exhibit varying distributions due to the changes in working
loads and rotating speeds during operation. Therefore, the
data distribution alignment is necessary and crucial for cross-
domain conditions. On the other hand, noise interference

123766

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-0147-8212
https://orcid.org/0000-0002-5138-0248
https://orcid.org/0000-0002-6700-9347


M. Wang et al.: New Weight-Based Dual Domain Adaptation Transfer Model

around intelligent sensors also has an adverse impact on fault
diagnosis performance.

To solve the above problems, a lot of researchers focus
on improving bearing fault diagnosis accuracy and have
proposed various methods based on deep learning methods.
Qian et al. proposed a deep discriminative transfer learning
network to implement bearing fault transfer diagnosis, and
achieved impressive results using three laboratory datasets
even in cross-machine conditions [12]. Su et al. proposed
a novel evidential deep learning-based adversarial network
to improve the cross-domain fault diagnosis performance of
rotary machinery, in which evidence-based fault identifier
is adopted for known fault identification and exponential
evidence score-based unknown estimation is developed
for underlying unknown fault recognition [13]. Aiming at
solving the negative effects of imbalanced datasets, Gu et al.
developed a more robust generative adversarial network
based on the self-attention mechanism and gradient penalty.
Two experiments were conducted and the encouraging results
serve as evidence of the effectiveness of bearing fault diag-
nosis under imbalanced conditions [14]. Li et al. combined
the random sampling, huge kernel, and adaptive multiscale
convolution to present an end-to-end fully convolutional
network to realize noise suppression and feature extraction,
and the state-of-the-art (SOTA) performance demonstrated
the better noise adaptability of the proposed network [15].
However, the complex working conditions are not considered
in the above methods, which is not in line with the real-
world. To solve the discrepancy of data distribution between
the source and target domains, the strategies of domain
adaptation can be used to improve the generalization ability
of trained model [16]. Yang et al. proposed a transfer
network to extract features from the raw vibration signals
and presented higher diagnosis performance in cross-domain
scenarios. The experimental results using laboratory and
locomotive bearings datasets demonstrated the maximum
mean discrepancy (MMD) regularization term is effective
[17]. To address the domain shift problems, Li et al.
proposed a novel domain adaptation method based on deep
convolutional network and MMD minimization. Without
considering the effects of noise interference, the effectiveness
of feature transferability is demonstrated through valida-
tion experiments with other related works [18]. In 2023,
Qian et al. proposed a novel relationship transfer diagnosis
framework to improve the abilities of anti-noise and domain
adaptation for rotation machinery fault diagnosis. The
presented task-irrelevant domain adaptation and task-relevant
domain generalization are responsible for enhancing domain
confusion and improving the generalization ability of fault
classifier, respectively [19]. Based on the combination
of the marginal and conditional distribution, Qin et al.
proposed a novel deep joint distribution alignment model
to simultaneously reduce the discrepancy in marginal and
conditional distributions between source and target domains
[20]. To avoid the disadvantages of the single model, Li et al.
proposed an optimal ensemble deep transfer network for

bearing fault diagnosis based on the combination of transfer
learning, domain adaptation and ensemble learning [21].
Based on deep residual network, multi-kernel MMD, and
fault diagnosis classifier, Wan et al. proposed a novel domain
adaptation model for bearing cross-domain fault diagnosis
and demonstrated the superior transfer capability compared
with the existing troubleshooting methods [22].
According to the discussion above and the real-world

complex working condition, there are key problems in the
current typical bearing fault transfer diagnosis: 1) Most
current domain adaptation methods focus on aligning the data
distribution in two domains but disregard the discriminability
and diversity of the output matrix. 2) The independent
anti-noise module is neglected, which is necessary, especially
for intense noise interference. Aiming to solve these prob-
lems, a new weight-based dual domain adaptation transfer
model is proposed in this paper to focus on improving
the bearing fault diagnosis performance when faced with
complex conditions mixed by noise and cross-domain.
The main contributions and novelties of this paper are as
follows:

1) Time-frequency images (TFIs) establishment method
using continuous wavelet transform (CWT) and bilin-
ear interpolation algorithm are presented for the
improvement of bearing fault representation.

2) A new weight-based dual domain adaptation transfer
model is proposed to further improve the cross-domain
adaptability. LMMD is used for data distribution
alignment. The discriminability and diversity of pre-
diction results are enhanced by BNM. Different from
the simple combination of LMMD and BNM, the
proposed weight controller can dynamically trade off
the contributions of LMMDandBNM through a unique
exponential function.

3) The proposed frequency domain cut method uses the
mean value in each frequency spectrum of TFIs as a
‘‘scissor’’ to cut the noise components. The controlled
weight factor is involved in this process to further
improve the bearing fault diagnosis performance.

4) Two case studies are conducted using laboratory and
simulated bearing datasets to prove the effectiveness
and robustness of the proposed method. Comparison
experiments with other SOTA models show that the
proposed method can achieve excellent performance
even in complex conditions mixed by noise and domain
shift.

This paper is organized as follows: The related works
are reviewed in Section II. Section III is the methodology,
including the establishment of the TFIs, the details of
transfer model architecture, DenseNet-53 network structure,
dual domain adaptation transfer model, and frequency
domain cut method for denoising. In Section IV, case
studies are conducted through four validations and two
comparison experiments to demonstrate the effectiveness
of the proposed method. Conclusions are further drawn in
Section V.
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FIGURE 1. The sturcture of DenseNet network.

II. RELATED WORKS
A. DENSE CONVOLUTIONAL NETWORK
Dense convolutional network (DenseNet) [23] is proposed by
Huang et al., aims to enhance feature fusion and improve the
capability of feature extraction. The core idea of DenseNet is
to connect every layer to each other layer in a feed forward
fashion. Compared with the traditional neural network that
has L connections, there are L× (L+1)/2 direct connections
between each layer and its subsequent layer in DenseNet. The
feature maps of all preceding layers are used as inputs for
each layer, and its own feature maps are used as inputs for
all following layers. DenseNet not only can avoid vanishing
gradient, but also can reduce the scale of network, reuse
and combine feature maps. As illustrated in Fig. 1, each
Dense Block consists of numerous Dense units that are
processed by the standard convolutions, batch normalization,
and ReLU activation functions layers. Furthermore, the
transition layers are designed between each Dense Block
to change the size of feature maps via convolution and
pooling so that the parameters of the established network can
be reduced. To increase inference efficiency, a convolution
layer is used as a bottleneck layer to reduce the number of
input feature maps. The original DenseNet can be divided
into different variations based on the number of layers,
including DenseNet-121, DenseNet-169, DenseNet-201, and
DenseNet-264.

