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ABSTRACT The surface cracks on high-speed railway ballastless track slabs directly influence their
lifespan, while the efficiency of damage detection and maintenance is crucial for ensuring operational
safety. Leveraging deep learning image processing technology can significantly enhance detection efficiency.
Therefore, in response to the specific attributes of ballastless track slab crack detection, this paper introduces
the RSG-YOLOmodel. By implementing a reparameterized dual-fused feature pyramid structure, we bolster
the network’s feature extraction capacity and curtail the loss of crack features during extraction. SIoU is
used to replace CIoU to optimize the bounding box regression loss function, reduce the degrees of freedom
of the loss function, and improve the convergence speed The GAM attention mechanism is integrated to
heighten the model’s responsiveness to diverse channel information. The proposed RSG-YOLO model was
evaluated against mainstream models in the field of crack detection. The results demonstrated improved
detection accuracy and recall rates. Specifically, when compared to baseline models, our approach exhibited
significant advancements in reducing both missed detections and false alarms. These improvements were
quantified by a 4.34% increase in crack detection accuracy and a 3.08% rise in mAP_0.5. Consequently, the
RSG-YOLO model effectively enables precise detection of track slab cracks.

INDEX TERMS High speed railway, track slab cracks, YOLO, crack detection, image processing.

I. INTRODUCTION
With the rapid development of high-speed railways, the track
structure has emerged as an indispensable component of the
high-speed rail system, constantly exposed to a complex
external environment. Throughout its service life, the ballast-
less track bed and other supporting structures often encounter
challenges related to cracking. The development of cracks in
these components can potentially lead to a reduction in the
load-bearing capacity of the railway structure, consequently
impacting the smooth operation of high-speed trains. thereby,
conducting research on crack formation in high-speed railway
track panels holds significant scientific value and practical
importance.

In recent years, numerous studies [1], [2], [3], [4], and
[5] on crack detection. Li et al. [6] utilized infrared imaging
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for crack detection and achieved effective localization of
cracks with a width as small as 0.14mm when the ambient
temperature was above 20◦ Wu et al. [7] employed morpho-
logical wavelet operators to decompose road surface images
containing cracks, and then extracted the cracks through
traditional binarization methods, thereby achieving effective
crack extraction in asphalt pavement. Salman et al. [8] pro-
posed an automatic method for identifying cracks in road
surface images using Gabor function-based image analysis.
This method achieved an initial accuracy of 95% in crack
recognition and demonstrated its applicability in road surface
crack identification. CHAMBON [9] used a two-dimensional
matched filter to define an adaptive mother wavelet and
incorporated the detection results into a Markov random field
(MRF) to segment and detecting crack structures. Traditional
image processing algorithms have demonstrated good perfor-
mance in crack detection. However, high-speed railway track
panel images exhibit characteristics such as low contrast and
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complex backgrounds, making crack features less prominent
and place greater demands on algorithm performance.

Methods based on deep learning can effectively extract
deep features of the target and generally achieve better
detection results. Chen and Jahanshahi [10] employed a
deep learning network that combines Convolutional Neural
Networks (CNN) [11] with a Naive Bayesian data fusion
approach to detect crack information in video frames. They
improved the CNN for crack detection and utilized the Naive
Bayesian decision method to eliminate false positives, result-
ing in enhanced crack detection performance. Fan et al.
[12] utilized a deep learning network to identify cracks
in images. They applied bilateral filtering to smooth crack
images and performed crack segmentation using adaptive
thresholding, achieving good extraction of crack informa-
tion. Xiang et al. [13] combined YOLOv5 and Transformer
modules for crack detection to improve the model’s crack
detection capability. The aforementioned methods show bet-
ter detection performance when dealing with clear features
and simple backgrounds. However, in practical crack detec-
tion scenarios, cracks often coexist with complex and diverse
backgrounds, leading to suboptimal detection results with a
higher frequency of false positives and false negatives.

In order to address these challenges, this study takes into
account the actual characteristics of track panel cracks and
proposes a crack detection method that combines YOLOv6
3.0 [14] and YOLOv7 [15], utilizing the RSG-YOLO model.
The main contributions are as follows:

Firstly, we enhanced the structure of the feature fusion
component of our model, thereby augmenting its capabil-
ity for feature extraction. This enhancement enables us to
acquire more detailed information regarding rail plate cracks.
Secondly, the loss function has been refined to improve
the model’s accuracy in crack localization, thereby reduc-
ing instances of false alarms and missed detections. Lastly,
a novel attention mechanism has been introduced to heighten
the model’s awareness of channel and spatial information,
thus further refining its ability to detect crack-related data.
These contributions significantly enhance overall perfor-
mance and the facilitation of practical applications. The
proposed method is evaluated using a custom track panel
crack dataset.

