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Abstract— Cognitive impairment is typically reflected in
the time and frequency variations of electroencephalogra-
phy (EEG). Integrating time-domain and frequency-domain
analysis methods is essential to better understand and
assess cognitive ability. Timely identification of cognitive
levels in early Parkinson’s disease (ePD) patients can help
mitigate the risk of future dementia. For the investigation
of the brain activity and states related to cognitive levels,
this study recruited forty ePD patients for EEG microstate
analysis, including 13 with mild cognitive impairment (MCI)
and 27 without MCI (control group). To determine the
specific frequency band on which the microstate analysis
relies, a deep learning framework was employed to discern
the frequency dependence of the cognitive level in ePD
patients. The input to the convolutional neural network
consisted of the power spectral density of multi-channel
multi-point EEG signals. The visualization technique of
gradient-weighted class activation mapping was utilized
to extract the optimal frequency band for identifying MCI
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samples. Within this frequency band, microstate analysis
was conducted and correlated with the Montreal Cogni-
tive Assessment (MoCA) Scale. The deep neural network
revealed significant differences in the 1-11.5Hz spectrum of
the ePD-MCI group compared to the control group. In this
characteristic frequency band, ePD-MCI patients exhibited
a pattern of global microstate disorder. The coverage rate
and occurrence frequency of microstate A and D increased
significantly and were both negatively correlated with the
MoCA scale. Meanwhile, the coverage, frequency and dura-
tion of microstate C decreased significantly and were pos-
itively correlated with the MoCA scale. Our work unveils
abnormal microstate characteristics in ePD-MCI based on
time-frequency fusion, enhancing our understanding of
cognitively related brain dynamics and providing electro-
physiological markers for ePD-MCI recognition.

Index Terms— Deep neural network, frequency bands
optimization, microstate, mild cognitive impairment,
Parkinson’s disease.

I. INTRODUCTION

PARKINSON’S disease (PD) is the second most prevalent
neurodegenerative disorder among the elderly [1]. Its

motor symptoms, such as bradykinesia, rigidity, and rest-
ing tremor, alongside nonmotor dysfunctions like cognitive
decline, depression, and anxiety, profoundly affect patients’
daily lives [1], [2]. Clinical findings reveal that nearly a
quarter of early PD (ePD) patients experience mild cogni-
tive impairment (MCI) [3] and ePD patients with MCI are
at an increased risk of developing dementia [4], [5], [6].
Unfortunately, there are currently no effective treatments for
dementia of PD patients and once dementia symptoms emerge,
deep brain stimulation (DBS) surgery becomes infeasible for
managing motor symptoms. Moreover, the impact of cognitive
impairment on brain activity of PD patients, particularly those
in early stages, remains poorly understood, posing consider-
able challenges in the clinical identification of MCI during the
ePD phase. Hence, it is of utmost importance to investigate the
neural mechanism underlying ePD-MCI and identify reliable
biomarkers to assist clinicians in diagnosing or monitoring
patients at risk of mis- or missed-prognosis of PD-MCI [7].