B. LOCAL MAXIMUM MEAN DISCREPANCY
In recent years, transfer learning was introduced to fault
diagnosis and provided a direction to solve the problem of
lacking labeled samples, especially for the key component
of large-scale mechanical equipment. In 2021, Zhu et al.
proposed the local maximum mean discrepancy (LMMD)
algorithm [24] and demonstrated it is one of the effective
unsupervised domain adaptation methods. LMMD is an
improved algorithm based on MMD [25], which can adjust
the data distribution between source and target domains
to achieve powerful cross-domain diagnosis capability.
Similarly, the original feature maps of different domains are
mapped to the reproducing kernel Hillbert space (RKHS)
to complete the calculation of MMD. As for the advantage
of LMMD, it not only takes the global distributions into
account, but also aligns the data distributions within the
same category of the different domains. In fact, the distance
between different categories is enlarged and the distance
between the same categories is closed. As shown in Fig. 2(a),

FIGURE 2. Intelligent fault diagnosis using different adaptation domain
methods.(a) Without domain adaptation; (b) Domain adaptation based
on MMD; (c) Domain adaptation based on LMMD.

the data distribution is different between source and target
domains, it is difficult for a trained classifier to perform
well in cross-domain tasks even if it can achieve an
excellent performance in source domain. Following MMD
method, the results depicted in Fig. 2(b), it can be seen
that the number of incorrect samples is reduced because
of the adjustment of global data distribution. However,
a large number of samples are distributed around decision
boundary and lead the distance between the same categories
is small. It can be observed from Fig. 2(c) that all fault
samples are separated successfully whatever source or target
domains, LMMD method can decrease the sample density
around the decision boundary by enlarging the distance
between different categories. Llmmd is the loss of LMMD
and can be obtained through (1). The weight mechanism
is used to distinguish different classes and complete the
alignment of the same category. At the same time, the
probability prediction (soft prediction) is used to measure
the discrepancy between source domain Ds and target source
domain Dt to alleviate the adverse impact due to the wrong
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prediction.

Llmmd =
1
K

K∑
k=1

∥∥∥∥∥∥∥
∑
xsi∈Ds

wski 8(x
s
i ) −

∑
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wtkj 8(x
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H

(1)

where xsi and x tj denote the samples from Ds and Dt ,
respectively. K is the number of all categories. The weight of
xsi and x

t
j belonging to class k is denoted by w

sk
i and wtkj .8(·)

is an kind of feature map function that can map samples from
a low-dimensional space to a high-dimensional RKHS space
H . During training, the cross-entropy loss function is used as
classification loss, and Llmmd can be used as a regularization
term to complete alignment tasks.

C. BATCH NUCLEAR-NORM MAXIMIZATION
Different with the LMMD method, Cui et al. focused
on solving the problems of decision boundary with high
data density and proposed batch nuclear-norm maximization
(BNM) [26] method to reduce the ambiguous detection
results under cross-domain scenarios. First, the prediction
discriminability can be measured through the result of the
Frobenius-norm (F-norm). For a binary classification task,
there are four different output matrices O1,O2,O3, and O4,
as shown in Fig. 3. True labels are presented on the left side
and all samples of the first row are denoted by sample 1 which
belongs to the normal class and the second is fault class. It can
be observed that ||O1||F = 1.225 > ||O2||F = 1.077, that
means the discriminability of O1 is higher than O2, where
|| · ||F denotes the calculation result of F-norm. However,
the output matrix is more prone to the case of O3 in the
early training stage. The F-norm maximization result ofO4 is
shown in Fig. 3(d). Although ||O4||F = 1.223 > ||O3||F =

1.010 and the discriminability is improved, the prediction
result of sample 2 is incorrect. Therefore, using BNM as the
optimization objective directly at the early training stage is
unreasonable.

Second, the diversity of prediction can be represented by
the rank of output matrix. The reason is that the output
vectors of different classes can be regarded as linearly
independent with each other, whereas the output vectors of
the same classes have the characteristic of approximately
linear correlation. Consequently, the higher rank of output
matrix, the more diversity of the prediction result. According
to the literature [27], there is a positive correlation between
Nuclear-norm and the rank of output matrix. Furthermore, lit-
erature [28] finds the F-norm result could be boosted through
increase the Nuclear-norm of prediction matrix. Therefore,
BNM uses the Nuclear-norm maximization method to both
take the F-norm and matrix rank into account so that the
ability of prediction discriminability and diversity can be
improved.

Lbnm = −
1
Bt

∥∥G(x ti )∥∥
∗

(2)

Equation (2) is the optimization objective that only need
target domain unlabeled samples X t to maximize the output

FIGURE 3. The output probability matrix and F-norm maximization results
of different samples. (a), (b) and (c) are output matrices without F-norm
maximization; (d) is O4 matrix obtained following the O3 F-norm
maximization.

FIGURE 4. The overlap sampling method of sample augmentation. The
red box represents the sampling window used to obtain samples that
have the same points as the length of sampling window. Sample
augmentation is realized by sliding the red box from left to right.

matrix which is the output of network G. Bt is the batch
size of prediction results during training and || · ||∗ is the
calculation result following Nuclear-norm. The negative sign
is introduced to minimize the overall loss value. Like Llmmd ,
the soft prediction is also used to complete the calculation
of Lbnm. Although the soft prediction has a negative
impact during the early training stage, the proposed weight
controller in this paper can be used as a solution to improve
diagnosis performance and the details will be discussed in
Section III-D.

III. METHODOLOGY
A. TIME-FREQUENCY FEATURE IMAGE
1) SAMPLE AUGMENTATION
The sample augmentation is a common and necessary
strategy for model training and testing. In this paper, the
overlap sampling method is conducted to achieve dataset
establishment. Considering the bearing rotating speed and
sampling frequency, 1024 signals are regarded as one sample
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TABLE 1. Algorithm of time-frequency images establishment.

to ensure sufficient features can be covered. Fig. 4 is a
continuous vibration signals, and the length of sampling
window is 1024, stride is set as 256. A large number of
samples can be obtained by scanning the raw signals, and
this is the foundation for the following TFIs establishment
and validation.

2) IMAGE PROCESSING
Due to the advantage of image representation, the one-
dimensional (1D) vibration signals need to be transformed
into two-dimensional (2D) feature images. As shown in
Table 1, the establishment of TFIs mainly consists of CWT
[29], max-min normalization, and image reconstruction.