II. RELATED WORKS
A. YOLOv7 MODEL
The YOLOv7 network model consists of four main compo-
nents: Input, Backbone, Neck, and Head. Firstly, the input
undergoes preprocessing operations, including data augmen-
tation, to prepare the images for further processing. These
preprocessed images are then passed through the Backbone,
which extracts relevant features from them. Subsequently, the
extracted features are fused using the Neck module to gen-
erate feature maps of different sizes, namely large, medium,
and small. Finally, the fused features are fed into the Head,
where object detection is performed, resulting in the output
of detection results.

The Backbone module of the YOLOv7 network consists of
several components, namely the CBS convolutional module,
Efficient Layer Aggregation Networks (ELAN), MP mod-
ule, and SPPCSPC module. The CBS convolutional module
comprises convolutional layers, batch normalization (BN)
layers, and the SiLU activation function. The ELAN mod-
ule consists of multiple CBS convolutional modules and
enhances the model’s learning efficiency and convergence
speed by controlling the longest and shortest gradient paths.
The SPPCSPC module introduces parallel MaxPool layers
at four different scales within a sequence of convolutional
modules. This allows the module to adapt to feature maps
of different resolutions and addresses the issue of repeated
feature extraction in the model. In the MPConv module,
the maximum pooling layer expands the receptive field of
the current feature layer and combines it with the processed
feature information from the convolutional module, thereby
improving the network’s generalization capability. In the
Neck module, YOLOv7 adopts the traditional PAFPN struc-
ture, which is the same as the YOLOv5 [16] network. In the
detection head, the baseline YOLOv7 model employs detec-
tion heads that represent three different target sizes: large,
medium, and small.

B. FEATURE PYRAMID STRUCTURE
The Feature Pyramid (FP) structure is a state-of-the-art
detector commonly used for detecting objects at different
scales. It extracts spatial features from the last feature layer,
allowing strong semantic features to propagate along a top-
down pathway, significantly improving the accuracy of object
detection. However, due to the pooling effect, the top-down
pathway cannot accurately preserve the positional informa-
tion of cracks. To accurately transmit accurate positional
information of cracks, a bottom-up pathway is needed to com-
pensate for the lost information from the bottom-level feature
maps. YOLOv7, similar to YOLOv5, adopts the traditional
PAFPN (Path Aggregation Feature Pyramid Network) struc-
ture, which combines the top-down Feature PyramidNetwork
(FPN) and the bottom-up Pyramid Attention Network (PAN)
to perform multi-scale feature fusion. In this structure, FPN
propagates strong semantic features from higher levels to
enhance the entire pyramid, but it only enhances semantic
information without transmitting localization information.
To address this issue, a bottom-up pyramid is added after
FPN to complement it by propagating low-level localization
features upwards. This combined pyramid incorporates both
semantic and localization information, greatly improving the
detection performance of the model.

C. INTERSECTION OVER UNION (IoU) LOSS
In object detection tasks, the loss function for bounding box
regression is crucial, and IoU loss [17] is used to measures the
overlap between predicted and ground truth bounding boxes
to accurately localize the detected objects. In 2019, to address
the issue of measuring the performance of the bounding box
regression loss when the predicted and ground truth boxes do
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FIGURE 1. YOLOv7 structure diagram.

not intersect in IoU loss, GIoU loss [18] introduced the con-
cept of the minimum enclosing box (the smallest rectangle
that can enclose both the predicted and ground truth boxes) to
obtain the proportion of the predicted and ground truth boxes
within the enclosing area. In 2020, to handle the case when
the predicted and ground truth boxes are aligned horizontally
or vertically, where GIoU loss degrades to IoU loss, DIoU
loss [19] introduced the distance between the centers of the
predicted and ground truth boxes, minimizing the distance
between the two boxes and improving convergence speed.
Additionally, CIoU loss builds upon DIoU loss by incorpo-
rating the aspect ratio of the bounding boxes into the loss
function, thereby further enhancing the regression accuracy.