Electroencephalography (EEG) is a non-invasive and
cost-effective technique for recording the brain’s electri-
cal activity [8]. Among traditional EEG analysis methods,
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microstate analysis offers high temporal resolution (i.e., sub-
second level) to explore brain dynamics [9], [10]. EEG
microstates are defined as global patterns of scalp poten-
tial topographies derived from multi-channel EEG dynamic
sequences, organized in a specific manner [11], and are
believed to play a fundamental role in brain signal pro-
cessing. Their disruptions can significantly impact cognitive
states, so researchers frequently employ microstate analysis
to investigate the pathological neural mechanisms underlying
cognitive impairment [12], [13], and connections between
microstates and cognition/perception have been established
[14], [15]. Specific microstates reflecting abnormalities in
brain dynamics and inherent characteristics (e.g., frequency
or duration) are considered quantifiable markers for various
neuropsychiatric disorders [16]. For instance, Lian et al. found
specialized single transitions in microstate syntax in MCI
and Alzheimer’s disease [17]. However, the spatiotempo-
ral microstate characteristics of ePD-MCI remain unknown.
Furthermore, the selection of EEG frequency band directly
influences microstate analysis results [18], [19]. Javed et al.
noted limitations in full-band microstate analysis for capturing
multiplex information flow in the human brain and emphasized
the sensitivity of microstate analysis to the frequency band,
potentially leading to conflicting results [18]. Another study
also indicated that alterations of microstate characteristics in
Alzheimer’s disease and MCI may occur in specific frequency
bands [19]. Thus, before performing microstate analysis on
ePD-MCI patients, this study first identified the specific fre-
quency band related to MCI to ensure the accuracy and validity
of the microstate analysis results. Javed et al. also noted a
significant correlation between microstates and power spectra,
confirming that spectral powers in composite signals influence
the local peaks in global field potential (GFP) [18]. Knowledge
about the characteristics of abnormal power spectra in MCI
disorders is insufficient, although Klassen et al. demonstrated
that EEG spectral parameters could complement neurophysi-
ological tests for assessing cognitive decline in patients with
neurodegenerative disorders [20]. Studies have indicated that
alterations in signal power in the theta and lower alpha bands
4-8 Hz and 8-10 Hz, respectively) could indicate cognitive
states [21], [22], and the increase of quantitative EEG spectral
powers below 8 Hz and decrease above 8 Hz were related
to an increased risk of cognitive impairment in PD [23], [24].
However, a gap persists in linking the frequency characteristics
and time domain properties of EEG microstates, which is
crucial for addressing the challenge posed by the uncertainty
of frequencies in EEG microstate recognition.

In recent years, an increasing number of researches have
sought to leverage neural networks to “read” EEG data,
particularly to “read” its frequency information. Convolutional
neural network (CNN), as a prominent deep learning model,
excels in capturing implicit features through its efficient spa-
tial information recognition, making it widely applicable in
diverse domains [25], such as speech recognition and the
identification of pathological EEG characteristics. Moreover,
EEG, as a multi-channel brain signal detection method, offers
high temporal resolution and spatial scalp potential field
characteristics. Hence, utilizing CNN to construct an input

space that incorporates spatio-frequency information becomes
crucial in identifying the frequency characteristics of PD-
MCI. Moreover, activation maps [26], saliency maps [27]
and other interpretability techniques suggest the potential of
deep learning in exploring unknown characteristic frequency
bands. Schirrmeister et al. [28] investigated CNN architec-
tures designed for EEG decoding and demonstrated superior
decoding performance compared to the widely used filter bank
common spatial patterns algorithm. Their research revealed
that CNNs could efficiently leverage spectral power modula-
tions within specific frequency bands, showcasing the potential
of combining CNN with advanced EEG-based visualization
technology.

Thus, we present a novel framework to investigate
frequency-dependent microstate characteristics related to mild
cognitive impairment in PD based on deep learning. Initially,
we propose employing the multi-channel and multi-point EEG
power spectrum as input for a CNN to perform the classifi-
cation task. By automatically extracting hidden features from
the input data, the CNN model can accurately recognize ePD-
MCI samples. Subsequently, we utilize the gradient-weighted
class activation mapping method to identify the characteristic
frequency band associated with ePD-MCI. Then, we conduct
a characteristic-frequency-band-driven microstate analysis to
explore dynamic state changes and brain activity characteris-
tics in ePD-MCI. The scheme of our work is illustrated in
Fig. 1, and the structure of this paper is as follows: Section II
introduces materials and methods, presenting the CNN model
and the microstate analysis algorithm. In Section III, we report
the frequency-dependent microstate characteristics related to
ePD-MCI. Section IV offers a comprehensive discussion of
the findings. Finally, Section V presents the conclusion drawn
from our study.

II. MATERIALS AND METHODS

A. Information About Participants
In this study, we recruited forty patients with primary

PD who were treated in Tianjin Medical University General
Hospital (28 females: age range of 50-74 years old, mean age
of 64 years old; 12 males: age range of 45-74 years old, mean
age of 61 years old). All subjects were in the early stage
of PD with Hoehn and Yahr (H&Y) staging scales ranging
from 1 to 2.5, and they abstained from medication for at
least 12 hours before the EEG data collection to minimize
the potential influence of drugs on the results. None of the
patients exhibited head tremor symptoms during the EEG
signal collection process. The cognitive level of each patient
was assessed using the Montreal Cognitive Assessment Scale
(MoCA), which measures overall cognitive performance on a
scale from 0 to 30, with lower scores indicating a higher degree
of cognitive impairment. The MoCA test was performed
by the same neurologist immediately after EEG acquisition,
following standardized criteria. Based on their MoCA scores,
the forty ePD patients were divided into two groups: the
mild cognitive impairment group (ePD-MCI) consisting of
13 subjects with MoCA scores between 19-25, and the
normal cognitive group (ePD-nMCI) comprising 27 subjects
with MoCA scores between 26-30. Basic information about



