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Learning in Medical Image Segmentation

Zhongxi Qiu , Yan Hu , Xiaoshan Chen , Member, IEEE, Dan Zeng , Qingyong Hu ,
and Jiang Liu , Senior Member, IEEE

Abstract—Image segmentation is fundamental task for medi-
cal image analysis, whose accuracy is improved by the develop-
ment of neural networks. However, the existing algorithms that
achieve high-resolution performance require high-resolution input,
resulting in substantial computational expenses and limiting their
applicability in the medical field. Several studies have proposed
dual-stream learning frameworks incorporating a super-resolution
task as auxiliary. In this paper, we rethink these frameworks and
reveal that the feature similarity between tasks is insufficient to
constrain vessels or lesion segmentation in the medical field, due
to their small proportion in the image. To address this issue, we
propose a DS2F (Dual-Stream Shared Feature) framework, in-
cluding a Shared Feature Extraction Module (SFEM). Specifically,
we present Multi-Scale Cross Gate (MSCG) utilizing multi-scale
features as a novel example of SFEM. Then we define a proxy task
and proxy loss to enable the features focus on the targets based
on the assumption that a limited set of shared features between
tasks is helpful for their performance. Extensive experiments on
six publicly available datasets across three different scenarios are
conducted to verify the effectiveness of our framework. Further-
more, various ablation studies are conducted to demonstrate the
significance of our DS2F.

Index Terms—Dual-stream learning, medical image segmen-
tation, shared feature, super-resolution.

I. INTRODUCTION

M EDICAL image segmentation, which aims to automati-
cally identify and delimit regions of interest (RoI) within

medical images, is a widely applied technique for facilitating
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automatic diagnosis in the medical field. A deep neural networks
can provide high-performance analysis, they have been obtain-
ing increasing attention in a variety of medical demand, includ-
ing vessel segmentation [1], [2], [3], lesion segmentation [4], [5],
[6], tumor segmentation [7], [8], [9]. The use of high-resolution
representation, which offer rich semantic and spatial details,
is particularly desirable for boundary recognition and object
localization [10], and is also a requirement for many deep-
learning-based segmentation algorithms. However, in practical
medical applications, limited by the computational ability of
imaging capturing or operating devices, it is not often possible
to obtain high-resolution segmentation results for diagnosis.

To achieve high-accuracy segmentation results despite limited
computational resources, researchers have explored a variety
of approaches. A typical way is to reduce the computational
demands of the algorithms themselves, such as reducing input
image size or lightweight models. The size of the input image
is often reduced by downsampling [5], [6], [11] or patch split-
ting [12], [13], [14], which may cause segmentation results with
low-resolution or with chessboard effect, which can negatively
impact accuracy. The resolution of input images has been shown
to have a significant impact on the accuracy of segmentation
results generated by lightweight models [15], [16], [17].Low-
resolution or noisy images usually exist in medical scenes, which
results in unsatisfactory segmentation results.

Single segmentation networks alone may not be able to extract
sufficient features from low-resolution input to achieve high ac-
curacy. To address this issue, researchers have proposed utilizing
a single image super-resolution (SISR) network as an auxiliary
to enhance the resolution of the segmentation results [18], [19],
[20], [21], which is expected to meet the demands of medi-
cal practitioners. Most of these approaches have aligning the
segmentation features with the SISR branch through a feature
transform module, and minimizing the distance between the
features through a feature affinity [18], [19]. The shared decoder
is explored to extract the shared features, whose similarity is
constrained by the structural similarity loss. For example, the
structure similarity loss is adopted to constrain the features [20],
and the L1 regularization constraint is introduced in CogSeg to
minimize the distance between the features of the decoders for
the task [21].

The objectives of the super-resolution and semantic segmen-
tation tasks are distinct, with the former aimed at producing
high-resolution images, and the latter focused on identifying
regions of interest within images. However, many existing
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dual-stream algorithms often adopt feature similarity between
super-resolution and semantic segmentation to constrain fea-
ture learning. Such mandatory feature similarity constraints can
lead to suboptimal model optimization or collapse. Moreover,
the proportion of vessels or lesions in medical images is of-
ten relatively small, making it difficult to effectively constrain
the targets using similarity loss of the whole image features
alone. Such algorithms cannot dig out the target-related shared
features between the medical image semantic segmentation
and the super-resolution task. In other words, the auxiliary
super-resolution task is not effectively contributing to region of
interest-related feature learning when only relying on features
similarity constraints. To overcome this limitation, we rethink
the dual-stream learning framework and find new ways to extract
shared features related to the RoI.

As illustrated by Argyriou et al. [22], multiple tasks share
a small set of features, which is also applicable to our dual-
stream framework in the medical field. We believe that the
more shared characteristics are related to the RoI, the higher
the segmentation accuracy will be. The paper mainly considers
how to focus these small number of shared features on our
area of interest as much as possible. Specifically, we propose
a novel high-resolution medical image semantic segmentation
framework, named Dual-Stream Shared Feature (DS2F) frame-
work, exploring the RoI-related shared features between seg-
mentation and super-resolution. The DS2F framework consists
of a semantic image segmentation network, a super-resolution
network, and a shared feature extraction module (SFEM). We
propose a novel feature extraction and supervision way in the
SFEM.

Due to the small proportion of RoI in medical images, their
corresponding features for segmentation are dispersed or sparse.
Existing feature integration methods, such as concatenation or
convolution 1× 1, which treat all the features equally, are not
effective in assigning higher importance to RoI features. We
consider that there is spatial structure correspondence of features
between segmentation and super-resolution tasks, such as ves-
sels or lesion areas. Thus, we first propose a new way to bestow
RoI features with higher weights based on the consideration of
channel selection and spatial structure correspondence. Second,
for the supervision ways, as it is too difficult to obtain the
ground truth of share features between two tasks, we cannot
adopt supervision ways to extract shared information in SFEM.
As the shared features are supposed to improve the performance
of both tasks, we propose to convert the supervision of shared
information extraction into the problem of how to improve the
performance of both tasks based on the shared information.
Thus, we define a proxy task to extract the shared features in
SFEM.

