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ABSTRACT Medical time series data often exhibit intricate and dynamic patterns. With the rapid advance-
ment of medical digitization, deep learning-based time series anomaly detection techniques have found
extensive applications in the healthcare field, such as detecting irregular heart rhythms and monitoring
patients’ vital signs. To fully leverage digitized medical records to identify anomalies in healthcare and
address key challenges in precise anomaly detection, this paper provides a comprehensive review of
deep learning-based anomaly detection techniques applied to medical time series data. By reviewing and
summarizing the relevant research, this paper explores the deep learning-based time series anomaly detection
techniques within the medical and health domain, analyzing the strengths and limitations of different deep
learning architectures and algorithms in tackling specific medical tasks. Lastly, we discuss the challenges
faced by this field and outline future research directions. By reviewing and summarizing advanced deep
learning methods for time series anomaly detection in medical applications in recent years, this study
contributes to the advancement of healthcare analytics, aiming to enhance patient treatment outcomes.

INDEX TERMS Anomaly detection, artificial neural networks, deep learning, healthcare, time series.

I. INTRODUCTION
Anomaly detection [1] is the process of identifying observa-
tions or behaviors within a dataset that significantly deviate
from most samples. Anomalies typically exhibit numerical
deviations from the normal range or exhibit distinct differ-
ences in distribution or pattern compared to other samples.
In anomaly detection, our objective is to recognize these
outliers for further analysis, interpretation, or appropriate
action.

The rapid digital transformation in the healthcare domain
is reshaping medical practices, diagnostics, and treatments
at an unprecedented pace. Time series data generated within
medical practices has emerged as a pivotal resource for
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deepening our understanding of patient conditions, especially
in the realm of anomaly detection. The significance of time
series data in healthcare is undeniable. Medical data such as
electrocardiograms, electroencephalograms, blood pressure,
and body temperature not only offer comprehensive insights
into patients’ physiological states but also contain rich latent
patterns and features. However, medical time series data often
exhibit intricate structures, characterized by high individual
variability and noise. This complexity poses limitations on
traditional analytical methods when attempting to uncover
concealed abnormal patterns. Deep learning models excel at
automatically discovering complex relationships and patterns
within time series data. In comparison to traditional machine
learning techniques, deep learning can capture higher-level
nonlinear feature representations, particularly when dealing
with large-scale datasets. Additionally, deep learning exhibits
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superior robustness and generalization capabilities, adapting
well to noise and unknown data, thus achievingmore accurate
and robust anomaly detection [2]. Consequently, deep learn-
ing technology presents new opportunities and prospects for
time series anomaly detection in healthcare.

Despite significant advancements in deep learning tech-
niques for time series anomaly detection, their application in
healthcare still faces numerous technical and challenges. We
need to consider many complex factors, such as the complex-
ity of medical data, class imbalance, model interpretability,
and so on. In the pursuit of high-quality medical anomaly
detection, elevated demands are placed on algorithms. Pre-
cise anomaly detection necessitates highly sensitive models,
efficient feature extraction, and accurate model training. As
data volumes rapidly expand, anomaly detection algorithms
must also possess the capability to handle high-dimensional
data and conduct dynamic data analysis [2].

While recent review papers [3], [4], [5] have introduced
the application of deep learning methods in time series
anomaly detection, there is a lack of focus on deep time series
anomaly detection specifically tailored for the healthcare
domain. Medical time series data often comprises complex
and dynamic patterns, presenting unique challenges when
applying deep learning-based anomaly detection techniques
to medical scenarios. Therefore, this paper aims to delve
into the application, techniques, and challenges of deep
learning-based time series anomaly detection in healthcare.
We will comprehensively review existing research, ana-
lyze their strengths and limitations, address the challenges
faced by current studies, and provide insights into future
directions.

The main contributions of this paper are as follows:
1) We systematically summarize representative research

on deep learning-based time series anomaly detection
in healthcare.

2) We propose a taxonomy to categorize techniques
and issues related to medical time series data
anomaly detection, as illustrated in Fig. 1. Subse-
quently, we conduct a detailed analysis based on this
taxonomy.

3) We discuss the challenges existing in this research and
outline future research directions.

The remainder of this paper is organized as follows. In
Sections II, the types of medical time series data are dis-
cussed respectively. In Section III, the types of anomalies in
time series data are discussed. In Section IV, deep learning
time series anomaly detection basic models are reviewed.
In Section V, anomaly detection learning modes are listed.
In Section VI, we summarize the medical datasets for time
series anomaly detection. In Section VII, evaluation criteria
are presented. In Section VIII, we discuss some special con-
cerns for time series anomaly detection tasks in healthcare. In
Section IX, research challenges and future directions in time
series anomaly detection are presented. Finally, in Section X,
conclusions are discussed.