LIU et al.: FREQUENCY-DEPENDENT MICROSTATE CHARACTERISTICS FOR MCI IN PD 4117

Fig. 1. The scheme of the study workflow. (a) EEG recording. (b) EEG
preprocessing. (c) EEG band optimizer. (d) EEG microstate analysis.
The lobal field power (GFP) of the EEG signal was calculated at
each time point, and the corresponding electric potential distribution
topography at the local peak point of GFP was obtained. The mod-
ified K-means clustering algorithm was employed to investigate EEG
microstate classes on the group level. The four microstate templates
were fit to original continuous EEG sequences on the individual level.

TABLE I
DESCRIPTION OF THE PATIENTS INCLUDED IN THE STUDY

the included patients is presented in Table I. In this table,
p< 0.05 indicates statistically significant differences between
groups. This research was conducted with the approval of the
local ethics committee, and informed consent was obtained
from all subjects in accordance with the Helsinki Declaration.

B. EEG Acquisition and Processing
All subjects remained seated calmly in a dimly lit room,

closing their eyes while staying awake. Resting EEG signals
were recorded using 19 Ag/AgCl scalp electrodes (SYMTOP,

Beijing, China) placed according to the international 10-
20 system of Electrode. Additional channels were set to
record electrooculogram (EOG), electromyogram (EMG) from
the skin between the thumb and index finger on the back
of both hands, and electrocardiogram (ECG) signals. These
additional channels were used to monitor eye movement,
muscle activity, and heart activity, respectively, and to facilitate
artifact removal. The sampling time of each subject was
at least 15 minutes, with a sampling frequency of 500Hz.
The impedances of all electrodes used for recording were
maintained below 5k�.

To eliminate high-frequency interference and retain the
relevant spectrum in the range of 1-45Hz, zero-phase shift
filtering was employed. Subsequently, the continuous EEG
signals from each channel were processed through the fast
Independent Component Analysis (fastICA) algorithm [29],
which decomposed the 19-channel EEG signals into statisti-
cally independent components (ICs). Pearson correlation was
then calculated between the extracted ICs and the left and right
EOG, EMG, and ECG signals. ICs with an absolute value of
correlation coefficient greater than 0.5, indicating significant
correlation with specific artifact signals, were zeroed out to
remove artifacts. Afterward, experienced researchers carefully
examined the noiseless EEG data to identify any other arti-
facts resulting from external factors, such as out-of-contact
electrodes and body movements. Epochs with high amplitudes
(>80µV) were tagged and rejected [30]. Preprocessing of the
EEG data was performed using the EEGlab toolbox in MAT-
LAB software (MathWorks Inc., Natick MA, United States).
Finally, approximately 3 minutes continuous EEG recordings
of each subject were retained for following analysis. This
preprocessing protocol ensured the quality and reliability of
the EEG data for subsequent investigations.

C. Microstate Analysis
The Cartool software was employed to conduct microstate

analysis on clear EEG signals, each approximately 3 minutes
in length for every patient, in four sequential steps, as illus-
trated in Fig. 1(d). In the first step, the global field power
(GFP) of the EEG signal at each time point was calculated
using formula (1) based on the EEG data of each subject.
This provided an indicator reflecting the event-related global
brain response and describing the corresponding rapid changes
in brain activities.