The DS2F framework presented in this paper is an extension
and improvement of our previous works [23], [24]. First, we
have enhanced the theoretical foundations of shared information
between tasks. Second, we further generalize the structures of
extracting shared information and define a proxy task. Third,
we conduct experiments with different medical scenarios and
verify the effectiveness of our DS2F framework on the cityscape
dataset. Finally, the comprehensive ablation studies further

prove the effectiveness of the structure design. Our contributions
are summarized as follows:

1) We rethink the dual-stream segmentation and super-
resolution framework and identified that the main limi-
tation of existing dual-stream networks when applied to
medical image segmentation is that the similarity loss
of global features cannot effectively constrain the small
proportion of RoI. Therefore, we propose a shared fea-
ture extraction method, which can focus on the region of
interest as much as possible.

2) The proposed Dual-Stream Shared Feature (DS2F) frame-
work incorporates a semantic segmentation branch, a
super-resolution branch, and a shared feature extraction
module (SFEM). For SFEM, we propose a novel feature
extraction and supervision way. Specifically, we propose
a new instance of SFEM, named multi-scale cross gate
(MSCG), and a proxy loss for module constraint. The
extracted features mainly focus on the RoI, such as the
vessels and lesions.

3) The proposed DS2F framework has been evaluated on
five publicly available datasets across two distinct medical
scenarios. The results of an ablation study demonstrate
the superiority of our proposed module. We implement
the algorithm by Pytorch framework, which is publicly
available at https://github.com/Qsingle/imed_vision

II. RELATED WORK

Semantic Segmentation: As illustrated by Horwath et al. [25],
high-resolution feature representation is critical for medical
image segmentation. However, learning or retaining high-
resolution feature representation is a challenging problem, and
the collaboration of medical image segmentation increases the
problem’s difficulty. To learn high-resolution feature represen-
tation, researchers have explored different algorithms, such
as atrous convolution [26], dense atrous convolution (DAC)
blocks [1], and scale-aware feature aggregation (SFA) mod-
ules [2]. Moreover, attention mechanisms are also used to retain
important features for representation. For example, CS-Net uses
channel-and-spatial attention [25] for segmentation. However, to
obtain high-resolution segmentation results, the existing meth-
ods are often computationally expensive in both training and test
phases, which limits their applications to resource-constrained
devices in the medical field.

To degrade the computation costs, researchers have also ex-
plored lightweight models. For example, SA-UNet [16] uses
spatial attention to retain important information while reducing
the number of filters. ESPNets [27], [28] adopts the reduce-
split-transform-merge strategy, which accelerates the convolu-
tional neural network and optimizes for the edge devices. Mo-
bilenets [29], [30], [31] use the depthwise separable convolution
and the inverted bottleneck to reduce the computational cost
for the model. However, lightweight models with relatively low
computation costs often provide limited segmentation perfor-
mance as they may not obtain rich feature support. To achieve
high-accuracy results without increasing computational cost,
we propose a framework based on the dual-stream learning

https://github.com/Qsingle/imed_vision
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framework using low-resolution inputs. The framework takes
a super-resolution stream as an auxiliary task, which provides
extra features for the segmentation task during training and is
deleted during the test, without increasing the computation costs
of medical image segmentation.

Dual-Stream Super-Resolution Semantic Learning: Single-
image super-resolution networks can extract high-resolution
features outputting high-resolution results only based on low-
resolution input. Based on the characteristic, researchers have
proposed dual-stream super-resolution semantic learning frame-
works to degrade the computation costs without decreasing the
segmentation accuracy [18], [19], [20], [32], [33]. For natural
scenes, these frameworks focus on the whole counterparts in
images. For example, DSRL [18] adopts a feature affinity (FA)
module to constraint the network to extract similar features
from two tasks, and ColSeg [20] uses structural affinity block
to constraint features from two streams. For the medical field,
Yu et al. [19] proposed CogSeg for CT segmentation guided
by super-resolution learning, in which the L1 losses of decoder
layers from two tasks are adopted. Wang et al. [32], [33] adopted
a spatial similarity matrix to constrain the features from two
streams and a selective cropping strategy for guidance. We ana-
lyze such dual-stream frameworks and identify their limitations.
First, from the task-specific level, the features extracted from
different tasks cannot be strictly similar. Second, for medical
segmentation regions (vessels or lesions), their proportions in
the whole image are relatively small, so the features from the
segmentation stream are supposed to be mostly different from
those from the super-resolution stream. Thus, purely feature
similarity between two streams cannot provide reasonable con-
straints on medical RoI segmentation. To solve these limitations,
the shared features extracted by our proposed framework mainly
focus on the medical region of interest. We also propose a novel
supervision way to optimize the shared feature extraction.

III. METHOD

A. Problem Preliminary

For the dual-stream super-resolution learning of the semantic
segmentation model, we adopt one shared encoder mapping the
input x to the features Fen, and two task-specific decoders deal-
ing with the features Fen to two task-dependent parts Fseg and
Fsr. Then Seg Head (the task head for semantic segmentation)
outputs the segmentation results Oseg based on features Fseg ,
and SR Head (the task head for super-resolution) provides the
corresponding high-resolution image Osr mapped by features
Fsr. We define the process as follows:

Fen = Encoder(x) (1)

Fseg = Decoderseg(Fen) (2)

Fsr = Decodersr(Fen) (3)

Oseg = Headseg(Fseg) (4)

Osr = Headsr(Fsr) (5)

where Encoder is the shared encoder, Decoderseg and Decodersr
are the decoders for segmentation and super-resolution respec-
tively, Headseg and Headsr are the task head for segmentation
and super-resolution separately.