FIGURE 1. Deep learning-based time series anomaly detection
technologies in healthcare.

II. TYPES OF MEDICAL TIME SERIES DATA
The characteristics and types of medical data directly influ-
ence the methods, models, and strategies for anomaly
detection. Therefore, understanding the types of medical
data is crucial before conducting medical anomaly detection
tasks.

A. MEDICAL PHYSIOLOGICAL SIGNAL
Medical physiological signals refer to the signals that record
human physiological activities and are used to monitor
and assess the health status and functions of the human
body. Common physiological signals include Electrocar-
diogram (ECG), Electroencephalogram (EEG), Electromyo-
gram (EMG), Galvanic Skin Response (GSR), and so on. By
analyzing and processing physiological signal data, potential
diseases can be identified and detected. Deep learning tech-
niques have achieved significant advancements in fields such
as abnormal ECG detection [6], [7], [8], [9], [10], [11], EEG
anomaly detection [12], [13], [14], [15], [16], [17], [18], and
diagnosis of sleep breathing disorders [19], [20], [21].

In time series anomaly detection tasks, medical physio-
logical signals face challenges such as limited data volume,
sample imbalance, and difficulties in labeling. Compared
to general signal domains, anomaly detection in medical
physiological signals is susceptible to noise and interfer-
ence, such as motion artifacts and electromyographic inter-
ference. This complexity adds to the demand for models
with robust denoising capabilities [22]. Furthermore, due to
individual variations among patients, significant differences
might exist in medical physiological signals across different
populations and individuals. Building generalized anomaly
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detectionmodels suitable for diverse populations can enhance
model performance [23], [24].

B. ELECTRONIC MEDICAL RECORDS (EMRS)
EMRs are pivotal information resources in healthcare,
encompassing a wealth of medical time series data, including
vital signs, laboratory tests, medication records, and payment
data [25]. These data reflect the evolution of patients’ medical
histories and health conditions. Leveraging deep learning
models, EMRs can be harnessed to uncover latent anomalies,
offer decision support and personalized healthcare services,
facilitate data quality management, and enable medical fraud
detection, among other applications [26].

Lack of precise anomaly labels often poses challenges
in anomaly detection based on electronic medical records
(EMRs). Since anomalies in EMRs are typically determined
and defined by clinical experts, varying definitions and inter-
pretations of anomalies might exist among different physi-
cians and healthcare institutions, leading to subjectivity and
discrepancies. Insufficient and inaccurate anomaly labels can
influence the training and evaluation of anomaly detection
models. Additionally, due to the uniqueness and sensitivity of
EMR data involving patients’ private and confidential infor-
mation, access and utilization of such data are subject to strict
legal, ethical, and privacy regulations, further complicating
the acquisition of accurate anomaly labels.

To address these challenges, approaches such as semi-
supervised learning [27], weakly supervised learning [28],
and transfer learning [29] can be considered to leverage lim-
ited anomaly labeled data. Combining unsupervised learning
and self-supervised learning techniques can be employed for
enhanced anomaly detection in EMRs.

C. MEDICAL VOICE AND VIDEO
Medical voice data includes patients’ voice recordings and
doctors’ voice notes, while medical video data includes
records of surgical procedures and dynamic medical images
such as Computed Tomography (CT) scans and Magnetic
Resonance Imaging (MRI) images. By learning the features
and patterns of normal voice data, abnormal vocal sounds
like pronunciation irregularities and abnormal voice rates can
be detected. This aids doctors in diagnosing and treating
conditions like pathological voice disorders [30], [31], [32].
Similarly, by learning the temporal and spatial features of
normal medical video data (e.g., surgical videos), abnor-
mal surgical actions and unusual changes in lesions can be
detected, enhancing the detection of abnormal operations and
pathological changes [33], [34].
Medical voice and video data are often sourced from differ-

ent devices, collection environments, and individuals, result-
ing in significant diversity within the data. This diversity can
lead to changes and biases in data distribution, making it
challenging for anomaly detection models to generalize to
new datasets and scenarios.

Furthermore, the complexity of medical voice and video
data is also a crucial factor impacting the effectiveness of deep
learning models. Such data typically contains a multitude
of variations and noise. Voice data may be influenced by
background noise, variations in voice quality, and pronun-
ciation differences. Video data may be affected by lighting
conditions, camera angles, and motion blur. These factors
contribute to the diversity and complexity of the data, which
in turn increases the difficulty of anomaly detection.

III. TYPES OF ANOMALIES
Different types of anomalies may possess distinct tempo-
ral patterns and features, necessitating the targeted design
and optimization of detection models. The data distribu-
tion and trend variations for different anomaly types might
demand diverse deep learning architectures or feature extrac-
tion methods to achieve more accurate anomaly detection
outcomes. The main categories of anomalies include point
anomaly, contextual anomaly, and collective anomaly [1].