G F P(t) =

√√√√√ n∑
i=1

[vi (t) − v (t)]2

n
(1)

where, n represented the number of electrodes, vi (t) repre-
sented the potential value of the i th electrode at time t , and
v(t) represented the average potential value of all electrodes at
time t . The second step involved obtaining the corresponding
electric potential distribution topography at the local peak
point of GFP. Given that the signal-to-noise ratio of EEG
signals was highest at the local peak point of GFP, and the
distribution of potential topographic map near it was stable
[31], the topographic map at the GFP peak point was employed
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to represent the surrounding brain activities. Both the first
and second steps were performed on the individual level. In
the third step, an improved K-means clustering algorithm was
applied to the collection of topographic maps acquired from
step two for all participants. This resulted in a set of EEG
microstates applicable to all subjects. Previous studies using
the K-means clustering algorithm suggested that the optimal
number of clusters within subjects was four, which was further
verified by the cross-validation (CV) criterion [32], [33]. To
enhance the credibility of the chosen cluster number, we set
the number of the clusters within a wide range, between two
and six. Additionally, to address the uncertainty caused by the
random selection of templates during the initialization process
in k-means clustering, we conducted 100 random trail runs
to minimize the run-to-run variance. Based on the maximum
global explained variance (GEV), we determined an optimal
set of four classes. We labeled the four microstate classes
clustered from topographic maps of all patients as A, B,
C, and D. The continuous EEG sequences of each subject
were described by microstate series composed of these four
microstate templates.

Finally, microstate time series were obtained for all
40 patients at the individual level. These microstate time series
provided abundant parameters of potential neurophysiologi-
cal relevance, and changes in these parameters can describe
changes in brain state [34]. Three parameters were calculated
from the microstate time series: (1) Mean Microstate Duration
(MMD), representing the average length of time a given
microstate remains stable; (2) Occurrence Per Second (OPS),
indicating the average number of times per second that a
specific microstate becomes dominant during the recording
period; (3) Ratio of Time Coverage (RTC), characterizing the
fraction of total recording time occupied by a given microstate.

D. Frequency Band Optimization Based on Deep Neural
Network

The above microstate analysis relies on specific frequency
bands. To determine the characteristic frequency bands for
microstate analysis in ePD-MCI, we propose a frequency band
optimization based on deep neural network, establishing a
CNN model. The EEG data of each subject were divided into
130 data segments, each comprising a continuous 3-second
sequence. Power spectral density (PSD) was calculated at
89 frequency points ranging from 1 to 45 Hz with a step
size of 0.5 Hz for 19 EEG channels of all subjects using the
P-welch function in MATLAB. These segments were defined
as samples, resulting in a size of 89 × 19 for each sample,
as depicted in Fig. 2(a). Thus, 130 samples from each subject
were prepared for subsequent CNN model classification. We
provided visualizations of these input data for CNN model in
Figures S1 and S2 in Supplementary Material.

To avoid overfitting, we adopted a three-layer convolutional
layer structure, commonly used in the literature, as shown
in Fig. 2(b) [35]. The kernel size of the convolutional layer
was set to 3 × 3. Batch normalization layers were included
between convolutional layers to aid convergence and prevent
overfitting. Additionally, the Rectified Linear Unit (ReLU)
activation function was utilized. The model concluded with

Fig. 2. Deep neural network. (a) Data preparation and representation.
(b) CNN structure. The hidden layer of the CNN model in this work
was designed with a three-layer convolution. CL: Convolution layer;
BN: Batch normalization; FC: fully connected layer; 4@89 × 19: Four
convolution kernels were used to extract characteristics from the input
with dimensions 89 × 19. (c) Procedure of Gradient-weighted Class
Activation Map (Grad-CAM).

two fully connected layers (the first layer with 27,056 neu-
rons and the second layer with 40 neurons) to effectively
capture nonlinear information. The softmax function mapped
the values of neurons in the output layer to a range of 0 to 1,
providing the probability of each output result.

The datasets for the two groups (ePD-MCI and ePD-
nMCI) comprised a total of 5200 samples (40 subjects with
130 samples each). The dataset was randomly shuffled and
divided into a training set and a testing set in a 4:1 ratio.
To evaluate the model’s performance, we conducted five-fold
cross-validation by randomly dividing all samples into five
equal sub-sample sets. During each training process, four
sub-sample sets were used for training, and the remaining
set was utilized for testing. The learning rate was set to
0.001. Accuracy (ACC) and the area under the curve (AUC)
were calculated to assess the overall performance of the CNN
model. ACC represents the percentage of correctly identified
subjects, and AUC is the area under the receiver operating
characteristic (ROC) curve, reflecting the probability that a
positive sample (ePD-nMCI) is identified with a higher score
than a negative sample (ePD-MCI) when randomly selected.
Higher ACC and AUC values indicate better performance in
ePD-MCI recognition. The formulas used for calculation are
as follows:

ACC =
T P + T N

T P + T N + F P + F N
× 100% (2)

AUC =

∑
i∈posi tiveClass ranki −

M(1+M)
2

M × N
(3)
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where TP represents a positive sample correctly identified
as positive, TN represents a negative sample correctly iden-
tified as negative, FP represents a negative sample incorrectly
identified as positive, and FN represents a positive sample
incorrectly identified as negative. M and N represent the
number of positive and negative samples, respectively, and
ranki represents the serial number of the i th sample (sample
probability scores are arranged from small to large).