Following the signal preparation and sample augmentation,
the next step is CWT using 1D temporal signals. During the
TFIs establishment, CWT plays a vital role and can reflect
the frequency change at different time points. Compared with
original temporal signals and frequency spectrum, CWT has
more features and the function is defined as follows.

CWTx(s, τ ) =
1

√
s

∫
x (t)ψ ′

(
t − τ

s

)
dt

=

∫
x(t)ψ ′

s,τ (t)dt

=
〈
x(t), ψs,τ (t)

〉
(3)

where x(t) is the original temporal signal, s and τ are the
stretching and translation parameters, respectively. ψs,τ (·) is
a mother wavelet of CWT and its function as follows.

ψs,τ (t) =
1

√
s
ψ

(
t − τ

s

)
(4)

The choice of wavelet basis function is crucial for
obtaining suitable results. In this paper, the Morlet is chosen
as the wavelet basis function because it is similar to the fault
impulse signal of rotating machinery. The result matrix of
CWT can be obtained using a series of wavelets with different
s and τ as filters to process temporal signals.

Data transformation is based on 2D CWTmatrix X (i). Due
to the range of image pix is from 0 to 255. All values in
X (i) need to be conducted by max-min normalization which
is defined as follows.

X (i)norm =
X (i)max − X (i)
X (i)max − X (i)min

× 255 (5)

where X (i) is the ith sample of the CWT matrix X , X (i)max
and X (i)min are the maximum and minimum matrix of X ,
respectively.

FIGURE 5. Different time-frequency images following CWT, normalization,
and matrix reconstruction. (a) Normal; (b) Inner race fault; (c) Ball fault;
(d) Outer race fault.

The final step is the image reconstruction. In practice,
different sampling frequencies and sampling window lengths
lead to the shape of X (i)norm being different, which is not
beneficial for a unified construction of a feature extraction
network. Furthermore, the original size of matrix X (i)norm
led to increasing the parameters of the diagnosis network and
decreasing the prediction speed. Therefore, it is necessary to
reshape X (i)norm to a smaller matrix X (i)32×32, which is a
32 × 32 square matrix. The reason of choosing 32 as matrix
order is that the square of 32 is 1024, which is the foundation
for the following feature images validation. Instead of using
traditional methods, such as principal component analysis
and nearest-neighbor interpolation, the bilinear interpolation
algorithm [30] is used in this paper to complete the matrix
reconstruction. Following CWT, normalization, and matrix
reconstruction, four TFIs with different healthy states are
shown in Fig. 5, including normal, inner race fault, ball fault,
and outer race fault. The different frequency components of
impulse excitation make it easy for healthy state recognition.

B. TRANSFER MODEL ARCHITECTURE
In this section, the transfer architecture for bearing fault
diagnosis is presented. The training method and testing
process is shown in Fig. 6, including dataset of source and
target domains, DenseNet-53 for feature extraction, dual
domain adaptation based on LMMD and BNM, frequency
domain cut to reduce the interference of random noise.

Following the original signals collection, the sample
augmentation was applied to realize the extension of samples.
Furthermore, the 2D TFIs can be established through the
CWT, data normalization, andmatrix reconstruction based on
1D temporal signals.

The model training process is displayed on the left side
with a green background. It can be observed that transfer
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FIGURE 6. Flow chart of the proposed dual domain adaptation transfer
model architecture.

FIGURE 7. Detailed structure of proposed DenseNet-53.

model is an unsupervised method and involves labeled TFIs
of source domain and unlabeled TFIs of target domain during
training. First, the samples are fed into DenseNet-53 to
complete feature extraction. The details of DenseNet-53 will
be discussed in Section III-C. Second, to improve the ability
of generalization and robustness, the dual domain adaptation
method is applied to the linear layer for data distribution
adjustment. After the linear layer, the extracted features have
two flow trends, one is used to output labels for classification
tasks, and another is for data distribution alignment between
source and target domains. Section III-D will present the
details of dual domain adaptation method which is based on

TABLE 2. The detailed parameters of DenseNet-53.

the LMMD and BNM, and weight controller. Finally, the
losses of cross-entropy, LMMD, and BNM are combined
as the optimization objective (CLB loss) to complete model
training. Explanatorily, the cross-entropy loss is used for
fault classification, LMMD is used for data distribution
alignment, and BNM is used to improve the discriminability
and diversity of prediction results.

The model testing process is displayed on the right side
with an orange background. The labeled TFIs are used to
verify the performance of trained model. First, the proposed
frequency domain cut (FDC)method is conducted to alleviate
the negative impacts of environmental noises. The details of
FDCwill be explained in Section III-E. Finally, the prediction
results and fault diagnosis accuracy can be obtained.

C. NETWORK STRUCTURE ESTABLISHMENT
According to the number of layers in the entire network,
DenseNet-53 is named in this paper like the typical
DenseNet-121. DenseNet-53 is a simple deep convolutional
network which designed to investigate the performance of
the proposed dual domain adaptation method. The detailed
structure of DenseNet-53 is shown in Fig 7. It can be
observed that the shared network DenseNet-53 needs to
process the labeled TFIs of source domain (blue background)
and the unlabeled TFIs of target domain (yellow background)
at the same time. First, the TFIs are processed by a
3 × 3 convolution, batch normalization and ReLU activation
function one after another to extract the initial features.
Consequently, the max pooling is used to reduce the size of
feature maps. Second, three Dense blocks are used to reduce
the computational complexity, including Dense-6, Dense-12
and Dense-6. For example, Dense-6 refers to a dense block
that consists of 6 Dense-unit, and 1×1 and 3×3 convolution
is the basis of Dense-unit. In the middle of each dense block,
there are common transition layers which do convolution and
pooling. Third, the adaptive pooling (AdaPooling) adjusts
the shape of feature image to 1 × 1 and the total number
of nodes is decided by the batch size during model training.
Particularly, the following linear layer is used to complete the
improvement of domain adaptation through the proposed dual
domain adaptation method. The weight controller can be seen
as a coordinator to ensure training stability and effectiveness.
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Finally, the simple fully-connected layer has the same neural
nodes as the classification tasks according to the practical
application. The detailed parameters of DenseNet-53 are
shown in Table 2.