A. POINT ANOMALY
A point anomaly refers to an individual data point that stands
out noticeably compared to other data points. It exists inde-
pendently in the feature space from the rest of the data points
and deviates significantly from normal data samples [1]. In
the context of medical anomaly detection, point anomalies
could signify individual patient data that differs from most
patient data. For instance, if a patient’s physiological param-
eter value (such as heart rate, blood pressure, or blood glucose
level) is much higher or lower than the normal range, it might
be considered a point anomaly. Fig. 2 illustrates an exam-
ple of a point anomaly. In time series data, anomaly points
may correspond to extreme values. In such cases, anomaly
values closely resemble noise in their numerical values, lead-
ing to potential misclassification. Thus, distinguishing point
anomalies from noise within time series is a critical challenge
in time series anomaly detection.

FIGURE 2. An example of point anomaly.

B. CONTEXTUAL ANOMALY
Contextual anomalies refer to data anomalies within spe-
cific contextual environments, where the value of a data
point significantly deviates from the surrounding data under
certain conditions [1]. These anomalies may be considered
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FIGURE 3. An example of contextual anomaly.

abnormal in certain specific contexts while being normal in
other contexts. For instance, physiological data of a pregnant
woman might undergo changes during pregnancy, such as
elevated blood pressure or fluctuating blood glucose levels.
These variations can be seen as contextual anomalies. Fig. 3
illustrates an example of a contextual anomaly. Medical time
series data often involve intricate contextual environments.
Factors like a patient’s physiological state, disease condition,
and treatment processes can all influence the definition and
recognition of anomalies. This complexity presents more
challenges and difficulties for detecting contextual anomalies
in the medical and healthcare field.

C. COLLECTIVE ANOMALY
Collective anomalies refer to a subset or sequence within a
whole dataset, data grouping, or time series that differs from
other subsets or sequences [1]. This type of anomaly often
indicates an abnormal pattern or event across the entirety
of the data. A subset of data from patients with a specific
disease that significantly differs from subsets of data from
patients with other diseases can also be considered a col-
lective anomaly. For instance, the distribution and trend of
physiological parameters in a group of patients with a rare
disease might noticeably differ from that of the general pop-
ulation, constituting a collective anomaly. Fig. 4 illustrates an
example of a collective anomaly.

FIGURE 4. An example of ECG collective anomaly.

IV. DEEP LEARNING ARCHITECTURE USED IN TIME
SERIES ANOMALY DETECTION
In medical anomaly detection, deep learning models are
often built upon classical architectures and then adjusted and

combined based on the task requirements and data character-
istics. In this chapter, we will discuss some common foun-
dational deep learning models for time series data anomaly
detection. These foundational models can serve as back-
bones for medical anomaly detection tasks and can be further
customized and extended according to specific application
scenarios. Additionally, leveraging other techniques such as
transfer learning and reinforcement learning can enhance the
performance and robustness of anomaly detection.

A. CONVOLUTIONAL NEURAL NETWORKS (CNNS)
Although CNNs are primarily used in the field of image
processing, in some cases, one-dimensional CNNs can be
applied to time series data for anomaly detection. The roles of
CNNs in time series anomaly detection include the following
aspects:

1) Through convolutional operations, CNNs can be uti-
lized to extract local features and patterns from time
series data. The convolutional layers perform sliding
window operations along the time dimension, which
is like filtering in images, capturing local structural
information in the data.

2) CNNs can gradually extract hierarchical features
through multiple convolutional and pooling layers. For
time series data, this can help capture patterns and
variations at different time scales.

3) For certain long sequences of data, using traditional
step-by-step sliding window methods might lead to
extensive computations. CNNs can mitigate this by uti-
lizing weight sharing and pooling operations, reducing
data volume, and enhancing computational efficiency.

4) CNNs are particularly useful for dealing with complex
relationshipswithin data that possess both temporal and
spatial features simultaneously.

In practice, CNN is often combined with other network
structures such as Long Short-Term Memory (LSTM), GRU,
etc., to better capture the complex relationships within time
series data. For instance, BeatGAN [35] incorporates a one-
dimensional CNNmodule into its adversarial learning recon-
struction framework, enhancing the robustness of anomaly
detection and achieving improved accuracy and rapid infer-
ence capability. The Temporal Convolutional Network (TCN)
model [36] is a deep learning architecture designed for pro-
cessing time series data. It utilizes convolutional layers to
capture long-term dependencies and patterns within the data.
Compared to traditional Recurrent Neural Networks (RNNs)
and LSTMs, the TCN model efficiently captures features in
time series data through parallelized convolution operations,
without being limited by sequence length. This model has
shown promising performance in time series data anomaly
detection tasks. Kok et al. [37] applied TCN for automated
sepsis detection, achieving impressive results.