The activation feature map of the last convolutional layer
of the CNN model contained spatial information. The classifi-
cation result for ePD-MCI and ePD-nMCI was determined by
the weight of each feature layer in this layer. To visualize
the model, we employed gradient-weighted class activation
mapping (Grad-CAM) [36], as shown in Fig. 2(c). Specifically,
we calculated the gradient feature maps and the weights of
each feature in the last convolutional layer through backprop-
agation [37]. By taking a weighted sum, followed by a ReLU
function, we obtained pixels positively affecting classification.
This process resulted in activation feature maps comprising
89 frequency points, containing key features to accurately
distinguish ePD-MCI and ePD-nMCI. The formulas used are
shown below:

wc
k =

1
Z

∑
x

∑
y

∂Y c

∂ fk(x, y)
(4)

Lc
Grad−C AM = ReLU

(∑
k

wc
k fk(x, y)

)
(5)

where fk(x, y) represents the feature graph obtained by the
kth convolution kernel in the last convolution layer, with x
and y indicating the coordinates of elements in the feature
map. wc

k denotes the “contribution” of the kth feature map
to the classification of class C, Yc represents the score of
class C, and Z represents the size of the feature map. After
obtaining the characteristic frequency band through the Grad-
CAM algorithm, we re-filtered EEG signals to the optimal
frequency band range for subsequent microstate analysis.

E. Statistical Analysis
The chi-square test was utilized to compare the gender

distribution between the ePD-MCI and ePD-nMCI groups.
Additionally, the two-sample t-test (p < 0.05) was conducted
to assess the differences in microstate parameters, subject ages,
H-Y stages, courses of the disease, and MoCA scores between
the ePD-MCI and ePD-nMCI groups. Furthermore, Spearman
correlation analysis was employed to evaluate the relationship
between the obtained parameters and MoCA scores at a
significant level of 0.05. To account for multiple comparisons,
the False Discovery Rate correction (FDR) was applied. The
statistical analyses were performed using the social science
statistical software SPSS (25.0).

III. RESULTS

A. Optimal Frequency Band Acquisition Based on Deep
Neural Network

After employing the Grad-CAM algorithm to visualize the
last convolutional layer of the CNN, we standardized the Grad-
CAM results on a scale of 0 to 1 and represented them

Fig. 3. Twenty-two frequency points with the largest contribution are in
the range of 1 Hz to 11.5 Hz. The color in the brain topographic maps
represents the weight of the identification region in the input space for
identifying ePD-MCI.

Fig. 4. Performance of CNN model. (a) The ACC of CNN models.
(b) The AUC of CNN models. Each of the first five different color columns
represents the result of a specific cross-validation fold of the model. The
last color column represents the overall performance of the model, which
is the average of the results from the five cross-validation folds.

as brain topographic maps, as illustrated in Fig. 3. Among
the 89 frequency points, 22 showed significant contributions
in distinguishing between ePD-MCI and ePD-nMCI with
standardized values greater than 0.2, while the remaining fre-
quency points had minimal impact. Notably, these frequency
points with the largest contribution were within the 1-11.5Hz
range, indicating pronounced abnormal brain rhythm indica-
tors in ePD-MCI compared to ePD-nMCI. The topographic
maps of the 22 frequency bands highlighted specific brain
regions associated with ePD-MCI, including the left temporal
lobe, frontal lobe and occipital lobe, with particular emphasis
on the left superior temporal gyrus and occipital lobe.

The results of the five-fold cross-validation of the
CNN model on the test sets are depicted in Fig. 4. The
model demonstrated high accuracy in distinguishing between
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TABLE II
MICROSTATE CHARACTERISTIC PARAMETERS AND DIFFERENCES

BETWEEN GROUPS. (1 HZ - 11.5 HZ)

ePD-MCI and ePD-nMCI, achieving an overall ACC of
99.475% ± 0.3236% (lowest ACC: 99.1514%; highest ACC:
99.7986%;) and AUC of 99.495% ± 0.4400% (lowest AUC:
99.055%; highest AUC: 99.935%;). These results indicate the
excellent performance of the CNN model that we designed.