D. WIGHT-BASED DUAL DOMAIN ADAPTATION TRANSFER
MODEL
The concept of the proposed weight-based dual domain
adaptation transfer model consists of two main parts, that
is dual domain adaptation algorithm and weight controller.
The function of the former is to realize the data distribution
alignment between source and target domains using LMMD
and BNM. The latter is used to avoid the negative impact
of the two loss terms during training. It is well known that
the loss function is most important to achieve a superior
prediction model. As shown in (6), an improved loss function
is proposed to complete the combination of LMMD and
BNM. Despite the first standard cross-entropy term which is
used for fault classification tasks, other terms are used for
regularization. The second term is Llmmd which focuses on
aligning global and local data distribution between source
and target domains. The third term is Lbnm which aims at
boosting the discriminability and diversity of output matrix.
The weight factors λl ∈ (0, 1) and λb ∈ (0, 1) are used
to control the contributions of different regularization terms.
The CLB loss function is defined as follows.

Lclb = −
1
ns

ns∑
i=1

K∑
k=1

l(ysi = k) · logC(M (xsi ))k

+
λl

K

K∑
k=1

∥∥∥∥∥∥
∑
xsi∈Ds

wski 8(F(M (xsi )))

−

∑
xtj∈Dt

wtkj 8(F(M (x ti )))

∥∥∥∥∥∥∥
2

H

−
λb

Bt
∥∥F(M (x ti ))

∥∥
∗

(6)

where ns is the sample number of source domain, K is the
label or number of all bearing health states, l(ysi = k) is used
for class judgment. If the label of ysi belong to class k , the
result is 1, otherwise, it is 0. C(·) represents the classifier
at the end of network. M (·) refers to the feature extraction
network before the linear layer involved. Ds and Dt denote
source and target domains, respectively. wski and wtki serve
the same purpose as traditional LMMD method. 8(·) can
map features to the RKHS to measure the discrepancy of
data distribution. The output features from F(·) can be used
to align data distribution using LMMD and enhance the
diversity and discriminability of prediction using BNM. Bt

is the batch size of target domain samples. || · ||
2
H denotes

the square distance calculation between source and target
domains in RKHS. || · ||∗ is Nuclear-norm.
The weight controller plays an important role in dual

domain adaptation transfer model. Fig. 8 illustrates the

FIGURE 8. The strategy of weight controller during model training.

change strategy deployed by weight controller. The values of
λl and λb are dynamically changing over 100 epochs during
training process. It can be found that the change trend of blue
and red curves exhibit an exponential change, as they are both
controlled by (7) and (8).

λb = eα(x−ne) (7)

λl = −eβ(x−ne) + 1 (8)

where α and β are related to the change rate of weights and
the default value is set as α = β = 0.5. ne is the number of
training epochs and λb + λl = 1 no matter in which training
stage. As shown in Fig. 8, LMMD takes on a prominent role
in aligning the data distribution between source and target
domains in the early 90% epochs. Consequently, BNM is
rapidly involved in the remaining 10% epochs to improve the
diversity and discriminability of the model predictions. The
reason for this operation is that BNM with a low accuracy
model has an adverse impact in the early training stage
as discussed in Section II-C. In addition, as the training
progresses, the accuracy of model tends to converge when
trained using a single LMMD term. Further improvement
can be achieved by substituting BNM with LMMD when the
accuracy is converged.

E. FREQUENCY DOMAIN CUT
1) NOISE INTERFERENCE
The proposed frequency domain cut (FDC) method aims at
alleviating the strong environmental noises that have serious
negative effects on the bearing feature extraction and fault
diagnosis. Therefore, the additive Gaussian white noise is
added to the raw bearing vibration signals to simulate the
real-working condition. Meanwhile, the intensity of noise is
determined by signal-to-noise ratio (SNR). The value of SNR
can be obtained as follows.

SNR = 10log10(Ps/Pn) (9)

where Ps and Pn denote the power of raw signal and added
noise, respectively.
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The effects of noise on the raw signals are visually
presented in Fig. 9. The contaminated signals are generated
by adding noise with SNR=0dB. It is apparent that temporal
signals are highly sensitive to noise interference, as the pres-
ence of noise completely disrupts the underlying amplitude
trends. Although the trend of the frequency spectrum is robust
compared with temporal signals, there are a large number
of low amplitude frequency components across the entire
spectrum. The FDC method focuses on the adjustment of the
frequency spectrum to minimize the influence of noise.

FIGURE 9. The comparison of raw and contaminated temporal signals
and frequency spectrum. (a) raw temporal signals; (b) contaminated
temporal signals; (c) frequency spectrum of raw signals; (d) frequency
spectrum of contaminated signals.

2) NOISE SUPPRESSION
As the analysis above, data of frequency domain is chosen
to minimize noise interference. Based on the theory of
CWT, TFI is a discrete distribution of frequency components
over the time scale. As shown in Fig. 10, the FDC is
implemented in each frequency spectrum to minimize noise
components. On the left side, a portion of TFI is visualized in
a three-dimensional (3D) waterfall diagram. The curves with
different colors represent frequency spectrum at different
moments. The scissors denote FDC method, which removes
the noise signals by cutting. On the right side, the details of
cutting implementation detail is presented. It can be found
that the lower portion of red frequency curve has been
removed by cut line, which is determined by all amplitudes
of this frequency spectrum. The mathematical calculation
method is defined by (10).

X ′
= max

{
0,X −

λc

n
sum(X , axis = 0)

}
(10)

where X ′ is the output time-frequency matrix following FDC,
X is the original time-frequency matrix added contaminated
signals, and n is the number of amplitude point in one
frequency spectrum. The function of sum(X , axis = 0)/n

is used to obtain the average amplitude value in x direction.
The actual cut line can be obtained by multiplying the weight
factorλc.max(·) function is used to take itself if the results are
greater than 0, If not, take 0. Although the pixel range of the
TFI after FDC will no longer be 0-255, the diagnosis results
are not affected. The reason is that the main fault features
still remained in this process. Furthermore, the readjustment
of pixel range using max-min normalization is not necessary
in this step, because it is a linear transformation.

IV. CASE STUDIES
A. EVALUATION METRIC
To demonstrate the effectiveness of proposed methods,
the common evaluation metric is used in the following
experiments. The accuracy is used to access the diagnosis
performance of dual domain adaptation models, and the
calculation process is expressed as (11), and its input
elements are described in Table 3. TP denotes the positive
samples correctly predicted as positive. FP represents the
negative samples incorrectly predicted as positive. Similarly,
FN and TN can be obtained.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(11)

TABLE 3. Confusion matrix for the accuracy calculation.