B. RECURRENT NEURAL NETWORKS (RNNS)
RNN is a deep learning algorithm suitable for sequence
data that possesses memory capabilities, enabling it to
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capture temporal dependencies. In medical anomaly detec-
tion, RNN can handle time series data such as ECG and
EEG.

The LSTMmodel is a variant of the RNN structure. LSTM
models have been extensively researched and have been
found to excel in predicting time series data with long-term
temporal dependencies [38], [39], [40], [41]. These studies
suggest that LSTM offers better predictive accuracy com-
pared to many other machine learning models and neural
networks. However, the drawback of LSTM lies in its recur-
rent structure, making it challenging to effectively parallelize
processing and resulting in lower learning efficiency. As a
result, LSTM typically performs better when dealing with
small-sample data.

C. TRANSFORMER
The Transformer was originally introduced in the field of
natural language processing, but it has later found applica-
tions in the domain of time series data analysis [42], [43],
[44]. The attention mechanism of the Transformer facili-
tates capturing the significance of various parts within a
sequence, overcoming the limitations of recursive structures
like LSTM. It is well-suited for modeling long-range depen-
dencies in sequences. In terms of efficiency, the self-attention
mechanism of the Transformer allows for efficient parallel
computations, making it suitable for large-scale sequence
data. Additionally, the Transformer exhibits strong scalabil-
ity. When confronted with diverse tasks and data, its depth
and number of attention heads can be adjusted to adapt to the
specific requirements.

D. AUTOENCODER (AE)/ VARIATIONAL AUTOENCODER
(VAE)
AE and VAE are neural network models used for unsu-
pervised learning, and they are often combined with
LSTM for time series data anomaly detection. AE employs
encoding and decoding processes to learn a compact rep-
resentation (encoding) of data and reconstruct the origi-
nal data (decoding), aiding in extracting crucial features
from time series data and capturing anomaly patterns. For
instance, Liu et al. [45] devised an LSTM autoencoder
model for arrhythmia detection, demonstrating improved
performance.

Variational Autoencoder (VAE), a generative model, is not
only used for encoding and decoding but also generates new
data samples by sampling in the latent space. For anomaly
detection, it helps identify samples that deviate from the
normal data distribution. Chen et al. [46] proposed a semi-
supervised VAE anomaly detection strategy based on LSTM.
Experiments showed that their strategy outperformed existing
baseline methods, detecting anomalies faster and more accu-
rately while providing precise localization of the root causes
of anomalies.

E. GENERATIVE ADVERSARIAL NETWORKS (GANS)
The GAN is an adversarial model composed of a generator
and a discriminator. The generator aims to produce samples
resembling normal data, while the discriminator endeavors to
distinguish between the generated samples and real anoma-
lous samples. In medical anomaly detection, GANs can be
employed to generate synthetic data that closely resembles
real patient data, thereby expanding the training dataset
and enhancing the model’s robustness and generalization
capabilities. This approach also widens the training data to
encompass various abnormal scenarios, aiding the model in
capturing abnormal patterns more effectively. You et al. [47]
utilized GANs to learn from behind-the-ear EEG of epilepsy
patients, generating new samples for anomaly detection. The
results demonstrated the effectiveness of this method for
long-term epilepsy monitoring.

F. GRAPH NEURAL NETWORKS (GNNS)
Medical time series data often involve complex relationships
among multiple variables, such as inter-patient interactions,
medical history, clinical indicators, medications, and so on.
GNN, or Graph Neural Network, is effective in captur-
ing associations between multiple variables. It constructs
a graph structure among patients and performs anomaly
detection based on this graph. GNN incorporates tempo-
ral information into nodes by learning feature represen-
tations of nodes and edges. It leverages the connectivity
within the graph for information propagation and aggrega-
tion, enhancing the discovery of abnormal patterns in med-
ical data [48]. Graph Convolutional Network (GCN) [49]
and Graph Attention Network (GAT) [50] are two common
GNN models. GCN introduces convolution operations to
facilitate information propagation and feature aggregation in
graph data. GAT is a graph neural network model based on
attention mechanisms, aiming to address the issue of vary-
ing importance among different nodes during information
propagation.

Compared to other neural network models, GNN can
establish connections between multiple data sources, aid-
ing in comprehensive analysis across various domains. This
capability makes GNN particularly effective in handling
multi-dimensional time series data. In the medical field,
multi-dimensional time series data can encompass various
physiological indicators for patients, such as heart rate, body
temperature, and blood pressure. GNN can help capture
the intricate relationships among these indicators, leading
to more precise anomaly detection, like disease outbreaks
or changes in patient conditions. However, it’s important to
note that mapping time series data to a graph structure might
introduce information loss or inaccuracies, potentially affect-
ing the modeling of dynamic temporal characteristics. This
is especially relevant for high-dimensional time series data
where relationships between nodes could be more intricate.
Adjusting more hyperparameters can also become complex,
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requiring expertise or extensive experimentation to determine
the optimal configuration.