However, when the aspect ratio of the predicted and ground
truth boxes is the same, the aspect ratio penalty term in the
CIoU loss remains constant at 0. Additionally, poor samples
can have a significant impact on the regression loss, leading
to larger fluctuations during the convergence process. There-
fore, in this paper, a more refined representation of IoU loss
is proposed to reduce the fluctuations during the convergence
process and improve the localization accuracy of bounding
boxes.

D. THE ATTENTION MECHANISM
Attention mechanisms, as a data processing approach,
have been widely employed in deep learning networks.
Introducing attention mechanisms allows the model to focus
on the target regions and gather more detailed information.
This helps to reduce interference from irrelevant information

and ultimately improves the overall detection performance of
the model.

In this study, multiple experiments were conducted, and
it was observed that some crack information was not fully
utilized, which had a significant impact on the crack detection
results. Therefore, this paper aims to enhance the detection
capability of the model by enhancing the attention to crack
information in the network, thus reducing the occurrence of
crack omission.

III. PROPOSED METHOD
A. TECHNICAL ROUTE
Figure 2 illustrates the technical approach employed for track
slab crack detection. Initially, specialized equipment is uti-
lized to capture images of the track slabs. The images contain-
ing crack information undergo cutting and data enhancement
processes. These procedures aim to retain crack information,
eliminate invalid data, and enhance the network training
speed. Subsequently, the preprocessed track slab surface
crack dataset is fed into the model proposed in this paper
for training purposes. The trained model is then employed
to predict cracks on the track slab’s surface. Finally, the
detection results for surface cracks on the track slab have been
obtained.

B. REPBI-PAN STRUCTURE FUSION IMPROVEMENT
In object detection networks, effective multi-scale fusion net-
works play a crucial role in improving detection performance.
YOLOv7’s feature fusion module adopts the traditional
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FIGURE 2. Technical route of the proposed method.

PAFPN (Path Aggregation Feature Pyramid Network) struc-
ture, which adds a top-down pathway into the FPN structure.
BiFPN (Bi-directional Feature Pyramid Network with Learn-
ableWeights) introduces learnable weights for different input
features. PRB-FPN (Parallel Residual Bi-directional Feature
Pyramid Network) utilizes a parallel residual feature pyramid
structure with dual fusion to extract high-quality features,
thereby achieving precise localization.

In this study, the YOLOv7 model was used for multiple
crack detection experiments. It was observed that during the
feature fusion process, some crucial crack contour informa-
tion and shallow texture information were not fully utilized.
This has a certain impact on crack detection and may
lead to missed or false detections. Therefore, in this paper,
improvements were made to the feature fusion part (Neck)
of YOLOv7. The goal was to fully leverage the crack infor-
mation extracted by the backbone network while considering
the input-output relationship. Thesemodifications weremade
without affecting any other network structures. The aim was
to enhance the network’s feature fusion capability and reduce
the occurrence of false detections and missed cracks.

The YOLOv6 3.0 version, released in January 2023, intro-
duced the RepBi-PAN structure, which possesses stronger
feature extraction capabilities. In the backbone network, shal-
low features have higher resolution and contain abundant
spatial location information, which is beneficial for accurate
object localization. To aggregate these shallow features into
the network, a common approach is to add fusion layers
and corresponding detection heads into the Feature Pyra-
mid Network (FPN). However, this can result in increased
computational costs.

The improved Neck component utilizes the RepBi-PAN
bidirectional linking structure, which introduces the shal-
lower features from the backbone network in the top-down
pathway. This allows for more efficient multi-scale fusion of
shallow features, thereby enhancing the expressive power of
the feature fusion module. This particular structure preserves
more accurate crack position information, which is crucial for
precise crack localization.

C. SIoU LOSS
The original network loss function CIoU loss calculation
formula is as follows:

LCloU = 1 − IIoU +
ρ2
(
b, bgt

)
c2

+ αv (1)

FIGURE 3. Structure of RepBi-PAN.

v =
4
π2

(
arctan

wgt

hgt
− arctan

w
h

)2

(2)

α =
v

(1 − IIoU ) + v
(3)

where:
ρ represents the Euclidean distance between the center

points of the two boxes,
b is the center point of the predicted box,
bgt is the central point of the ground truth box,
c is the diagonal length of the minimum enclosing box of

the predicted and ground truth boxes,
a is a balancing parameter,
v is a parameter that measures the consistency of aspect

ratios,
wgt is the width of the ground truth box,
hgt is the height of the ground truth box,
w is the width of the predicted box,
h is the height of the predicted box.
It can be observed that when the aspect ratio of the ground

truth box and the predicted box is the same, the penalty term
for aspect ratio, v becomes 0. In such cases, the stability of
this loss function is compromised.

