
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024 1815
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Abstract— In modern vehicles, system complexity and technical
capabilities are constantly growing. As a result, manufacturers
and regulators are both increasingly challenged to ensure the
reliability, safety, and intended behavior of these systems. With
current methodologies, it is difficult to address the various inter-
actions between vehicle components and environmental factors.
However, model-based engineering offers a solution by allowing
to abstract reality and enhancing communication among engi-
neers and stakeholders. Applying this method requires a model
format that is machine-processable, human-understandable, and
mathematically sound. In addition, the model format needs to
support probabilistic reasoning to account for incomplete data
and knowledge about a problem domain. We propose structural
causal models as a suitable framework for addressing these
demands. In this article, we show how to combine data from
different sources into an inferable causal model for an advanced
driver-assistance system. We then consider the developed causal
model for scenario-based testing to illustrate how a model-based
approach can improve industrial system development processes.
We conclude this paper by discussing the ongoing challenges to
our approach and provide pointers for future work.

Index Terms— Causal inference, Bayesian networks, auto-
mated driving systems, model-based testing.

I. INTRODUCTION

TESTING Advanced Driver Assistance Systems (ADAS)
is a central task in the development of modern vehicles.

In the context of autonomous driving, reliable and dependable
support systems are essential to provide the necessary techni-
cal capabilities to manage the Dynamic Driving Task (DDT).
The degree of autonomy of vehicles or the technical capability
of support systems respectively is commonly classified based
on the six-level decomposition of driving automation given by
SAE J3016 [1]. Level zero (L0) is defined as no automation,
meaning that the complete DDT is performed solely by a
human driver. On the lowest level with active technical support
(L1), ADAS primarily focuses on warning a human driver
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and thus provides only temporary aid in critical situations
(e.g., lane departure warning system). With increasing system
capability, the provided support extends but does not relieve
the driver of the DDT up to L3 (i.e., conditional automation).
L4 and L5 vehicles are commonly referred to as highly or fully
Automated Driving Systems (ADS) which do not require an
attentive human driver as a fallback anymore. The difference
between L4 and L5 capabilities is given by their scope of the
Operational Design Domain (ODD). SAE J3016 defines an
ODD as:

“Operating conditions under which a given driving
automation system or feature thereof is specifically
designed to function, including, but not limited
to, environmental, geographical, and time-of-day
restrictions, and/or the requisite presence or absence
of certain traffic or roadway characteristics.” [1,
p.17]

Although ADAS capabilities for lower levels of driving
automation are not differentiated by a predefined ODD, they
are still influenced by its effects. Moreover, for systems
with high driving automation (L3+), manufacturers are even
required to define a legally binding ODD.

Typically, support systems are developed based on norma-
tive regulations like ISO 26262 and established development
lifecycles like the therein outlined V-Model [2]. A large part
of the ongoing validation and verification effort is grounded
in requirement-based testing. Depending on the individual
components (e.g., a visual sensor), environmental influences
such as rain or fog need to be considered as relevant test
parameters. While these two parameters may be obvious from
a physical perspective, coming up with all relevant influences
is usually difficult.

A promising new approach for system evaluation is the
recent effort to test modern vehicles by using so-called sce-
narios (i.e., a sequence of actions and events in an ODD
populated with actors and a System Under Test (SUT)). ISO
21448 specifies how the Safety Of The Intended Functionality
(SOTIF) of an ADAS or distinct functions of an ADS can
be achieved through the evaluation of scenarios [3]. Scenarios
can be executed in real life or with simulators that provide
virtual test environments [4], [5], [6], [7].

Although the scenario storyline (e.g., cut-in from the left
lane on a highway) can be specified by experts, the unbi-
ased selection of relevant scenario parameters is still under
research [8]. From a testing perspective, this set of variables
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defines the context in which a SUT operates in [9], and
challenges the intended behaviour of the system within its
specified requirements.