G. HIERARCHICAL TEMPORAL MEMORY (HTM)
The HTM is a computational model inspired by the neural
circuitry of the human brain. This model aims to emulate
the brain’s processing of temporal data, enabling it to capture
intricate temporal patterns and associations. The key to this
model lies in its hierarchical structure, where each layer
is capable of feature extraction and representation learning.
The lower-level HTM layers can effectively capture temporal
features of raw data, while deeper learning layers can abstract
and combine these features to achieve higher-level pattern
recognition and anomaly detection [51]. This architecture
enhances the model’s ability to identify rare anomalies in
complex medical temporal data. For instance, Midani et al.
[52] applied HTM to ECG signals, achieving exceptional
anomaly detection in heart arrhythmias. Experimental results
demonstrated that, compared to deep learning, HTM is more
effective at detecting anomalies in ECG signals.

V. ANOMALY DETECTION LEARNING MODES
Based on the presence of label information in the training
data and the availability of labels, we will introduce several
learning modes for anomaly detection, including supervised
learning, unsupervised learning, semi-supervised learning,
and weakly supervised learning.

A. SUPERVISED LEARNING
For known anomaly types with labeled data, supervised learn-
ing trains samples from labeled training data to learn the
differences between normal and abnormal patterns. In health-
care, supervised learning is extensively applied and finds
utility in various time series anomaly detection tasks, such as
detecting anomalies in electrocardiograms, electroencephalo-
grams, medical images, diabetes management, medication
dosage monitoring, and so on.

From an accuracy and reliability standpoint, supervised
learning clearly outperforms unsupervised learning methods,
thereby possessing higher accuracy and reliability in medical
applications. For instance, in tasks involving the prediction
of intensive care unit mortality using medical time series
data, experiments have demonstrated highly robust and accu-
rate outcomes [53]. However, in many instances, labeling
data incurs substantial costs. Moreover, due to certain rare
anomalous situations in healthcare, the number of normal
samples often greatly exceeds that of abnormal samples, lead-
ing to class imbalance issues. Additionally, the dependency
of supervised learning models on labeled data might impact
their generalization ability, particularly when confronted with
novel or rare anomaly patterns.

B. UNSUPERVISED LEARNING
In the field of anomaly detection, unsupervised algorithms
typically judge the presence of anomalies by calculating the

differences between reconstructed or generated samples and
actual samples. Unsupervised learning does not require data
labeling, but its drawback is a relatively weaker resistance to
noise interference. VAEs and GANs are both typical exam-
ples of unsupervised learning.

Self-supervised learning is a specialized form of unsuper-
vised learning where the model generates labels for itself to
learn data feature representation. Algorithms use internally
generated labels for training, eliminating the need for manual
labeling and reducing labeling costs. Xu et al. [54] introduced
a self-supervised learning approach and applied it to anomaly
detection in brainwave signals. Experiments exhibited high
robustness, addressing the challenge of difficult epilepsy data
labeling.

Contrastive learning, also categorized as the unsupervised
learning, typically employs pairs of samples divided into
positive and negative samples [55]. The model learns to
distinguish different categories or capture data features by
comparing the differences between positive and negative
samples. This learning process is conducted in an unsuper-
vised context. Chen et al. [56] proposed a novel electro-
cardiogram signal contrastive learning scheme, CLECG, for
mining effective information from unlabeled data. Experi-
ments demonstrated superior performance compared to other
self-supervised learning methods.

C. SEMI-SUPERVISED LEARNING
Semi-supervised learning involves training with a small
amount of labeled data and a large amount of unlabeled
data, utilizing the information from the unlabeled data to
enhance the model’s performance and generalization abil-
ity [57]. Thus, semi-supervised learning is well-suited for
scenarios where only a small portion of the data carries
anomaly labels. Label acquisition for medical data is often
challenging, and medical anomalies tend to be diverse and
complex. As a result, the application of semi-supervised
learning in the medical domain is becoming increasingly
common. For instance, Ying et al. [58] introduced a novel
Federated Semi-Supervised Learning (FSSL) framework
to predict abnormal signals in electrocardiogram records,
achieving a 94.8% accuracy with only 50% labeled data. You
et al. [59] designed a semi-supervised variational autoencoder
network for epilepsy detection. Experiments demonstrated
that the proposed algorithm improved seizure detection
sensitivity to 90.4% and reduced the false alarm rate to
0.83 per hour.