Several papers [18], [19], [20] adopt a loss of feature sim-
ilarity between two tasks for constraint. In other words, they
try to minimize the distance between features Fseg and Fsr.
This may produce a good performance for natural scenarios,
whose proportions of ROIs are large. For medical images, the
proportions of ROIs are often very small. The feature similarity
loss of the whole image may not efficiently work for such med-
ical image segmentation. We analyze the existing dual-stream
learning framework applied in the blood vessel segmentation,
as shown in Fig. 1. The model with feature similarity loss
cannot extract sufficient features related to our target vessel
in Fig. 1(b). Super-resolution network reconstructs amounts
of high-frequency details from low-resolution input, including
RoI and other areas. As the loss or model cannot constrain the
dual-stream learning framework to extract RoI-related features,
the auxiliary task does not work for medical image segmenta-
tion. As its targets are often tiny, the whole feature constraints
cannot be helpful, which may lead to constraining in the wrong
direction or collapsing. Therefore, we propose to fully adopt the
information captured from different tasks instead of enforcing
feature similarity constraints.

As there is no ground truth to supervise the extraction of
shared features, how to oversee a module to extract these features
becomes challenging. The features extracted by each task are
formulated as

Ft =

d∑

i=0

Fi (6)

where i is the index of task, d is the number of tasks, Ft ∈
IRd is the summation of task features, and F is the features
from the corresponding task. For instance, in our paper, as the
framework includes two tasks, d equals to 1, i = 0, 1, Ft is the
concat of segmentation features and super-resolution features
(as shown in Fig. 2(b)). As multiple tasks only share a small set
of features, we expect that the small set of features is able to
focus on the segmentation RoI as much as possible, providing
detailed features for segmentation and super-resolution. In other
words, the objective of our framework is to extract a small set of
shared features from Ft to improve the performance of medical
image segmentation. Thus, we propose a simple but efficient idea
minimizing the distances of corresponding task results, which
are generated by the shared features and task targets, formulated
as:

Min(α(HeadSeg(Aseg � Fseg), targetSeg)

+ β(HeadSR(Asr � Fsr), targetSR)) (7)

where α and β are the coefficients to adjust the weights for
each task, HeadSeg is the head to generate the segmentation
results, HeadSR is the head to generate the super-resolution
results. Aseg and Asr are the weights of the segmentation
and super-resolution features, respectively. Fseg and Fsr are
the segmentation and super-resolution features, respectively.
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Fig. 1. Visualization of the features from segmentation branches. KMeans are used to produce the results, in which the number of clusters is set as 5. (a) The
input image; (b) The extracted segmentation features by DSRL [18]; (c) The extracted segmentation features by our DS2F framework. The rich features in Fig. (c)
are helpful to discriminate the vessel structure. The vessel features in Fig. (b) are destroyed, and the vessels are hardly classified around the macular and optic. Our
DS2F framework mainly focuses on the features of RoI, such as vessels.

Fig. 2. Pipeline of our medical image dual-stream framework. (a) The pipeline of our Dual-Stream Shared (DS2F) framework. (b) The structure of the multi-scale
cross gate (MSCG), which is a novel instance of SFEM. The © is concatenation operation, � is the Hadamard product, and ⊕ is element-wise addition.

targetSeg and targetSR are the targets of segmentation and
super-resolution tasks. As shown in Fig. 1(c), our framework
extracts more features focusing on the vessels, which are sup-
posed to be the shared target between vessel segmentation and
super-resolution task.

We have explored several existing feature interaction oper-
ations, which can improve the results for the shared feature
extraction module (SFEM) in our DS2F framework. For exam-
ple, the previously proposed modules [23], [24] can increase
the segmentation accuracy of the blood vessels and lesions,
respectively. A simple feature intersection is also efficient, and
we will explain and prove it in the following section. Moreover,
we propose another efficient feature extraction module, which
can be suitable for various medical scenarios.

B. Dual-Stream Shared Feature (DS2F) Framework

As shown in the Fig. 2(a), a down-sampled image x with size
W/n×H/n is fed into the shared encoder, which produces
the encoded features Fen, formulated as (1). The segmentation

decoder DecoderSeg and super-resolution decoder Decodersr
deal with the Fen to output decoded features Fseg and Fsr, for-
mulated as (2) and (3). As formulated by (4) and (5), SegHead
and SRHead deal with the decoded features to output the final
targets, segmented target Oseg and high-resolution images Osr,
respectively. The losses LSeg and LSR are adopted to constrain
the semantic segmentation and super-resolution streams, respec-
tively. Then we propose a Shared Feature Extraction module
(SFEM) to extract our defined small set of shared features
between two tasks and use the task interaction loss LTI to
constraint the module learning.

In our DS2F framework, the objective of SFEM is to ex-
tract the shared features between two tasks. It first integrates
information from two tasks, then extracts shared features based
on the attention weights. The reweighted features are input
into Seg Head and SR Head to generate the corresponding
results for proxy tasks. The proposed task interaction loss LTI

constraints the SFEM learning. The components of the SFEM
can be various. For example, simply one 1× 1 Conv and the
existing channel or other attention mechanisms can be used
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Fig. 3. Our proposed modules. (a) The structure of our proposed Modified
Residual Channel Attention Block (MRCAB); (b) The structure of Multi-Scale
Convolution (MS-Conv).

to integrate the features from two streams. 1× 1 Conv can be
directly applied to generate the attention weights based on the
fused features. Our previously proposed modules [23], [24] also
can be suitable for specific medical image segmentation. Here,
we present another novel instance to extract the shared features
named the Multi-Scale Cross Gate (MSCG) module.

C. Multi-Scale Cross Gate (MSCG) Module

We propose a Multi-Scale Cross Gate (MSCG) module as a
new example of the SFEM. Its construction is shown in Fig. 2(b).
We utilize one 1× 1 Conv to fuse features Ffu, our modified
residual channel attention block (MRCAB), and a proposed
multi-scale convolution (MS-Conv) to integrate the features
from two tasks. Then we merely use two 1× 1 Conv to generate
the attention weights for two tasks. We will introduce the details
of our proposed MRCAB and MS-Conv in the following.