B. Characteristic Frequency Driven Microstate Analysis
After identifying the 1-11.5Hz EEG components as the char-

acteristic frequency band with the largest differences between
ePD-MCI and ePD-nMCI groups, we proceeded to re-filter the
EEG signals of each subject, including only data within the
characteristic frequency band, for the EEG microstate analysis.
Within this characteristic frequency band, topographic maps
of the two groups were clustered into four microstate classes
(A, B, C, and D), as depicted on the left side of Fig. 5.

The microstate parameters and their statistics are presented
in Fig. 5 and Table II. In the ePD-MCI group, the mean values
of MMD, OPS and RTC for microstate classes A and D were
higher compared to those in the ePD-nMCI group, while these
parameters for microstate classes B and C were lower in the
ePD-MCI group. A two-sample t-test was utilized to assess
the differences between the two groups, revealing significant
differences in all three microstate characteristic parameters.

The MMD of the four microstate classes ranged from
45.41ms to 56.49ms in both groups. The results of the two-
sample t-test demonstrated that the MMD of microstate class
C significantly decreased in the ePD-MCI group (p < 0.001).
The RTC of the four microstate classes ranged from 13.00%
to 32.00% in both groups. The two-sample t-test results indi-
cated that compared to ePD-nMCI patients, ePD-MCI patients
exhibited significantly increased time coverage in microstate B
and D (p = 0.0033), while showing significantly decreased
time coverage in microstate C (p < 0.001). The OPS of the
four microstate classes ranged from 1.27 to 2.48 maps/s in both
groups. Additionally, compared to ePD-nMCI patients, the
frequency of microstate class C significantly decreased in ePD-
MCI patients (p < 0.001), while microstate classes A and D

were significantly increased (p < 0.001). These significant
changes in microstate parameters reflect alterations in brain
dynamics and hold the potential as promising biomarkers
for ePD-MCI, aiding in auxiliary diagnosis. Furthermore, the
results of microstate analysis based on the 1-45 Hz frequency
band and within the 12-22.5 Hz frequency band can both be
found in the Supplementary Material.

C. Correlation Between Microstate Temporal Parameters
and Cognitive Level

The results of the Spearman correlation analysis between
MoCA scores and all microstate characteristic parameters of
microstate classes A to D in ePD patients are presented in
Fig. 6. It is essential to note that lower MoCA scores indi-
cate more severe cognitive impairment in ePD. Additionally,
p-values were adjusted using FDR. The findings revealed
significant negative correlations between the OPS and RTC
of microstate class A with MoCA scores (OPS: p = 0.0032,
r = −0.4826; RTC: p = 0.0070, r = −0.4516). Similarly,
the OPS and RTC of microstate class D were significantly
negatively correlated with MoCA scores (OPS: p = 0.0053,
r = −0.4449; RTC: p = 0.0127, r = −0.4052). In contrast,
a significant positive correlation was observed between the
MMD, RTC and OPS of microstate class C with MoCA
scores (MMD: p = 0.0018, r = 0.4789; RTC: p = 0.0034,
r = 0.5036; OPS: p = 0.0021, r = 0.5231). No other
significant correlations were observed between MoCA and
other parameters. In essence, as the cognitive ability in ePD
declined (as indicated by lower MoCA), the MMD and RTC of
microstate classes A and D increased, while MMD, RTC and
OPS of microstate class C decreased. These findings strongly
suggest that changes in microstate characteristic parameters
effectively reflect changes in the cognitive level of ePD
patients.

IV. DISCUSSIONS

In this study, we designed a high spatio-frequency resolution
CNN input and trained a CNN model to identify the char-
acteristic frequency band associated with ePD-MCI. Through
microstate analysis in specific frequency bands obtained by
deep learning, we delved into the spatiotemporal character-
istics of microstates, revealing abnormal brain temporal and
spatial dynamics in ePD-MCI patients at a sub-second scale.
Importantly, these findings establish a significant correlation
between these microstate characteristics and cognitive function
in ePD patients.