As semi-supervised learning involves a substantial amount
of unsupervised data during training, effectively managing
the influence of noise becomes a significant challenge. Addi-
tionally, effectively integrating labeled and unlabeled data is a
key issue. Designing appropriate model architectures and loss
functions is essential to ensure that the model fully leverages
the limited labeled information to enhance anomaly detection
performance.
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D. WEAKLY SUPERVISED LEARNING
Weakly supervised learning refers to training with data that
has incomplete or inaccurate labels, utilizing partial label
information for learning. It is suitable for datasets where only
coarse anomaly labels are available, such as cases where the
location or partial information about anomalies is known,
but the specific anomaly labels are not entirely reliable [60].
Compared to supervised learning, weakly supervised learning
can reduce the cost and complexity of the labeling process by
utilizing incomplete anomaly labels for training. For instance,
Liu et al. [61] proposed a weakly supervised model called
FGSQA-Net for fine-grained cardiac monitoring. This model
was applied to two real-world electrocardiogram databases
and a synthetic dataset, effectively addressing the challenge
of lacking fine-grained labels.

Relatively speaking, weakly supervised learning may not
be as widely adopted in the medical domain as supervised
or semi-supervised learning. However, it offers a flexible
solution for anomaly detection in healthcare, particularly in
situations where data annotation is difficult or expensive.

Since weakly supervised learning models need to handle
both instance-level and sample-level label information, this
complexity increases the model’s intricacy. Hence, it’s impor-
tant to consider how to make the decision process of complex
models more interpretable. Additionally, weakly supervised
learning models might not perform well on new anomaly
patterns, which places higher demands on the model’s gen-
eralization capability.

VI. DATASETS
The application of time series anomaly detection techniques
in healthcare relies heavily on high-quality datasets, and the
selection of appropriate datasets is crucial for the perfor-
mance and generalization ability of deep learning models.
Many studies in the field of healthcare time series anomaly
detection have utilized publicly available datasets.

Medical Information Mart for Intensive Care
(MIMIC- III) [62] is a large-scalemedical dataset widely used
for clinical research. It includes clinical data, laboratory test
data, medication records, and so on from ICU patients. Phy-
sioNet [63] contains multiple medical time series datasets,
covering electrocardiograms, respiratory signals, blood pres-
sure data, and so on. Sleep-EDF Expanded Database (SEED)
[64] is a dataset used for sleep monitoring research, con-
taining EEG, EOG, and EMG signals from different sleep
stages, making it valuable for sleep anomaly detection. Other
datasets include UCI MHEALTH, UCI ECG, UCI Apnea-
ECG, PAMAP2, and PTB Diagnostic ECG Database.

However, due to the challenges of annotating anomaly
data, many researchers resort to simulating or synthesizing
abnormal data to enhance model robustness and general-
ization. The synthesized or simulated anomaly data should
ensure that the generated anomalies match the real data in sta-
tistical characteristics, temporal patterns, and distributions.

Additionally, it’s essential to evaluate the impact of the gen-
erated anomaly data on model performance, ensuring that
the model performs well in detecting real anomalies. The
use of Generative Adversarial Networks (GANs) to generate
medical anomaly data is a typical approach [47]. During
training, the generator attempts to generate anomaly data that
is like the real data, while the discriminator distinguishes
between the real and the generated data.

VII. EVALUATION CRITERIA
To accurately assess the performance of time series anomaly
detection techniques, it’s essential to establish appropriate
evaluation criteria. Accuracy represents the proportion of
correctly predicted samples to the total number of samples
and is used as a measurement criterion in many studies
of time series anomaly detection. While accuracy focuses
on the overall predictive ability of the model, it can be
misleading in cases of class imbalance. To measure model
performance more effectively, some studies employ precision
and recall as evaluation metrics, where their values determine
the accuracy and comprehensiveness of anomaly detection.
Precision indicates the proportion of true positives among
the samples predicted as positives, evaluating the alignment
between model predictions and actual anomaly cases. Recall
represents the proportion of true positive predictions among
all actual positive samples, assessing the model’s ability to
identify true anomalies. For medical data anomaly detection,
high precision and recall are crucial to maximize the ability
to detect potential health risks. In such cases, the F1 Score,
which combines precision and recall, serves as a comprehen-
sive evaluation metric.

Area Under the Curve (AUC) is another important crite-
rion for measuring the effectiveness of time series anomaly
detection techniques in healthcare. A higher AUC value,
closer to 1, indicates better anomaly detection capability of
the model. For imbalanced datasets and when measuring
the performance of time series anomaly detection models at
different thresholds, AUC provides a more robust assessment.
It can be used in conjunction with precision, recall, F1 score,
etc., to comprehensively evaluate the model’s performance.