B. TRAINING SETUP
During the experiments, a NVIDIA A100-SXM4-40GB
GPU was used to accelerate the processes of training.
The system RAM size is 84.0 GB. For the programming
language and deep learning platform, Python 3.10.12 and
Pytorch 2.0.1 were used throughout all of the case studies.
Furthermore, stochastic gradient descent (SGD) was used
as the optimizer to guarantee the stability of gradient
backpropagation and loss decrement results. The batch size,
initial learning rate, momentum, and decay rate were set to 64,
0.01, 0.9, and 0.75 for all models, respectively. The training
iteration is 100 epochs, and the weights of LMMD and
BNM are controlled by the weight controller as discussed in
Section III-D.

C. CASE STUDY I
1) DATASET DESCRIPTION
In this section, the public bearing experimental dataset of
Case Western Reserve University (CWRU) [31] is used
to verify the proposed dual domain adaptation method
and the effectiveness of FDC. The superiority of every
modules presented above will be discussed through following
comparison experiments one after another. The bearing
experimental platform is shown in Fig. 11, electric motor for
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FIGURE 10. Implementation details of TFIs noise suppression based on FDC method.

FIGURE 11. Bearing experimental platform of CWRU.

driving a shaft to rotate in a certain speed, drive end and fan
end bearings are used to test, the dynamometer and torque
transducer/encoder can adjust torque during test.

In this paper, the drive end bearings are selected to do
comparison experiments and its type is SKF 6205-2RS JEM.
As shown in Table 4, the range of driven motor load is from
0HP to 3HP. Four working conditions A, B, C, and D can
be obtained according to the different rotational speeds and
loads. All signals of drive bearing are collected at a sampling
rate of 12000.

TABLE 4. The parameters of CWRU bearing experimental environment.

In the following experiments, 13 different sets are estab-
lished according to the type of bearing health state and the
degree of damage. As described in Table 5, there are four

bearing health states: normal bearing, inner race faults, ball
faults, and outer race faults that are also further divided into
three categories according to the specific fault locations (3.00,
6.00, and 12.00 o’clock). Moreover, the degree of damage
also is used to further more categories and the artificially
generated bearing fault diameter range from 0.007′′ to 0.021′′.
The sample augmentation and TFIs establishment are same
as discussed in Section III-A. As shown in Table 5, each
bearing set with fault has approximately 470 TFIs no matter
which working condition it is. During experiments the labels
are used to distinguish different bearing faults and complete
classification tasks.

TABLE 5. Detailed description of CWRU dataset.

Based on the established CWRU dataset, four validations
are implemented one after another in the following sections.
As shown in Table 6, the comparison methods, objectives,
and real-world applications are presented to give a compre-
hensive understanding of each validation. Furthermore, each
validation has the actual value in real-world applications.
For instance, the proposed DenseNet-53 also can be used
for object detection, time-frequency images for other signal
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analysis, CLB loss and weight controller for improving
the performance in the working conditions with load and
rotation speed changing, and frequency domain cut method
for imporving the ability of anti-noise. The details of different
methods will be discussed in the following sections.

TABLE 6. Comprehensive description of different validation items and
denotations of comparison methods.

2) NETWORK SUPERIORITY VALIDATION
To demonstrate the superiority of proposed DenseNet-53
in cross-domain conditions, several SOTA classification
networks were selected to conduct comparison experiments,
namely, MobNet1 [32], MobNet2 [33], MobNet3 [34],
GhostNet [35] and typical deep residual model ResNet-50
[36]. As described in transfer model architecture, the TFIs are
used as the inputs of all models to achieve a trained model
using source dataset and test the diagnosis performance in
target dataset. And, in this process, there is no domain
adaptation methods and noise interference are involved
because the focus of this section is the network structure.
As shown in Fig. 12 and Table. 7, the DenseNet-53 achieves
the highest average accuracy of 96.27% and the lowest
standard deviation of 2.91, which indicates that the dense
connection structure is more suitable for the cross-domain
scenario. Although the fault diagnosis accuracy of MobNet2
is 2.11% higher than DenseNet-53 in task C→A and 0.13%
higher in task D→C, the result has a huge drop in task A→C
that is 11.48% lower than the proposed network. It also can be
observed that GhostNet and ResNet-50 perform undesirable
diagnosis results in some tasks, especially in the difficult
tasks between A and D. In summary, the proposed network
is superior to other SOTA networks and can better handle
domain shifts and realize accurate diagnosis.

3) TIME-FREQUENCY IMAGES VALIDATION
This section focuses on validating the diagnosis performance
of TFIs compared with other feature images. As shown in
Table. 8, the establishment of time domain images (TDIs) and
frequency domain images (FDIs) have some differences with
TFIs.

FIGURE 12. The performance of various transfer tasks with different
diagnosis networks.

TABLE 7. The diagnosis accuracy(%) and statistical results of the
comparison experiments with different diagnosis networks.

TABLE 8. The establishment algorithms of the TDIs and FDIs.

As for TDIs, the temporal signals are used directly to
establish feature images. Different with TDIs, the process of
FDIs has an additional step of fast fourier transform (FFT).
The normalization and reconstruction are similar to TFIs, and
the bilinear interpolation algorithm also is used to obtain a
32 × 32 feature image. Consequently, the obtained feature
image is shown in Fig. 13, it can be seen that the TDI
has an obvious characteristic of color alternation which is a
representation of vibration signal fluctuation. Fig. 13(b) has
a bright stripe that reflects the frequency component in the
diagnosis signals. The TFI depicted in Fig. 13(c) can reflect
the trend of specific frequency change over time.

According to Table 4, 12 domain adaptation tasks are
designed to verify the effectiveness of TFIs, that is A→B,
A→C, A→D, B→A, B→C, B→D, C→A, C→B, C→D,
D→A, D→B and D→C. Take the A→B task as an example,
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FIGURE 13. The comparison between with different feature images.
(a) Feature image based on temporal signal; (b) Feature image based on
frequency spectrum; (c) Feature image based on time-frequency
representation.

all labeled samples of source domain A and unlabeled
samples of target domain B are involved to train DenseNet-
53. During testing process, labeled samples of target domain
B will be used to verify the performance of trained model.
It should be noted that the proposed dual domain adaptation
method has not been implemented and target domain signals
are not contaminated by noise, because the validation of TFIs
is the focus in this section.

FIGURE 14. The performance of various transfer tasks using different
feature images.

10-fold cross-validations were also conducted and the
average accuracies were shown in Fig. 14 and Table 9.
Although the accuracies of TFIs are not the best in certain
tasks such as A→B and B→A, the whole performance
outperforms than TDIs and FDIs. The average accuracy
of TFIs method is 96.27%, 3.65% higher than FDIs and
5.35% higher than TDIs. The results indicate that TFIs can
better represent the characteristics of original signals and are
more suitable for domain adaptation. Therefore, the following
experiments will be conducted using TFIs.