Modified Residual Channel Attention Block (MRCAB) As the
low-resolution input images contain lots of redundant informa-
tion, we propose a modified residual channel attention block
(MRCAB) to focus on more specific components related to
the necessary small set of shared features, which is inspired
by RCAB [34]. As shown in Fig. 3(a), we adopt two 3× 3
depthwise convolutions to capture the local pattern from the
integrated features. Instead of a global average to statistic the
global spatial information, we propose to use two linear layers to
directly squeeze and expand the features, capturing the channel
relationship. Then a Sigmoid function generates the weights
along the channel axis based on the above features. The weights
re-weight the above local pattern by Hadamard product. Finally,
the input Ffu is added to the re-weighted features. The process

is formulated as:

Ffu = W (C(Fseg, Fsr)) (8)

z = Convdw(Convdw(Ffu)) (9)

FCA = σ(W (δ(W (z))))� z (10)

FMRCAB = Ffu + FCA (11)

where Ffu is the input features, C is the concatenate operation,
Convdw is the depthwise convolution, δ and σ are LeakyReLU
and Sigmoid, respectively, W is the weights of Conv 1× 1.
The proposed MRCAB further fuses the decoded features, and
its channel-wise statistics enhance the discriminative ability of
features from different tasks. We adopt the depthwise convolu-
tion in the MRCAB to reduce the computation, which also mixes
the information in spatial space.

Multi-Scale Convolution (MS-Conv) As discussed above, the
features FMRCAB dig out the helpful information that improves
the performance of both segmentation and super-resolution
tasks. We propose one Multi-Scale Convolution (MS-Conv) that
is a multi-scale strategy using the information from different
scales. Its structure is shown in Fig. 3(b). We divide the fea-
tures FMRCAB into k groups according to the channel size.
Then we adopt different processing ways for various groups
of information. A 1× 1 Conv is applied to the first group to
keep the current scale. For the second to (k − 1)th group, we
adopt 3× 3 depthwise convolution with different dilation rates
to capture various levels of information, in which the dilation
rates are set as the group index minus 1. For the kth group, image
pooling [35] is adopted to statistic the global spatial information.
Batch normalization is used to integrate the information of the
groups’ combinations. Finally, GELU is used as the nonlinear
activation function for the layer. The MRCAB extracts the most
significant shared features related to our RoI.

Based on the above description, the procedure of the MS-Conv
is formulated as:

FMS = δ(N(C(W1(S1),W2(S2
), . . . ,Wk−1(Sk−1), IP (Sk))

(12)

where FMS is the features extracted by our proposed MS-Conv,
S is one group of features (including S1, S2, . . ., Sk−1, Sk),
which are split from FMRCAB based on the channel. k is the
index of the group. W1,W2, . . .,Wk−1 are the weights of the
convolutional layer for every features in the group. C is the
concatenation operation, IP is the image pool operation, N and
δ are the normalization operation and GELU activation function
respectively.

In the MSCG module, we use two 1× 1 Conv mapping the
output of our MS-Conv to the space of segmentation decoded
features Fseg and super-resolution decoded features Fsr, re-
spectively. Then, we use the Hadamard product to separately
combine the outputs with Fseg and Fsr. After processing by
1× 1 Conv, the results are added with Fseg and Fsr. Then
we can obtain the re-scaled decoded features for segmentation
and super-resolution tasks. Finally, the outputs of segmentation
and super-resolution tasks Ofuseg and Ofusr are processed by
task heads Headseg and Headsr, respectively. The process is
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formulated as:

Ofuseg = Headseg(δ(W2(δ(W1(FMS))� Fseg))) (13)

Ofusr = Headsr(δ(W2(δ(W1(FMS))� Fsr))) (14)

where δ is GELU, W1 and W2 is the weights for two 1× 1 Conv
as shown in MSCG module (Fig. 2(b)).

D. Objective Function

As shown in Fig. 2, our objective function of the DS2F
framework includes three parts: LSeg for segmentation task,
LSR for super-resolution task, and LTI for the task interaction
to constrain our shared feature extraction module. We introduce
them one by one in the following.

For the segmentation task, we employ a common cross-
entropy loss function, formulated as:

LSeg =
1

C

C∑

i=0

−yi log(zi) (15)

where C represents the number of classes, yi is the ground truth
of class i, and z is the softmax result of the output OSeg . To
simplify the implementation of the code, we take the binary
segmentation task as the segmentation task of two classes, the
target RoI and the background.

We employ a mean square error (MSE) function for super-
resolution task, described as:

LSR =
1

N

N∑

i=0

(OSRi
−HRi)

2 (16)

where N is the number of pixels of the image, OSR is the output
of the super-resolution task, HR is the high-resolution target
image, and i represents the index of the pixel.

The interaction part plays a vital role in extracting shared
features in our DS2F framework, whose objective function is
one of our major concerns. As there is no exact definition or
ground truth for the shared features, we cannot directly adopt
supervised feature extraction. Here, we propose a proxy-loss
way to get the supervision implicit. As illustrated, the small set of
shared features is supposed to improve the performance of both
tasks. Based on this property, we deduce that the segmentation
or super-resolution results predicted by the combination with
shared features should be better than those only by single-task
features. Thus, we propose to use the following objective func-
tion as one proxy objective of our DS2F framework, so that the
shared features are mined implicitly. The formulation of LTI

for our SFEM is defined as:

LTI = LProxySeg(Ofuseg, Y ) + LProxySR(Ofusr, HR)
(17)

where Y is the ground truth of the segmentation task, and HR
is the target high-resolution image.