In knowledge-driven approaches, the scenario parameters
are specified by domain experts. Data-driven methods try to
derive parameter distributions and relevant parameter ranges
from driving data. Human expertise is often incorporated into
the data processing chain in the form of constraints, filtering,
or preprocessing activities. This makes expert knowledge the
most important source for the definition of an appropriate sce-
nario parameter space. In large part, experts are not guided by
a process or by an objective method to quantify the belief that
a proposed influencing factor is indeed relevant for a test case.

In all areas and across all levels of detail, there is one
common principle: causality. Specifying cause and effect is
not only the engine of science but also an essential concept
to gain insights into complex systems. In the context of func-
tional safety and the SOTIF, causality is an inherent principle
followed during system design and assessment. Similarly, one
may ask why the derivation of parameters of interest for testing
activities should not also be based on causality—motivating
the following research questions:

RQ1 Can an inferable, probabilistic, graphical model be cre-
ated for a simplified ADAS that includes different levels
of abstraction?

RQ2 What are practical aspects when creating and applying
such a model?

RQ3 How can these models be used to support scenario-based
testing?

In this article, we propose to use a causal model [10] to
combine different knowledge sources about a SUT. The causal
model then guides the specification of test parameters for the
scenario-based testing of an ADAS—a task that can hardly be
solved by existing approaches. This model-based approach is
discussed by taking a simplified Advanced Emergency Braking
System (AEBS) as an example: we show how to build a causal
model for an AEBS based on physical considerations, how the
modularity of causal models allows linking different sets of
concerns, and that model predictions provide realistic results.
With that, this article extends previous work on causal model-
based engineering [11] by:

• a running example: demonstration of a practical devel-
opment process based on causal models by using a
simplified AEBS as an example.

• a concrete causal model: definition of a rudimentary
causal model including ODD factors for a simplified SAE
L1 ADAS.

• a concrete parametrization: parametrization of a causal
model in the absence of suitable observational data with
the help of literature, domain knowledge, and artificially
generated data.

• inference results: translation of technical questions about
the modeled system at various stages of product devel-
opment from natural language into inferable probabilistic
queries.

• simulation results: validation of the inference results with
the CARLA virtual simulation platform.

• conceptual work: outline the value of causal models and
arising challenges for the integration of this approach into
automotive industry development lifecycles.

The article is structured as follows. First, we contextualize
our work and briefly introduce causal models. Then, basic
concepts of an AEBS, the components that constitute the
simplified AEBS for the running example, factors of an associ-
ated ODD, and settings for data generation are defined. Next,
the development and usage of a causal model are discussed.
Finally, challenges for an industrial application as well as
ongoing areas of research are outlined. The structure deviates
slightly from the traditional outline of an article, e.g., instead
of comparing our approach to existing work, we start by
contextualizing it. This is due to two reasons: first, to the best
of our knowledge, no comparable related work is available;
second, we anticipate that this change in structure will benefit
readers unfamiliar with causal models and allow them to align
the proposed method with real-world applications.

II. CONTEXT

This section contextualizes the work presented in this article
and provides a short introduction to the theoretical frame-
work and, therefore, the enabling method of the proposed
approach—causal models.

A. Related Work

1) Status: Ensuring system safety is a key challenge
in every technical development lifecycle. In the automo-
tive industry, there are two key normative regulations (i.e.,
ISO 26262 [2] and ISO 21448 [12]) that outline several
safety activities, but avoid giving actual hands-on solutions.
While the functional safety assessment of components can
be solely based on requirements, specific scenarios including
relevant factors of an ODD must be considered to ensure
the SOTIF [8], [13], [14]. The latter is commonly framed as
scenario-based testing. An important prerequisite for passing
a scenario evaluation is the coverage of the correct intended
functionality of a component (see ISO 21448). This intended
functionality implicitly outlines the test environment: a metric
is needed to evaluate the top-level target while a base scenario
needs to be instantiated with a combination of all relevant
influences. Common approaches to identify relevant scenarios
and their parameters include data-driven techniques [15], [16],
[17] and domain expert knowledge [18].