In the healthcare domain, the performance of anomaly
detection models directly correlates with the health and life
of patients. Therefore, high precision and high recall are par-
ticularly crucial in this field. Inaccurate anomaly predictions
may lead to misdiagnosis, unnecessary treatments, or cause
panic, emphasizing the criticality of high precision. Missing
a true anomaly could have serious consequences as it might
represent a potential health risk for the patient. Therefore,
maintaining a high recall, ensuring the capture of as many
anomalies as possible, is vital for enhancing patient safety.
Overall, in the healthcare sector, a comprehensive consider-
ation of high precision and high recall, especially utilizing
composite evaluation metrics such as the F1 score, helps
ensure that anomaly detection models can accurately and
comprehensively identify potential health risks in real-world
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TABLE 1. Summary of deep learning techniques for time series abnormality detection in healthcare.

applications. Table 1 categorically summarizes the reviewed
deep learning techniques for time series anomaly detection
applied in healthcare, as outlined in this paper.

VIII. SOME SPECIAL ISSUES IN HEALTHCARE
In the field of healthcare, the application of time series
anomaly detection techniques comes with its own intricacies
and challenges. Introducing deep learning into time series
anomaly detection presents unique challenges and issues.
When employing these techniques to enhance the accuracy
and efficiency of clinical practices, it is essential to address
specific challenges that arise when working with medical
time series data.

The success of time series data anomaly detection relies
significantly on high-quality datasets. However, the scarcity
and imbalance of healthcare data often lead to a limited
number of anomaly samples. To address this issue, synthetic
techniques can be employed to generate additional anomaly
samples, such as Synthetic Minority Over-sampling Tech-
nique (SMOTE) and GAN. For instance, Rai and Chatterjee
[65] applied SMOTE to address dataset imbalance, resulting
in improved accuracy for minority anomaly classes within
ECG signals. Jakobsen et al. proposed a deep neural net-
work that combines SMOTE with class balancing techniques
to enhance accuracy in differentiating between depression
patients and healthy controls using motion activity time
series data. Methods like transfer learning [66] can also
be utilized to enhance model performance, and improve-
ments can be made by incorporating unsupervised learning,

self-supervised learning, and weakly supervised learning
methods.

The integration of multimodal data is also a significant
focus of attention. Different modalities of information can
complement each other, providing mutually reinforcing fea-
tures. Fusion of these modalities can result in more repre-
sentative feature representations. Moreover, multimodal data
fusion can assist in identifying and filtering out false pos-
itives that might arise from a single data source, thereby
reducing false alarm rates and enhancing the accuracy and
generalizability of anomaly detection. For instance, Soenksen
et al. [67] proposed and evaluated a Healthcare Artificial
Intelligence Multimodal (HAIM) framework, demonstrating
its consistency and robustness in generating models that out-
perform similar single-data-source methods across various
healthcare demonstrations.

Many medical time series data encompass a multi-
tude of features or dimensions, categorizing them as
high-dimensional data. This includes physiological sig-
nals like electrocardiograms and electroencephalograms,
medical images such as CT scans and MRI images,
and diverse clinical indicators found in electronic medi-
cal records (EMRs). In high-dimensional spaces, the dis-
tances between data points become sparse, which might
impact the performance of anomaly detection algorithms,
making it more challenging to effectively identify anoma-
lies. Additionally, high-dimensional data often contain sub-
stantial noise and redundant features, as anomalies may
exhibit similarity to normal points in noisy and redundant
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features, placing higher demands on the model’s denoising
capabilities.

IX. RESEARCH CHALLENGES AND FUTURE DIRECTIONS
Significant progress has been made in the application of deep
learning-based time series anomaly detection techniques in
the field of healthcare. However, there are still a series of chal-
lenges that need to be addressed in future research endeavors.

A. HANDING REAL-TIME DATA
Medical time series data is often influenced by factors such as
patients’ physiological states and treatment processes, lead-
ing to dynamic changes and non-stationary patterns in the
data. Moreover, the features observed in medical data can
be affected by external factors such as seasons, geographical
variations, and epidemics, causing the data characteristics to
evolve. Consequently, anomaly detection models may strug-
gle to capture the underlying patterns and trends in the data,
necessitating the design of adaptable model architectures.
Techniques like incremental learning and adaptive learning
need to be introduced. Incremental learning [68], [69] can
integrate new data into the model in real-time, enhancing
adaptability while reducing computational and storage costs.
On the other hand, adaptive learning [70] involves dynami-
cally adjusting model parameters and features to accommo-
date the dynamic changes in the data.

B. PRIVACY AND SECURITY
Medical time series data contains sensitive personal health
information, and using deep learning models for anomaly
detectionmay risk exposing patient privacy, especially during
processes like medical data sharing and centralized model
training. Therefore, ensuring privacy protection and data
security while performing joint model training is a significant
challenge.