For the proxy-task losses, there are two strategies, the same as
the other two streams (such as cross-entropy or MSE), or higher
strength of constraint. The former can improve the results but
may not explore the enormous set of shared features caused
by the same constraint strength. The latter often gains better

TABLE I
THE ILLUSTRATION OF DATASETS FOR THE EXPERIMENTS

supervision to explore the shared features. We will explore and
discuss this in the experiment Section IV-B1.

IV. EXPERIMENTS

A. Experiments Settings

1) Datasets: We conduct our experiments on six publicly
available datasets, including three for retinal vessel segmen-
tation (two different image modalities), two for retinal lesion
segmentation (multiple targets), and one for cityscape segmen-
tation. As listed in Table I, the proportions of vessels or lesions in
the medical images are remarkably small, less than 8%, such as
the lesion only accounts for 0.79% in the DDR dataset. The
proportion in the Cityscapes dataset is about 97.38%, much
higher than that in medical image datasets.

HRF: The HRF (High-Resolution Fundus) [36] dataset in-
cludes 45 fundus images with the size of 3504× 2336 in total,
of which 15 are from healthy patients, 15 are from patients with
glaucoma, and 15 have Diabetic Retinopathy (DR). We conduct
the five-fold cross-validation experiments at this dataset and set
1752× 1168 as the target resolution for the super-resolution
task. We set the batch size and epoch number as 2 and 300,
respectively.

PRIME-FP20: It provides 15 high-resolution ultra-widefield
(UWF) fundus photography (FP) images using Optos 200Tx
camera, and their resolution is 4000× 4000. We use the official
mask to remove the invalid area in the images, then the minimal
and max height for the images are 2444 and 2631, and the
minimal and max-width for the images are 2817 and 2932. The
five-fold cross-validation is applied to this dataset. Considering
the computation ability of our devices, the output size for the
super-resolution task is set as 1408× 1296. We set the batch
size and epoch number as 2 and 300, respectively.

FIVES: The FIVES [38] (Fundus Image Vessel Segmentation)
dataset consists of 800 high-resolution (2048× 2048) multi-
disease color fundus with acceptable vessel pixel annotation.
The dataset contains train (600 images) and test (200 images)
sets. We set the batch size and epoch number as 4 and 128,
respectively.

IDRID: The IDRiD (India Diabetic Retinopathy Image
Dataset) [39] dataset consists of 81 color fundus images with
adequate pixel-level annotation of four types of retinal lesions:
microaneurysms(MA), soft exudates(SE), hard exudates(EX),
and hemorrhages(HE). The dataset is split into a training set
with 54 images and a testing set with 27 images. We run the
training for 300 epochs with batch size 2.
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DDR: The DDR [40] is another dataset applied for lesion
segmentation. It provides 757 color fundus images with accept-
able pixel-level annotation. The images are split into three sets
for training, validation, and testing with a ratio of 5:2:3. We
set 1024× 1024 as the target resolution for the super-resolution
task. On this dataset, we set the batch size to 2 and the training
epoch to 128.

Cityscapes: The Cityscapes [41] dataset consists of 5000 im-
ages with fine-grained annotation for urban visual scene under-
standing. There are 2975 images for training, 500 for validation,
and 1525 for testing. The images are collected from 50 cities
in different seasons with image size 2048× 1024. Following
previous works, we also do the 19 categories of segmentation.
We set the batch size to 4 and the training epoch to 108. We
resize the image to 1024× 512 as the model input and set the
upscale rate to 2.

2) Evaluation Metrics: For the vessel segmentation task, we
adopt the intersection over union (IoU), bookmaker informed-
ness (BM), Matthews correlation coefficient (MCC), and dice
score (Dice) to evaluate the performance of the models. For the
lesion segmentation task, IoU, precision and recall area under
the curve (PR-AUC), and dice score are adopted to evaluate the
performance of the model, due to the MCC and BM are not
suitable for the evaluation of the multi-categories classification
task. We use the most common evaluation metric mean inter-
section over union (mIoU) for the cityscape segmentation task.
The formulations are as follows:

IoU =
TP

TP + FN + FP
(18)

BM =
TP

TP + FN
+

TN

TN + FP
− 1 (19)

Dice =
2× TP

2× TP + FN + FP
(20)

whereTP ,TN ,FP , andFN are the true positive, true negative,
false positive, and false negative respectively. More details are
in Appendix C, available online.

3) Implementation Details: We implement the models by
Pytorch [42] framework, and all experiments are run on the
machine with one NVIDIA RTX A6000 graphics card. The
mini-batch stochastic gradient descent (SGD) with a momentum
of 0.9 and a weight decay of 0.0001 is applied to optimize the
model. Poly learning rate adjusts strategy [43] is adopted to set
the learning rate dynamically during training, which sets the
learning rate according to lr = init_lr × (1− iter

max_iter )
power,

and we set init_lr = 0.01, power = 0.9.

B. Ablation Study

1) Ablation for Proxy Strategy: In this section, we explore
two aspects of the proxy strategy, 1) what kinds of losses would
be better? 2) do we need to take two sub-tasks for the proxy task?
To prove the effectiveness, we conduct the ablation experiments
on two modalities of vessel segmentation datasets, including the
HRF and PRIME-FP20 datasets. We set the upscale rate as 2.
That is to say, the input size for the two datasets is 876× 584

TABLE II
EXPERIMENT RESULTS OF DIFFERENT STRATEGIES FOR THE PROXY LOSS

BASED ON HRF AND PRIME-FP20 DATASETS (MEAN ± STD)

TABLE III
RESULTS FOR ABLATION STUDY OF PRETEXT LOSS FUNCTIONS OF OUR

PROPOSED MODEL ON HRF AND PRIME-FP20 DATASETS (MEAN ± STD)

and 704× 648 respectively, and the output size is 1752× 1168
and 1408× 1296.