4) DOMAIN ADAPTATION METHOD VALIDATION
The main focus of this section is to verify the superiority
of the proposed duan domain adaptation model and the
effectiveness of weight controller. Similarly, theDenseNet-53
also is used to extract features from the input TFIs. Different
domain adaptation comparisonmethodswere implemented in
the linear layer to realize the alignment of data distribution,
including direct prediction without any domain adaptation
techniques, transfer using single MMD [25], single BNM,

TABLE 9. The diagnosis accuracy(%) of the comparison experiments
using different feature images.

single LMMD, and the proposed method. It is noted that the
proposed method without weight controller (non-controller)
is added as an ablation comparison group, in which the
weights of BNM and LMMD are unchanged with training
epoch and are set as constant 0.5. Furthermore, the noise is not
added to testing samples of target domain since the capability
of noise reductionwill be discussed in following experiments.

FIGURE 15. The performance of various transfer tasks using different
domain adaptation methods.

TABLE 10. The diagnosis accuracy(%) of the comparison experiments
using different domain adaptation methods.

The detailed results are shown in Fig. 15 and Table 10,
compared with the direct prediction, the methods with
domain adaptation perform an obvious improvement across
all transfer tasks. Therefore, the implementation of domain
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TABLE 11. The FDC diagnosis accuracies(%) of D→A* transfer task under
different SNR and λc .

adaptation techniques is not only necessary but also crucial
for real-world applications. The diagnosis average accuracy
of LMMD is 99.18% and higher 1.11% than MMD, which
demonstrates the distribution alignment of local subdomain
and global domain are both important for improving diag-
nosis accuracies. Different with other methods, the BNM
also achieves better results through enhancing the diversity
and discriminability of the output matrix. Although the
non-controller group can achieve better results in certain
transfer tasks, the average accuracy is lower than LMMD.
The reason is that BNM and LMMD affect with each
other during training. Based on the combination of LMMD
and BNM, the proposed method outperforms other models
in all transfer tasks. It can be found in each task, the
proposed method uses the weight controller to improve the
diagnosis accuracies up to 99%. The average accuracy of
the proposed model is 99.52%, which is 3.25% higher than
the direct prediction model. On the other hand, the proposed
dual domain adaptation method achieved a significant
improvement of 9.33% compared to the direct prediction
method in the challenging transfer task D→A. All of the
results demonstrate the proposed method exhibit superior
abilities of domain adaptation and feature recognition.

5) FREQUENCY DOMAIN CUT VALIDATION
The 3D visualization was conducted to find out the effec-
tiveness of the proposed FDC method. One of the normal
bearing samples with 1024 signals were used as the research
instance. Fig. 16(a) is the 3D normalized TFI without
noise contamination and the main frequency components
are concentrated at around 1000 Hz. Fig. 16(b) presents 3D
normalized TFI added Gaussian noise, where SNR=0 dB.
It can be found that there are adverse effects on the frequency
representation. It is also challenging for the trained model
to complete useful feature extraction and fault diagnosis.
Therefore, the preprocess method of noise reduction should
be implemented during working in a noisy environment.
Fig. 16(c) is the processed TFI using the proposed FDC
method. It is worth noting that the effects due to noise
interference are alleviated and the main frequency features
are remained. Consequently, the FDC enables the proposed
dual domain adaptation method to perform well even in
complex working conditions, which will be demonstrated in
the next section.

The impacts of different weight factors λc also were
investigated on the performance improvement. For the

transfer task D→A, a complex transfer task is introduced
and denoted D→A* which means testing dataset of A was
added noise. As depicted in Table 11, there are 6 validation
groups based on the different SNR values, ranging from
−2 dB to 8 dB. Consequently, the FDC with different λc
was implemented to find out the best diagnosis accuracy. The
range of λc is set from 0 to 1 with an interval of 0.2. It should
be noted that the FDC was not applied when λc = 0.
The results are shown in Fig. 17 and Table 11. Fig. 17(a)

shows that the proposed FDC is an effective method to
alleviate the effects of noise and improve the diagnosis
performance. Furthermore, the greater the noise intensity,
the better the effectiveness of noise reduction. For example,
the performance of transfer task added −2dB noise has
an remarkable improvement, the accuracy increased from
43.47% to 75.57%. The accuracy change trend can be found
in Fig. 17(b), all curves are convex and have extreme points.
Although the proposed FDC method can eliminate a part of
noise when a suitable weight factor λc is used, it is important
to note that the diagnosis accuracy will gradually decrease
when λcis increased without limit. The reason is that too
much cut will damage the main features of TFIs. Therefore,
the actual working environment noise should be considered
in order to set the optimal value of λc.

6) COMPARISON WITH OTHER STATE-OF-THE-ART MODELS
UNDER COMPLEX CONDITIONS
Different with the previous studies, the comparison experi-
ments conducted in this section will both take cross-domain
and noise interference into account instead of analyzing the
performance under a single condition. Based on the tradi-
tional transfer tasks, the samples of target domain are added
noise to simulate the real working conditions. To simplify
the experiment complexity, all of the mixed noise intensities
in different transfer tasks are set to SNR=4dB. Similiarly,
12 transfer tasks are conducted, including A→B*, A→C*,
A→D*, B→A*, B→C*, B→D*, C→A*, C→B*, C→D*,
D→A*, D→B*, and D→C*. To verify the effectiveness of
the proposed method, the comparison experiments not only
consist of the traditional algorithm but also the other state-of-
the-art (SOTA) models. The details of them are as follows.

SVM [37] is a tradition algorithm and widely used in
previous researchers. The radial basis function (RBF) is set as
a kernel function in this experiment, and the cost parameter
c, and kernel parameter γ are set as 1 and 0.1, respectively.
CNN-Trans model is a combination of CNN and standard
Transformer [38] based on Vision Transformer [39]. The
CNN is used to extract features and reduce the image size.
Besides, the self-attention mechanism of Transform is used
to improve the dependencies between different tokens. The
structure of network and training parameters are same as
literature [40]. DeepCoral [41] is proposed by Sun et al.,
which can align correlations of layer activations in deep
neural networks. After that the data distribution can be
adjusted based on CORAL [42]. The SOTA performance can
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FIGURE 16. 3D visualization of FDC results. (a) Original 3D TFIs; (b) 3D TFIs with noise of SNR=0dB; (c) result following FDC method.