In this paper, the original CIoU loss function is replaced
with the SIoU (Segmentation Intersection over Union) loss
[20], which introduces an angle penalty term to effectively
reduce the overall degrees of freedom in the loss function.
The SIoU loss function consists of four components: angle
cost, distance cost, shape cost, and IoU cost.

1) ANGULAR COST
During the convergence process, the model initially attempts
to minimize the angle between the predicted and ground truth
boxes. If the angle exceeds 45 degrees, the angle cost is
calculated as follows:

The formula for calculating the angle cost is as:

3 = 1 − 2 ∗ sin2
(
arcsin (x) −

π

4

)
(4)

where:

x =
ch
σ

= sin (α) (5)

σ =

√(
bgtcx − bcx

)2
+

(
bgtcy − bcy

)2
(6)

ch = max
(
bgtcy , bcy

)
− min

(
bgtcy , bcy

)
(7)
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FIGURE 4. RSG-YOLO structure diagram.

FIGURE 5. Angular costing process.

2) DISTANCE COST
We redefine the distance cost 1, taking into account the
previously defined angle cost 3:

1 =

∑
t=x,y

(
1 − e−γρt

)
(8)

where:

ρx =

(
bgtcx − bcx

cw

)2

(9)

ρy =

(
bgtcy − bcy

ch

)2

(10)

γ = 2 − 3 (11)

As β approaches 0, the contribution of distance cost sig-
nificantly decreases. On the other hand, as β approaches 45◦,
the distance cost 1 contributes more. With increasing angle,
γ is defined as a distance value that prioritizes time.

3) SHAPE COST
The shape cost � is defined as:

� =

∑
t=w,h

(
1 − e−ωt

)θ (12)

where:

ωw =

∣∣w− wgt
∣∣

max (w,wgt)
, ωh =

∣∣h− hgt
∣∣

max (h, hgt)
(13)

The value of θ defines the importance of the shape cost, and
it is unique for each dataset.When θ is set to 1, it optimizes the
shape and restricts its free movement of the shape. To avoid
excessive shape loss that could affect the movement of the
predicted bounding box, the value is set to 1 in this paper.

4) IoU LOSS
IoU loss is the intersection ratio union of the real box and the
prediction box. The formula is as follows:

IoU =

∣∣B ∩ BGT
∣∣∣∣B ∪ BGT
∣∣ (14)

Combining equations (8) and (12), the final definition of
the SIoU loss function is as follows:

LSloU = 1 − IIoU +
1 + �

2
(15)

The original IoU loss function is enhanced by introduc-
ing angle cost 1 and distance cost �. This modification
reduces the probability of having penalty terms equal to zero,
resulting in a more stable convergence process. Additionally,
it improves the accuracy of inference.

D. GLOBAL ATTENTION MECHANISM ATTENTION (GAM
ATTENTION)
In recent years, various attention mechanisms have emerged,
and their performance has continuously improved. Squeeze-
and-Excitation Networks (SENet) [21], Convolutional block
attention module (CBAM) [22], Bottleneck attention module
(BAM) [23], Triplet attention module (TAM) [24] While
attention mechanisms have achieved good results, they often
focus on two dimensions and may not fully utilize the infor-
mation from all three dimensions. In this paper, we propose
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the use of GAM attention to fully leverage information from
all three dimensions, leading to improved performance.

The structure of the GAM is illustrated in Figure 5. This
mechanism incorporates the sequential channel-spatial atten-
tionmechanism fromCBAM (Convolutional Block Attention
Module) and introduces redesigned modules. Given an input
feature map F1∈RC∗H∗W, the intermediate states F2 and the
output F3 are defined as follows:

F2 = Mc (F1) ⊗ F1 (16)

F3 = Ms (F2) ⊗ F2 (17)

where Mc and Ms are the channel and spatial attention maps,
respectively; ⊗ denotes element-wise multiplication.