For the first aspect, we explore two different strategies for the
proxy loss to make an implicate supervision: 1) the same loss as
that of sub-tasks; 2) more restrictive losses, such as region-based
loss. For the second strategy, we use the structure similarity
(SSIM) loss, region mutual information (RMI) [44] loss or
generalized dice loss (GDice) for task interaction module. As
described in Table II, both strategies can significantly improve
the performance of the model, compared with the baseline model
U-Net [45] without proxy tasks. For our first strategy, when
MSE and CE are used as the losses of the proxy task, the IoUs
of HRF and PRIME-FP20 are 7.5% and 9.5% higher. After
using more restrictive losses, SSIM and RMI, for the proxy task,
the improvement of IoUs on HRF and PRIME-FP20 datasets
are more than 10% and 14%. The evaluation metrics of MCC
and BM see the same rise. The view field of PRIME-FP20 is
ultra-wide, whose vessel proportion is only 2.54% relatively
small compared with other vessel segmentation datasets, so it
can be supposed that the GDice loss may excessively punish the
background. Thus, we adopt SSIM and RMI for the proxy loss
in the following experiments.

For the second aspect, we use one sub-task loss or two
sub-task losses for proxy loss. As shown in Table III, x means
without using the corresponding proxy loss, �means using the
corresponding proxy loss. Compared with the first rows based
on two datasets, adding one or two losses to constrain the
task interaction significantly improves the performance. Adding
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TABLE IV
ABLATION STUDY FOR THE MODIFIED RESIDUAL CHANNEL ATTENTION BLOCK

BASED ON HRF DATASET (MEAN ± STD), WE ADOPT THE RCAB TO REPLACE

OUR MRCAB

SSIM for proxy loss improves the segmentation performance,
as the segmentation task can learn more information from the
backward of the feature interaction module. The IOU after
adding the RMI loss is more than 9.5% or 14.2% higher than
that without proxy loss or just adding the SSIM loss, as the
shared feature extraction module can be guided to extract more
features focusing on the segmentation target, which intuitively
achieves better performance. Moreover, applying proxy loss for
both segmentation and super-resolution tasks further improves
the segmentation performance, BM with 18% higher on the
PRIME-FP20 dataset. Thus, the proxy task loss for our proposed
shared feature extraction module improves the segmentation
performance. More statistical analysis is added in Appendix D,
available online.

2) Ablation Study for the Proposed MSCG: The main com-
ponents of the MSCG are our proposed MRCAB and MS-Conv.
The ablation studies about the two elements are analyzed in this
section.

MRCAB: To verify the validation of our MRCAB, we use
the original RCAB to replace it and do the experiments on
the HRF dataset, as shown in Table IV. Our module can get a
slight performance improvement, which means our module may
extract the channel relation better than the original structure. We
also conduct the experiments that add the global average pooling
to the block to statistic the global information, as shown in the
second line of Table IV. When adding the global pooling, the
performance dropped, which means only capturing the channel
relationship by the squeeze and excitation operation is enough
when using the depthwise convolution. The metric BM is slightly
dropped when using our method. The possible reason is that our
algorithm may trend to classify some background to the fore-
ground target, but from the MCC we can see that our approach
gets more accurate results compared to RCAB.

MS-Conv: The proposed MS-Conv extracts the spatial cor-
relation of the features by utilizing the multiple-scale context.
Thus, we analyze two aspects of the MS-Conv, including its
multi-scale feature extraction ability and the effectiveness of
depthwise convolution. Multi-scale feature extraction ability:
To verify the effectiveness of our MS-Conv, we use two other
similar modules to replace the MS-Conv in MSCG, including
ASPP [46], [47] and self-attention module that extracts spatial
information (abbreviated as Self-Att). As shown in Table V,
our MS-Conv outperforms the ASPP and Self-Att on the HRF
dataset, and its standard deviation values are relatively smaller.

TABLE V
ABLATION STUDY FOR MULTI-SCALE FEATURE EXTRACTION MODULES BASED

ON HRF DATASET (MEAN ± STD)

TABLE VI
EXPERIMENTS OF THE MS-CONV COMPONENTS

That is to say, our MS-Conv extracts multi-scale features helpful
for target segmentation with relatively higher stability.

Effectiveness of Components: MS-Conv adopts 1× 1 Conv,
image pooling, and depthwise convolution to extract multi-scale
features from integrated information. We analyze their effec-
tiveness one by one. As shown in Table VI, DW is short for
depthwise convolution, and we analyze MS-Conv with/without
DW. MS-Conv with depthwise gives out a better performance
than only using convolution without DW. As the MS-Conv
adopts 1× 1 Conv and image pooling to extract features from
different groups, we demonstrate their necessity by using depth-
wise convolution substitution. The results tell that MS-Conv
without 1× 1 Conv or image pooling degrades the segmenta-
tion performance, and their standard deviation values increase,
which means they effects the performance of stability. Thus,
our MS-Conv, using 1× 1 Conv, image pooling, and depthwise
convolution, is helpful to dig multi-scale features to improve the
accuracy and stability performance of segmentation.

3) Ablation Study for the Framework: Our framework con-
sists a semantic segmentation stream, a shared feature extrac-
tion module (MSCG as an instance), and a super-resolution
stream. U-Net is adopted as the baseline of segmentation. We
compare U-Net, U-Net with extra interpolation (U-Net+Inter),
U-Net+Inter with super-resolution (U-Net+Inter+SR), and our
proposed framework (U-Net+Inter+SR+MSCG). For the seg-
mentation stream, we adopt an extra interpolate operation to
produce the same size of the output as that of the high-resolution
target. We conduct the ablation study on these components and
different scales. The ablation study is based on HRF and PRIME-
FP20 datasets, whose output resolutions are set as 1752× 1168
and 1408× 1296, respectively. In the experiments, different
upscale rates are conducted. That is to say, the input size equals
W/upscale_rate×H/upscale_rate (W and H are output
resolutions). As shown in Fig. 4, IoU, BM, and MCC of different
upscale rates by different combinations. Only adding interpo-
lation cannot bring a gain for the segmentation performance