FIGURE 17. The performance curves of D→A* transfer task under
different SNR and λc . (a) best results following FDC and without FDC;
(b) the trend of accuracies with the changes of λc .

be achieved on the standard benchmark datasets. DLTCNN
[43] is another domain adaptation model based on MMD
algorithm and temporal gray image features to improve
classification accuracy. The trade-off parameters of λ and
learning rate η are set as 0.5 and 0.01, respectively. TICNN
[44] aims at processing temporal signals with training
interferencemethod. The unique neural network structure and
batch setup achieve pretty high accuracy under cross-domain
conditions. Dense-LBE-FDC denotes the proposed model in
this paper, DenseNet-53 is used to extract features, LBE is the
loss algorithm of proposed dual domain adaptation method,
and FDC aims at reducing noise interference.

TABLE 12. The diagnosis accuracy(%) of complex transfer tasks using
CWRU dataset.

10-fold cross-validations are also conducted in each model
and the diagnosis results are presented in Fig. 19 and Table 12.
Obviously, the Dense-LBE-FDC outperforms other SOTA
algorithms with an average accuracy of 95.84%, which is

higher 13.79% than TICNN. It can be observed that the
small fluctuations in results demonstrate that the Dense-LBE-
FDC has more robustness against domain shift and noise
interference. For the CWRU dataset, the TICNN trained by
a small batch size achieves an average accuracy of 82.05%
which is better than other SOTA models. By employing the
single domain adaptation algorithm to align data distribution,
the diagnosis accuracy ofDLTCNNandDeepCoral is 79.84%
and 78%, respectively. Therefore, the temporal features and
single data distribution alignment are not enough for the
complex transfer tasks. The CNN-Trans obtains a lower
average accuracy of 59.17%. Although the self-attention
mechanism is a better choice in the fields of natural language
or sequence prediction, it is not suitable for scenarios
involving noise interference and domain shift. Additionally,
the traditional algorithm SVM is powerless to deal with these
complex transfer tasks.

Generally, the inner mechanism of domain adaptation is
hard to understand. To solve this problem, the performance
visualization is conducted using the t-distributed stochastic
neighbor embedding (t-SNE) [45] technique. The output
high-dimensional features of last fully-connected layer are
fed into the t-SNE algorithm to find out the representation dis-
crepancy following the different models. The five clustering
results of complex transfer task D→A* are shown in Fig. 18.
The t-SNE algorithm is configured with 1000 iterations
and initializes the embedding using the principal component
analysis (PCA). As shown in Fig. 18(e), although there
are a few overlapped regions, the majority of the other
features can be separated since the larger distance between
different classes and the smaller distance between same
classes. It can be observed from Fig. 18(d), it is impossible
for a linear classifier to recognize C5 and C7. Besides,
the clustering results of DLTCNN and DeepCoral show
that feature points of each class have a large of confusion
regions, which suggests that the single domain adaptation
models will not performwell in discriminating between some
classes. Fig. 18(a) demonstrates that the features following
the CNN-Trans model are not divisible.

D. CASE STUDY II
1) BRIEF INTRODUCTION OF MINE HOIST EQUIPMENT
To further verify the effectiveness and robustness of the
proposed algorithm, the second case was conducted using
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FIGURE 18. The clustering results of different SOTA models under D→A* complex transfer task. (a) CNN-Trans; (b) DeepCoral; (c) DLTCNN; (d) TICNN;
(e) proposed Dense-LBE-FDC.

FIGURE 19. The diagnosis accuracy of complex transfer tasks using CWRU
dataset.

the spindle bearing of mine hoist equipment. Unlike the
laboratory dataset provided by CWRU, the real working
conditions of the spindle bearing belongs to heavy radial
loads, low rotation speeds, and intense noise interference.
Considering the safety of mine hoist, the labeled samples
in fault state are difficult to be obtained. Therefore, in this
section, simulated fault signals of the spindle bearing will be
used to conduct comparison experiments, and the simulation
is based on the vibration model and geometry parameters of
bearing.

Fig. 20 is an overview of the multi-rope friction mine
hoist equipment. The mine hoist equipment is a typical rotor-
bearing system, mainly consisting of inertia adjustment, gear
reducer, asynchronous motor, friction pulley, spindle device,
and supporting main bearing. As shown on the right local
diagram of Fig. 20, the bearings are employed to provide
support to the spindle unit when the friction pulley is rotating.
Consequently, the load change of the friction pulley has a
huge impact on the radial loads of bearing. Therefore, it is
of great practical significance to carry out fault diagnosis
research on hoist spindle bearings.

2) VIBRATION MODEL OF HOIST BEARING FAULT SIGNALS
The generation of bearing fault signals is based on the
following vibration analysis. First, the impulse signals are
generated by the interaction between rolling element and
the damage in bearing inner or outer race. Second, the
discrepancy of fault signals depends on the difference in

damage degree and the change of dynamic loads. In this
paper, the simulated fault signals are based on the vibration
model [46], and the fault signals calculation equation is
defined as follows.

x(t) =

∑
i

Ais(t − iT0) + n(t) (12)

where x(t) is the generated bearing fault signals, T0 represents
the repetitive cycle of the fault impulses, n(t) is the
environmental noise, such as the system vibration caused by
brakes and hydraulic stations. Ai is an amplitude expression,
s(t) denotes an impulse exponential decay component. The
details of Ai and s(t) can be expressed as follows.

Ai =

{
Am + A0 cos(2π fr t) Inner
A0 + Am cos(2π fr t) Outer

(13)

s(t) = e−βt cos(2π fnt) (14)

where A0 is the determinate load, which is determined by the
lifting load, Am represents the alternate load generated due to
the rotation of the rotor, fr denotes the rotational frequency,
fn is the resonance frequency of hoist rotor-bearing system,
β is the decay coefficient. During working, the outer race
is fixed and the inner race is rotating along with the spindle
unit. The amplitude contributions of simulated fault vibration
signals are opposite, which was explained in literature [46].
According to the relationship between damage point, rolling
elements and races, different working conditions and fault
types can be obtained by changing the parameters of vibration
model. The detailed explanation is presented as follows.

1) Bearing fault type is determined by the impulse
exponential decay component s(t). The interval of
impulse excitement and decay time varies depending
on the damage degree and fault location of spindle
bearing. Specifically, the changes of T0, β, and fn can
affect the fluctuation of fault signals.

2) Working conditions are determined by the amplitude
term Ai. For mine hoist system, it is inevitable
to work under different loads and rotating speeds.
Furthermore, the signals distribution are different since
the changes of determinate load A0 and alternate load
Am. Therefore, the parameters of A0, Am, and fr can be
used to simulate different working conditions.
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FIGURE 20. The overview of multi-rope friction mine hoist equipment and spindle main bearing.