FIGURE 6. The overview of GAM.

The channel attention sub-module transforms the input fea-
ture map F1 by performing dimensionality reduction. It then
passes through a two-layer perceptron and undergoes dimen-
sionality restoration before being processed by a sigmoid
function. The process is illustrated in Figure 6.

The spatial attention submodule primarily employs convo-
lution operations for processing. Initially, the input is sub-
jected to a 7-kernel size convolution operation to reduce the
number of channels, thus reducing computational complex-
ity. Subsequently, it undergoes another convolution operation
to increase the number of channels, ensuring uniformity in
channel dimensions. Finally, the output is further processed
through a sigmoid function. The entire process is visually
depicted in Figure 7.

IV. EXPERIMENTAL SETUP AND RESULTS ANALYSIS
Experimental Setup and Hardware Environment.

A. PREPARATION FOR THE EXPERIMENT
1) DATA COLLECTION
The image data utilized in this study was acquired through a
novel rail inspection device developed by a company based
in Beijing. This device was purposefully designed to capture
images of CTRSII-type rail panels on high-speed railways
during nighttime inspections. Equipped with a laser line scan-
ning camera, the device enables image acquisition at a high
resolution of 4096 × 4096 pixels.

2) DATA SET ESTABLISHMENT
The collected images underwent an initial screening process
to identify the original images that contained cracks. Sub-
sequently, the grayscale images, with a pixel resolution of

FIGURE 7. Channel attention submodule.

FIGURE 8. Spatial attention submodule.

TABLE 1. Experimental environment and configuration.

4096 × 4096, were subjected to segmentation and a sec-
ondary screening. This approach effectively improved the
input quality by mitigating excessive feature loss caused by
extensive image adjustments, while simultaneously enhanc-
ing detection speed and maintaining accuracy. A total
of 663 rail panel images containing cracks were care-
fully selected and further divided into training, testing,
and validation sets in an 8:1:1 ratio. Given the limited
availability of training samples, data augmentation tech-
niques were employed on the segmented images. These
techniques included flipping, Gaussian filtering, and bright-
ness adjustment, effectively expanding the training dataset
to 2655 images. This augmentation strategy successfully
addressed the data scarcity issue.

B. EVALUATION INDEX
To assess the performance of the improved model, this study
primarily employed precision (P), recall (R), and mean Aver-
age Precision at IoU 0.5 (mAP_0.5) as the evaluation metrics.
Precision is calculated as the ratio of correctly located cracks
to the total number of detected cracks, while recall is the ratio
of correctly located cracks to the total number of cracks in the
samples. The calculation formulas are as follows:

P =
TP

TP + FN
× 100% (18)

R =
TP

TP + FP
× 100% (19)

AAP =
1
∫
0
P (R) dR (20)
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FIGURE 9. Intelligent rail inspection vehicle.

FIGURE 10. Function comparison.

where: TP represents correctly predicted crack results, FN
represents undetected crack results, FP represents falsely
identified results as cracks.

C. RESULT ANALYSIS
1) LOSS FUNCTION COMPARISON
Under identical experimental conditions, the convergence of
the enhanced model’s loss function was validated. The train-
ing curves depicting the two loss functions in relation to the
number of iterations are illustrated in the graph below.

The graph clearly demonstrates the convergence of the
model’s loss as the number of iterations increases. Notably,
the loss function employed in this study exhibits a faster
convergence rate. Consequently, the utilization of SIoU as
the loss function in the improved model holds substantial
significance in enhancing its performance.

2) MODEL COMPARISON
The curves in the graph show the mAP_0.5 and preci-
sion improvement for crack detection on railway sleep-
ers before and after enhancing the model enhancement.
The enhanced model in this study converges faster and
exhibits an increase of 2.39% in crack detection precision

FIGURE 11. Model mAP_0.5 curve comparison.

TABLE 2. Comparison of different model results.

and a 3.08% improvement in mAP_0.5. Compared to the
YOLOv7 network, the RSG-YOLO network demonstrates
better performance in detecting cracks on railway sleepers.