Federated learning presents a promising solution, allow-
ing models to be trained on local devices and sharing only
model parameters without revealing raw data. This approach
helps safeguard privacy and reduces the risks associated with
data transmission and centralized storage [71]. Additionally,
privacy protection techniques like differential privacy and
homomorphic encryption can be employed to encrypt data
and further protect patient privacy.

C. INTERPRETABILITY
Understanding the rationale behind a model’s decisions is
crucial for healthcare professionals and decision-makers,
making model interpretability particularly important in the
medical field. However, the black-box nature of current deep
learning models limits their practicality in clinical settings.
Therefore, the pursuit of highly interpretable model designs
is essential to meet clinical requirements.

Model interpretability techniques, such as Local Inter-
pretable Model-Agnostic Explanations (LIME) [72] and
SHapley Additive exPlanations (SHAP) [73], can be applied

to explain the predictions of the model. These techniques
generate interpretable explanations based on the relationship
between model inputs and outputs. Combining deep learning
models with traditional machine learning methods, such as
decision trees and logistic regression, is also an effective
strategy since these methods offer higher interpretability. In
addition, introducing interpretable mechanisms like atten-
tion mechanisms and hierarchical structures should also be
considered.

D. MULTIMODAL DATA
Effectively fusing diverse types of temporal data from dif-
ferent modalities presents a highly challenging task. Firstly,
there may be data imbalance issues across different modali-
ties, with some modalities having fewer samples. Handling
data imbalance needs to be addressed before model train-
ing. Secondly, distinct data modalities could possess varying
feature representations, making the alignment and extrac-
tion of useful information complex. Ensuring consistency
in the fused data becomes a crucial issue. Furthermore,
fused data from different modalities might encounter prob-
lems like missing data or amplified noise, which can impact
the performance of anomaly detection. To address these
challenges, potential solutions include adopting an adaptive
fusion weight mechanism. This involves dynamically adjust-
ing the fusion weights of different modalities based on data
quality and the significance of feature information. Lastly,
leveraging pre-trained multimodal models and employing
transfer learning for anomaly detection tasks could also be
considered.

E. HIGH DIMENSIONALITY
High-dimensional features may lead to the curse of
dimensionality, making model training complex and time-
consuming. This also complicates anomaly detection.
Addressing the challenges posed by high-dimensional
features remains a concern. To mitigate the impact of
high-dimensional data, several dimensionality reduction
techniques can be employed. These include selecting mean-
ingful features, using methods like PCA and Autoencoders
to map high-dimensional data to a lower-dimensional feature
space, and incorporating attention mechanisms and adaptive
learning to focus the model on key features and enhance its
understanding of high-dimensional data.

F. DEFINITION OF ANOMALIES
The complexity of medical data makes it challenging to
precisely define anomalies. Variability in different cases,
pathologies, and patient needs can result in diverse def-
initions of anomalies, making it difficult for models
to uniformly adapt. To address these situations, besides
data augmentation and transfer learning, incorporating
domain expertise is essential. By combining data-driven
and knowledge-driven approaches, dynamically adjust-
ing anomaly definitions can enhance model adaptability.
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Techniques such as self-supervised learning and genera-
tive adversarial networks can be leveraged to achieve more
flexible, dynamic, and adaptive anomaly definitions. This
enhances the model’s ability to recognize and generalize
diverse anomalies.

Moreover, existing anomaly classification methods are
based on supervised learning models. However, specific
datasets often only label anomalies for certain diseases
or symptoms, leaving out other disease-related anomalies.
Therefore, a direction for future research and exploration
is how to make anomaly detection tasks encompass all
anomalies.

X. CONCLUSION
In this study, we review and summarize deep learning-based
techniques for time series anomaly detection. We propose
a classification framework to describe techniques related to
anomaly detection in medical time series data. These tech-
niques encompass the types of medical time series data,
anomaly categories within time series data, fundamental
deep learning models for time series anomaly detection,
deep learning paradigms, medical time series datasets, and
evaluation criteria. Through comprehensive analysis of rele-
vant literature and research outcomes, this approach assists
researchers in obtaining detailed insights into the latest
advancements in medical time series anomaly detection tech-
nologies. Subsequently, the paper discusses specific concerns
in the application of time series anomaly detection techniques
within the medical and healthcare field. Finally, challenges
and future directions are presented.

Despite the significant progress achieved through the
application of deep learning-based time series anomaly detec-
tion techniques in the medical and healthcare sector, there
remains ample room for development in this field. Continu-
ous research and exploration hold the promise of achieving
more precise, interpretable, powerful data mining-capable,
real-time, and secure anomaly detection solutions.
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