The visualization results from the CNN model highlighted
that anomalies in ePD-MCI were predominantly distributed
within the 1-11.5Hz frequency band, with delta and low alpha
frequency bands showing higher weights than other bands.
Concurrently, we found the left temporal lobe to be the
most distinct characteristic region for ePD-MCI. Remarkably,
our observations are consistent with those from Mostile’s
study, where quantitative EEG analysis demonstrated signif-
icant changes in delta PSD over the left temporal region and
alpha PSD over the occipital regions in ePD-MCI compared to
ePD-nMCI [38], providing additional support for our research.
Abnormal slow rhythms within the delta frequency band,
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Fig. 5. Microstate characteristic statistics. Each column represents each microstate parameters (Column 1: MMD; Column 2: RTC; Column 3:
OPS). Each line represents each microstate classes (Line 1: A Class; Line 2: B Class; Line 3: C Class; Line 4: D Class;). Significant differences
between groups are indicated by red font. For multiple comparisons, FDR correction is performed for p values.

which intensify with declining cognitive ability, have been
reported in several studies [39], [40]. Additionally, Jeong et al.,
found a decrease in alpha band PSD in the occipital region
among subjects experiencing subjective cognitive decline [41].
Moreover, Mostile’s study revealed significantly increased
networks involving delta activity over the frontal lobe and
decreased networks involving theta and delta activity over the
parietal lobe in ePD-MCI patients compared to ePD-nMCI
patients [38]. Similarly, Simon et al. reported higher power in
delta frequency bands to be associated with greater cognitive
impairment affecting memory, language, attention, and overall
cognition function [42]. These consistent findings from previ-
ous studies further validate the presence of abnormalities in
characteristic frequency bands in ePD-MCI patients.

While microstate analysis provides valueble insights into
temporal dynamics, its relationship with frequency contents
remains to be determined. Most previous studies using the
microstate method to study MCI selected specific EEG fre-
quency bands based on earlier references to microstate analysis
[13], [17], [43]. However, this approach lacks a clear ratio-
nale for frequency band selection, and the amalgamation of
EEG signals from different bands affects microstate tem-
poral sequences and spatial configuration differently [18].

A study by Widmann et al. highlighted the limitations of wide
bandwidth filtering, which may lead to inaccurate results in
microstate analysis due to power accumulation from unin-
terested frequencies [44]. Other research by Musaeus et al.
suggested that alterations in microstate patterns indicated
disruptions in large-scale cortical networks in Alzheimer’s Dis-
ease and MCI, which were associated with specific frequency
bands [19]. Furthermore, the correlation between EEG power
spectrum and microstate characteristics has been explored
in studies by Zulliger et al. and Liang et al., emphasizing
the potential of frequency-dependent EEG microstate anal-
ysis in understanding local patterns of brain activation and
cognitive abilities [45], [46]. Power spectrum could reflect
the energy change of EEG signal over a period of time,
while EEG microstate could retain the energy of EEG sig-
nal on sub-second time scale. Based on this, we proposed
a novel approach, using the abnormal frequency band of
power spectrum as the frequency band for microstate analysis.
Specifically, we employed deep neural network to obtain
specific band ranges where the power spectra of the two
groups significantly differed. Our results demonstrated that
microstate analysis in the specific frequency band yielded
high performance in explaining the variance of EEG data.
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Fig. 6. Clinical MoCA correlations. Spearman correlations between microstate parameters of each microstate class and MoCA sores. R values
are the slope of the fitting lines. For multiple comparisons, FDR correction is performed for p values. Each column represents each microstate
parameters (Column 1: MMD; Column 2: RTC; Column 3: OPS). Each line represents each microstate classes (Line 1: A Class; Line 2: B Class;
Line 3: C Class; Line 4: D Class;). For multiple comparisons, FDR correction acted on p values. Significant correlations are indicated by red font.

Unlike existing frequency band selection methods, our pro-
posed approach does not rely on prior definitions, allowing
for a more data-driven and objective approach.