To assess the detection algorithm’s performance, the pro-
posed method in this study was compared to widely adopted
models, namely YOLOv5, YOLOx, and Faster-RCNN. The
comparison was carried out using consistent initial condi-
tions and training parameters to ensure a fair evaluation. The
specific results are presented in the table below:

3) DETECTING RESULTS
To elucidate the learning effects of the GAM attention mech-
anism, we employed the Gradient-weighted Class Activation
Mapping (Grad-CAM) [25] technique. Grad-CAM is a dis-
criminative visual classification method used to pinpoint
specific regions within images. This functionality enhances
the explainability and visual interpretability of neural net-
work models. Grad-CAM operates by utilizing a particular
layer within an image classification model to generate a
localization map. By applying global average pooling to the
gradients of the convolutional layers, channel-wise weights
are computed. These weights are then used to linearly
combine the feature maps, ultimately generating a Class Acti-
vation Map (CAM) [26] Consequently, this approach enables
the visualization of neural networks. By implementing this
methodology, we effectively visualized the effects of the
GAM, thus providing an improved means of assessing the
model’s performance.

The visualization results are presented in Figure 12. Sub-
figures b), d), and f) illustrate the detection outcomes using
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FIGURE 12. Visual interpretation of the effect of GAM by Grad-CAM on
crack datasets.

the GAM, while subfigures a), c), and e) do not utilize the
GAM. The red boxes demarcate actual crack regions, while
the yellow boxes highlight areas mistaken for cracks. In sub-
figure a), the model exhibits significant attention to regions
without cracks. In subfigure b), precise focus is directed
exclusively to the area containing the crack. Subfigure c)
reveals the model’s tendency to emphasize regions at the
image periphery. In contrast, subfigure d) accurately directs
attention to the cracked region. In subfigure e), attention
is drawn to the ground ropes and marked lines, resulting
in misclassification. subfigure f) appropriately focuses on
the crack region, leading to reduced attention on ropes and
ground markings.

Select a few pictures of track plate cracks and utilize both
the model proposed in this paper and the YOLOv7 model
to predict and locate the cracks. The results are illustrated
in the figure. As observed from the figure, the YOLOv7
model identifies the suspected crack location as a crack, while
the model proposed in this paper accurately recognizes it,
thereby reducing the false detection rate. It should be noted

FIGURE 13. Comparison of test results: left (YOLOv7), right (RSG-YOLO).

FIGURE 14. Result of survey: left (YOLOv7), right (RSG-YOLO).

that the joint between the rail platform and the track slab
bears similarities to the characteristics of cracks, leading
to misclassification by the YOLOv7 model. However, the
model presented in this paper effectively distinguishes itself,
exhibiting superior positioning capabilities.

The cracks in the track slab are complex, and the detection
performance of the YOLOv7 network is not satisfactory.
It often misidentifies cables and other backgrounds as cracks,
resulting in numerous false detections. In contrast, the model
proposed in this paper demonstrates exceptional crack detec-
tion capabilities. As depicted in Figure 14, the YOLOv7
model misclassifies the background as a crack, whereas the
model presented in this paper achieves precise crack localiza-
tion.Moreover, the proposedmodel employsmore reasonable
positioning anchor frames, enabling effective crack detection.

V. CONCLUSION AND FUTURE WORK
The RSG-YOLO detection model is proposed in this paper
to address the rail track crack detection problem. Its main
contributions are as follows:
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1. By incorporating the idea of reparameterized fusion fea-
ture pyramid and YOLOv7, the Neck component is improved
to enhance the model’s feature extraction capability and
extract detailed information about track slab cracks.

2. The original CIoU loss function is optimized by using
the SIoU loss function to enhance the model’s localization
ability for cracks, thereby improving the detection accuracy
and reducing false detections and missed detections.

3. The GAM attention mechanism is added to the detection
head to enhance the model’s sensitivity to channel and spa-
tial information, improving the localization ability for crack
information and enhancing the overall performance of the
model.

Experimental results demonstrate that the proposed rail
track slab cracks detection method achieves higher precision
and recall rates, accurately localizes rail track cracks, and
significantly improves the detection effect of cracks in com-
plex background. Compared tomethods such asYOLOv5 and
YOLOv7, this method achieves higher recognition accuracy,
with a final precision of 93.6%, recall rate of 89.5%, and
mAP_0.5 of 94.7%.

Future work includes segmenting and quantitatively ana-
lyzing crack images, determining damage levels based on
maintenance rules for ballastless high-speed railway tracks,
and studying crack expansion for tracking purposes. These
efforts aim to provide assistance in maintaining rail track
crack maintenance work.
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