TABLE 13. Specification parameters of hoist bearing SKF 240/750
ECA/W33.

TABLE 14. Description of simulation working conditions.

TABLE 15. Description of the simulation mine hoist spindle bearing
dataset.

TABLE 16. The diagnosis accuracy(%) of complex transfer tasks using
simulation hoist spindle bearing dataset.

3) DESCRIPTION OF HOIST BEARING
Based on the above analysis, the SKF 240/750 ECA/W33
hoist spindle bearing is used to simulate different fault signals
under three working conditions. According to the normal
rotor speed of the spindle is range from 40-60r/min, the inner
ring rotational frequency is set to 0.8 Hz. Using the outer fault
frequency (15) and the inner fault frequency (16), the bearing
parameters and fault frequency are shown in Table 13.

fi =
Z
2
fr

(
1 +

d
D

cos θ
)

(15)

FIGURE 21. The diagnosis accuracy of complex transfer tasks using
simulation hoist spindle bearing dataset.

fo =
Z
2
fr

(
1 −

d
D

cos θ
)

(16)

where fi is the ball pass frequency inner race (BPFI), fo
denotes ball pass frequency outer race (BPFO). Z is the
number of rolling elements, d and D are the inner and outer
diameter, respectively. θ denotes the contact angle. fr denotes
the rotating frequency of inner race.

4) ESTABLISHMENT OF TRANSFER TASKS AND BEARING
DATASET
As shown in Table 14, three working conditions can be
obtained through different combination of A0 and Am.
As discussed above, A0 is related to the weight of lifting
objects andAm is determined bymulti factors, such as rotation
speed, spindle stiffness, and installation error. Therefore, the
ratio of A0 : Am is used to simulate different working
conditions instead of the exact value which is not easy to
be obtained in practical engineering applications. In the mine
hoist rotor-bearing system, the determinate load A0 is much
higher than the alternate load Am. Therefore, three ratios
of 8, 4, and 2 are used to simulate heavy, medium, and
empty loads. Consequently, six complex transfer tasks can be
established as A→B*, A→C*, B→A*, B→C*, C→A*, and
C→B*.

Similarly, the hoist system resonance frequency fn is not
only related to the structure of support bearing, but is also
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FIGURE 22. The confusion matrices of different SOTA models under the C→B* complex transfer task. (a) CNN-Trans; (b) DeepCoral; (c) TICNN;
(d) DLTCNN; (e) proposed Dense-LBE-FDC.

influenced by the characteristics of the entire mine hoist
equipment system. As shown in Table 15, different fn are used
to simulate three levels of bearing fault with different damage
degrees: light, medium, and severe. Besides, the degree of
fault damage can affect the duration of amplitude oscillation.
A large value of β will cause a rapid oscillation, and vice
versa. Therefore, the higher the damage level, the smaller
the value of β is set. It can be seen that the simulation
spindle bearing dataset is established by two fault types
and three damage degrees. The sampling frequency is set
to 256 Hz to ensure a appropriate number of signals to
capture the rotating characteristics of the spindle bearing.
The establishment of TFIs is same as the discussion in
section III-A, the sampling length is 1024 and the stride
is 256. Lastly, each simulation vibration signal consists
of 120000 data points, and there are 466 TFIs in each
category.

5) COMPARISON EXPERIMENTS AND ANALYSIS
Considering the complex working conditions of mine
hoist, the more intense noise signals (SNR=−2 dB) are
added to the samples of target domain. Moreover, the
number of categories is different with CWRU dataset so
that the classification sensitivity of the proposed model
can be observed. As shown in Fig. 21 and Table 16,
Dense-LBE-FDC also enjoys the best diagnosis performance
than other models, and the average accuracy is 99.83%
which is a huge improvement compared with the tradi-
tional algorithm SVM. Remarkably, the proposed method
consistently achieves exceptional accuracy higher than 99%
across all transfer tasks. The result of TICNN in B→C*
has a large fluctuation than other scenarios indicates that the
temporal signals are not stable for these complex conditions.
Compared with the results in Case I, the discrepancy between
different transfer tasks is smaller since all the environmental
factors taken into account are impossible during bearing
dataset simulation, such as the effects of surrounding
temperature and humidity. Thus, the superiority of the
proposed algorithm can be demonstrated through comparison
analysis.

Similarly, the result visualization is conducted in this
experiment using the complex transfer task of C→B*.
Unlike the clustering analysis in CWRU dataset, the result

confusion matrices are shown in Fig. 22. The true and
predicted labels are indicated on the horizontal and vertical
axis, respectively. The diagnosis results are presented in the
intersection. A notable observation is that the samples of
C3 is difficult to diagnosis in a high accuracy. However,
this problem can be solved by proposed Dense-LBE-FDC.
Consequently, the bearing fault diagnosis has an obvious
improvement to 99.61%.

V. CONCLUSION
This paper proposed a new weight-based dual domain
adaptation transfer model for bearing fault diagnosis based on
CWT, DenseNet, LMMD, and BNM. Furthermore, the FDC
method is presented to reduce the noise interference. First,
image processing based on CWT is conducted to transfer
temporal signals to TFIs. Second, the DenseNet-53 is not
only used to extract features but also to realize domain
adaptation. Third, the proposed dual domain adaptation based
LMMDandBNM is implemented to complete data alignment
during training. At the same time, an exponential weight
controller is presented and can balance the advantages of
LMMD and BNM. Finally, the FDC is a cheap algorithm
that can improve diagnosis accuracy through controlling
the weight of the average cut line in frequency domain.
The validations of feature images, domain adaptation, and
noise reduction effectively demonstrate the superiority of
TFIs, dual domain adaptation, and FDCmethod, respectively.
The bearing fault diagnosis performance of the proposed
method is demonstrated via the complex transfer tasks in
two case studies. Using laboratory and simulation hoist
spindle bearing dataset, the proposedmodel both outperforms
than other SOTA algorithms. Through clustering analysis
and confusion matrix visualization, it can be found that
the results of proposed model are more divisible and
robustness.

There are some limitations in this study. Due to the
proposed method focus on solving the problem of domain
shift and noise interference in the same machine, the
cross-machine fault diagnosis condition is not suitable. As for
the weight controller, the hyperparameters of α and β are
used to control the changing speed of weights during training.
The values of them need to be adjusted to achieve the best
performance when the maximum number of iterations is
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changed. Thus, the ability of cross-machine and the method
of parameter self-adjusting are worth investigating in future
studies.
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