The neuropathological mechanism of cognitive impairment
in PD involves the pathological amyloid-beta, which is asso-
ciated with a decline in cognitive ability [47]. Studies have
suggested that beta-amyloid deposition in the brain initially
occurs in the temporal lobe [44]. Another study observed
abnormal microstate A parameters, such as increased duration
and occurrence, which could potentially indicate underlying
pathological changes in the temporal lobes, leading to dis-
ruptions in neuronal networks [36]. This observation suggests
that the duration of microstate A could serve as a potent
marker for cognitive impairment. Interestingly, our research
revealed a significant increase in the occurrence and coverage
of microstate A in ePD patients with MCI, consistent with
previous studies [19]. Moreover, we observed a negative
correlation between MoCA scores and the duration/coverage
of microstate A, indicating that these parameters may effec-
tively describe the cognitive levels of PD patients. Gschwind
et al. proposed that the duration of microstate B was linked
to cognitive fatigue in patients with multiple sclerosis [48].
However, our results did not show any abnormalities in
microstate B, which aligns with our understanding that the

characteristics of microstate patterns can differ based on the
disease and its underlying cognitive impairments. Another
study also reported a significant association between decreased
duration of microstate C and cognitive decline in patients [49].
This finding aligns with our observations, indicating that as the
cognitive level declined, the mean duration of microstate class
C deviated from the normal level. Notably, the microstate D
found in our study was similar to the class D in [18], where
the subjects were all ePD patients. However, the microstate
D found in Alzheimer’s Disease and MCI [43] exhibited a
different potential distribution compared to the microstate D
found in ePD patients in our study. We inferred that cognitive
impairment arising from different diseases influenced the
microstate topology differently. According to Britz et al., the
four microstates were associated with resting-state functional
networks based on the blood-oxygen-level dependent (BOLD).
Specifically, microstate D was interpreted as attention network
[33]. Therefore, the increased duration, coverage and occur-
rence of microstate D in patients with MCI, as revealed in our
work, suggested that the attention function may be abnormal
in these individuals [50].

Overall, our previous work revealed unique microstate
characteristics in ePD patients compared to healthy controls,
investigating alterations in brain functional state dynamic.
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This current work further divided the ePD group based on
cognitive levels into ePD-MCI and ePD-nMCI, and explored
the sub-second brain activity characteristics in ePD patients
at different cognitive levels, providing valuable insights into
the cognitive-related brain dynamics in ePD. However, there
are still several limitations in this work. Firstly, the gender
ratios in the ePD-MCI and ePD-nMCI groups were 6/7 and
6/21, respectively. Although the results of the chi-square test
indicated no statistically significant difference in gender dis-
tribution between the two groups, a practical difference could
be observed. Given that the non-statistical result might be due
to the small sample size, we conducted additional subgroup
analysis, the results of which are presented in the Supple-
mentary Material, demonstrating that such gender distribution
does not affect the main conclusions of this study. In the
future, more participant data will be included so as to achieve
a more balanced gender distribution and to further validate the
generalizability of our findings. Secondly, during the process
of frequency band optimization, while our method satisfied
the requirements for deep learning applications, obtaining con-
vincing results, the limited number of participants introduces
the possibility that the different samples used in the training
process and testing process may be from the same individuals.
Since our cross-validation was conducted at the sample level,
and the training and test sets could not guarantee complete sep-
aration at the individual level. In the future, utilizing a larger
participant pool and conducting subject-level cross-validation
can ensure complete separation of training and test sets at the
subject level, further enhancing the credibility of our conclu-
sion. Finally, the future work could employ higher spatial res-
olution EEG equipment for data collection to further examine
the reliability of the findings presented in this research. These
efforts will provide more comprehensive and robust evidence
to support our findings and contribute to a better understanding
of cognitive impairment dynamics in ePD patients.

V. CONCLUSION

A novel framework is proposed in this work to explore
frequency-dependent microstate characteristics for ePD-
MCI based on deep learning. A CNN model combined
with the GRAD-CAM algorithm is utilized to identify the
characteristic frequency band of ePD-MCI as 1-11.5Hz,
achieving an ACC of 99.475% ± 0.3236% and an AUC
of 99.495% ± 0.4400%. Using the characteristic frequency
band, microstate analysis is carried out, and the dynamics
of microstates are demonstrated to be correlated with the
patients’ cognition. Our results provide quantifiable signals
for the early diagnosis of PD with cognitive impairment and
offer insights into the pathogenesis of Parkinson’s cognitive
impairment. Meanwhile, the proposed research paradigm of
frequency band optimization provides a new perspective for
the selection of microstate frequency bands.
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