QIU et al.: RETHINKING DUAL-STREAM SUPER-RESOLUTION SEMANTIC LEARNING IN MEDICAL IMAGE SEGMENTATION 459

Fig. 4. Ablation study of framework components with different upscale rates based on HRF and PRIME-FP20. The first column is the trends for the IoU, second
column is the trends for BM, and the last column is the results for MCC. (a) The trend of the IoU on HRF dataset. (b) The trend of the BM on HRF dataset; (c) The
trend of the MCC on HRF dataset; (d) The trend of the IoU on PRIME-FP20 dataset; (e) The trend of the BM on PRIME-FP20 dataset; (f) The trend of the MCC
on PRIME-FP20 dataset.

or even cause a drop, as there is no extra useful information
for segmentation. The segmentation performance after adding
a super-resolution stream improves, as super-resolution can
provide some information for target segmentation. After adding
our MSCG, the segmentation accuracy further improves, as the
shared features extracted by our MSCG are helpful for the target
segmentation. Moreover, the higher upscale rates produce larger
improvements in segmentation. The standard deviations for the
PRIME-FP20 datasets seem slightly large, limited by the small
number of images in the dataset with only 15 images.

C. Comparison Experiments

To evaluate the effectiveness of our framework, we conduct
comparison experiments based on 6 datasets in three different
scenarios, including vessel segmentation, lesion segmentation,
and natural image segmentation.

1) Vessel Segmentation Task: We employ U-Net [45] as the
base model to build our framework. We compare our method
with other 9 state-of-the-art methods including 6 single-dual
segmentation methods (U-Net, SCS-Net [2], SA-UNet [16],
DE-DCGCN-EE [48], SkelCon [3], and Little W-Net [15]) and
3 dual-stream learning methods (SuperVessel [23], CogSeg [21]
and SS-MAF [24]). The experiments are based on three datasets,
including HRF, PRIME-FP20, and FIVES. We conduct the ex-
periments five times, and the results are listed with mean ± std of
metrics Dice, IoU, MCC, and BM. We also list the floating-point
operations per second (FLOPs) to compare the computation cost.

As shown in Table VII, a dual-stream learning framework
with a feature interaction module produces the best segmentation
accuracy for three datasets. Among them, the SuperVessel and

SS-MAF are also proposed by our group according to this
idea. Compared with single-stream segmentation algorithms, all
the dual-stream learning frameworks improve the segmentation
accuracy greatly, for example, the IoU of our framework is
about 10% higher on HRF, 15% higher on PRIME-FP20 and
12% higher on FIVES than that of U-Net. Compared with other
dual-stream learning frameworks, ours provides higher accuracy
and lower standard deviation, which means that our algorithm
can be more stable. For the PRIME-FP20 dataset, the image
number is very small with only 15 images, and the IoU of CogSeg
is only about 26%, about 15% lower than ours, which illustrates
that the performance of CogSeg is affected by the size of the
dataset, but our framework can overcome this problem to some
extent.

The qualitative results of the three datasets are shown in Fig. 5.
We can observe that our framework segments the vessels more
accurately, and precisely locate the vessel edges. Compared
with the single-stream segmentation methods (U-Net, SCSNet,
SA-UNet, and DE-DCGCN-EE), dual-stream frameworks ob-
tain more accurate and smooth boundaries. But the methods
like CogSeg, which optimizes the similarity distance between
segmentation features and super-resolution features, opt to mis-
classify the vessels, especially for the tiny vessels. Shared feature
extraction integrated dual-stream frameworks (SuperVessel, SS-
MAF, and our proposed MSCG-integrated framework) segment
the vessel edge more accurately and alleviate the misclassifica-
tion problem caused by vessel similarity. As shown in Fig. 5(b),
our framework discriminates the vessels better. For example,
in the PRIME-FP20 dataset with large view field images, the
proportion of vessels is extremely small, and our framework
segments tiny vessels precisely.
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TABLE VII
COMPARISON RESULTS FOR VESSEEL SEGMENTATION TASK

Fig. 5. Visualization results of our proposed method and other state-of-the-art methods on HRF, PRIME-FP20, and FIVES datasets. Green and red markings
denote ground truth and segmentation output, respectively. The yellow marking represents the correct prediction of the retinal vessel. (a) Visualization of the
samples on the HRF dataset. (b) Visualization of the examples on the PRIME-FP20 dataset. (c) Visualization of the examples on the FIVES dataset.(Please zoom
in for a best view.).

2) Lesion Segmentation Task: We conduct lesion segmen-
tation tasks based on two multi-lesion segmentation datasets,
including IDRID [39] and DDR [40] datasets. We employ
U-Net [45] and DeepLabV3+[47] as the backbone of our
framework, which also proves that our framework can be
suitable for different backbones. The comparison methods in-
clude U-Net [45] and DeepLabV3+[47] as the backbone of our
framework. The U-Net++[49], DenseUNet [50], DeepLabV3+,
FCRN [51], CASENet [52], L-Seg [53], PMCNet [54] and

SS-MAF [24]. We use mDice, mIoU, and mAUC as the evalu-
ation metrics.

As shown in Table VIII, dual-stream learning frameworks give
out much higher accuracy than single-stream lesion segmenta-
tion algorithms. For example, compared with the DeepLabV3+,
our framework obtains about 10% and 5% higher mIoU for
IDRiD and DDR datasets, respectively. SS-MAF is another
of our proposed dual-stream learning frameworks with feature
interaction, proving our proposed thinking of shared feature
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Fig. 6. Visualization of the results on IDRID and DDR dataset. Red, green, blue, and pink markings denote Hard Exudate(EX), Haemorrhages (HE),
Microaneurysms, and Soft Exudate (SE), respectively. (a) Visualization of the IDRID dataset. (b) Visualization of the DDR dataset. (Please zoom in for a
best view.).

TABLE VIII
COMPARISON RESULTS FOR LESION SEGMENTATION TASK

extraction is right. The categories of the DDR dataset are ex-
tremely imbalanced, which often causes the optimization to
be difficult and easy to misclassify. This is the reason that the
accuracy of the DDR dataset is relatively lower.

We visualize the results of two benchmarks and show some
samples in Fig. 6. The figure tells that our method discriminates
the boundaries better. Compared to the base model U-Net,
the models trained by our framework classify the lesion more
precisely with smooth edges. For example, on the IDRID dataset,
the base model U-Net trends to misclassify the hard exudate
(EX) as the soft exudate (SE), but the U-Net trained in our
framework overcomes this problem and provides the correct
classification. One interesting phenomenon is that the trained
DeepLabV3+ based on our framework seems to inherit the
misclassification for the HE, but the accuracy of our segmented
lesion edges is better than that of the base DeepLabV3+. The
possible reason is that the super-resolution brings the shape

TABLE IX
COMPARISON RESULTS FOR THE CITYSCAPES DATASET

or geometry information, which may enhance the boundary of
the lesions, but can not provide a rich semantic context for the
classification. The structure of the model determines that U-Net
fuses the semantic context by the skip connection of high-level
and low-level features, but DeeplabV3+ obtains less context
information in the decoder.

3) Cityscape Segmentation Task: To evaluate the generaliza-
tion of our framework, we conduct the comparison experiment
on Cityscapes [41] dataset, whose proportion of segmentation
target is considerable. We choose the DSRL [18] as the compar-
ison framework based on dual-stream super-resolution semantic
learning. We use ESPNetV2 and DeeplabV3+ as the base model
to build our framework. The GDice [55] and SSIM are used as the
proxy loss for semantic segmentation and super-resolution, re-
spectively. For DeeplabV3+, we use ResNet101 as the backbone
to extract the features, and the weights trained on the ImageNet
to initialize the backbone for DeeblabV3+ and ESPNetV2. We
list the accuracy of validation and test and the GFLOPs. The
GFLOPs are calculated when the input size is 1024× 512. The
quantitative results are shown in Table IX. We can see that our
framework can work well on the cityscape scene. Compared with
the DeeplabV3+ baseline and DSRL-integrated framework, our
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TABLE X
RESULTS FOR OUT OF DISTRIBUTION EXPERIMENTS

framework obtains 3.6% and 1.6% for the validation set, 3.7%
and 1.5% for the test set, with degrading GFLOPs.

D. Out of Distribution Experiments

We try to conduct experiments under the condition of out-
of-distribution (OOD), which also reflects the robustness of
the trained model based on our proposed framework. For the
vessel segmentation task, we introduce another dataset named
DRHAGIS [60] as the extra dataset to evaluate the model trained
on HRF and FIVES. The performance in the OOD scenery
is significant for clinical applications, and the cross-dataset
experiments are to simulate the OOD scenery that the data from
different clinics. We report the Dice and MCC for the vessel
segmentation task. For the lesion segmentation task, we only
report the Dice, as the MCC is not suitable to evaluate the
performance of lesion segmentation. For comparison methods,
we adopt U-Net, CogSeg, SuperVessel, and SS-MAF for the
vessel segmentation task, U-Net, SS-MAF, and DeeplabV3+ for
the lesion segmentation task.

As shown in Table X, the first column is the dataset we train
the models, and the second column is the dataset used for the test.
The FIVES dataset holds a large number of images (800 images
in total), and all the trained models work relatively robustly on
other test datasets. For the HRF dataset with less of images, our
framework provides robust performance. For example, U-Net
and SS-MAF trained on the HRF dataset only produce about
14% and 19% Dice on the FIVES dataset, but our framework
gives about 46% Dice. The Dices of CogSeg, which trains on

Fig. 7. Failure examples. Input image, ground-truth, and our results.

HRF and tests on FIVES or DRHAGIS, are about 18% and 22%
lower than those of our framework. For the lesion segmentation
task, our framework with U-Net or DeeplabV3+ as backbones
produces the highest accuracy. Therefore, compared with single-
stream lesion segmentation models, dual-stream models provide
higher robustness for OOD problems.

V. DISCUSSION

The experiments based on 6 publicly available datasets for 3
types of tasks show that our method can work on both medical
image and natural image scenarios. The RoI proportion of the
former is relatively small, and that of the latter is very large. As
the resolution of input images is relatively low, our framework
still achieves a promising performance. But during experiments,
we find several limitations in our framework. The first is about
the standard deviation. The values of our framework in this paper
are a little larger than our previous model SS-MAF, which means
the stability of our structure is a little inferior to that of SS-
MAF. We hypothesize that the SSIM loss function giving one
strong supervision signal for super-resolution may disturb parts
of segmentation results. As the Fig. 7 shows, if the area is vague,
the two targets may adhesion due to the information brought by
the super-resolution.

Moreover, the proposed way is to guide learning the shared
features between tasks with optimization methods, such as max-
imizing the mutual information between tasks. In the future, we
can explore more effective structures to capture shared informa-
tion, such as the self-attention mechanism at the multi-axis or
the combination of global and local information.

VI. CONCLUSION

As the proportions of target areas in medical image segmen-
tation are relatively small, the existing dual-stream framework
based on the similarity loss may collapse or cannot achieve
the desired performance. After rethinking the segmentation
ability in the dual-stream framework, we identified its limi-
tations applied to medical image segmentation. We proposed
a Dual-Stream Shared Feature (DS2F) framework based on
the hypothesis that a small set of features is shared between
tasks. We proposed a novel shared feature extraction module
and defined proxy tasks to constrain the module learning in



QIU et al.: RETHINKING DUAL-STREAM SUPER-RESOLUTION SEMANTIC LEARNING IN MEDICAL IMAGE SEGMENTATION 463

the DS2F framework. Extensive experiments on six publicly
available datasets, including medical and nature scenes, verify
the effectiveness of our proposed framework.
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