2) Challenge: Modern systems can be considered as
distributed networks of various components consisting of
specialized hardware and software. As a consequence, the
use of Machine Learning (ML)-based subsystems has been
increasing [19], creating new challenges for an appropriate
safety assessment [20]; in large parts, this is due to their
interpretation as black-box elements. A key aspect of any
testing endeavor is the identification of a suitable set of test
cases [21], [22], [23]. Regardless of the capabilities of the
SUT, this requires knowledge about its targeted ODD. The
challenge this poses is threefold. First, a suitable framework
is needed, capable of modeling an ODD in conjunction with
other abstract factors. Second, this model should contain
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enough knowledge about the SUT to derive test parameters
from it; this requires that different sources of knowledge (e.g.,
domain experts and data) can be combined. Third, white-box
algorithms are needed for a traceable and certifiable derivation
of test inputs and thus the accountable argumentation and
accreditation of safety cases.

3) Basis: Modeling causes and their effects is a common
method for investigating the behavior of complex systems.
In the context of automotive system safety, the interac-
tions between individual components are usually grounded in
causality. Decomposing a system in this way allows us to study
the evolution of fault chains triggered by root causes (e.g., via
fault or event trees). Although the formalism for individual
approaches varies, a common concept is to associate specific
events with a probability of occurrence. This makes it possible
to calculate probabilities for different system constellations
and to derive decisions based on the probability theory.

4) Framework: A general, multi-purpose framework for
working with (conditional) probability distributions, are
Bayesian Networks (BNs) [24], [25] or causal BNs [10]. They
allow human expertise and data to be brought together in a
structured way. Since they are agnostic to a specific domain
of interest, they also allow modeling abstract concepts such
as an ODD [11]. In the context of ADAS and ADS, (causal)
BNs are commonly used as part of the implementation of the
system itself [26], [27]. However, they can also be employed
to investigate a black-box system and reason about it [28].

5) Shortcomings: To the best of the authors’ knowledge,
no current publication provides a step-by-step example of how
scenario-based testing and causal modeling can be combined
along the V-model, how expert-knowledge and data can be
combined in a structured and comprehensible way throughout
safety-driven system development, how different levels of
abstraction including factors of an ODD can be simultaneously
addressed, or how probabilistic insights from a model translate
to tangible and safety-relevant engineering activities.

. . . in scenario-based testing: Riedmaier et al. [14] devel-
oped a taxonomy for scenario-based testing and compare
existing strategies and methods to address it. They distinguish
between expert-based and data-driven scenario generation
approaches and find that a combination of both could com-
pensate for individual drawbacks, yet no method is currently
available to do so. Similarly, Zhang et al. [29] reviewed cur-
rent research on scenario-based testing and approaches to
identifying critical scenarios in particular. They highlight that
reasoning about influencing factors is challenged by the inher-
ent complexity of the DDT and an open context environment.
Current methods either focus on data-driven approaches or
standardized, step-by-step procedures (e.g., hazard and risk
analysis), but usually do not combine these aspects. Moreover,
they either cover one level of abstraction or one goal with
respect to the SOTIF (e.g., finding triggering conditions or
criticality assessment). The inability of current methods to
incorporate a variety of concerns (e.g., combining established
safety analysis approaches) prevents an early integration of
existing methods along the V-Model. The benefit of such an
approach is investigated by Thomas and Groth [30] by linking

established methods like fault tree analysis or event trees to
causal BNs.

. . . in simulation: Zhong et al. [7] conducted a literature
review focused on the connection between scenario-based
testing and high-fidelity simulation. They find that the gap
between simulator fidelity and the real world needs to be
addressed and expressed properly to inform users about poten-
tial limitations. A main challenge thereby is the treatment
of environmental conditions, and a test object in particular,
as a black box. This inherently impedes root cause analysis of
failures, as no explicit knowledge is (or can be) incorporated.

. . . in verification and assurance: Wood et al. [31] discuss
various trends for the verification and validation of highly
automated driving systems from an industrial perspective.
Depending on the individual level of driving automation,
unresolved key challenges like a statistical demonstration of
system safety, the elicitation of currently unknown scenarios
(especially as a result of a changing ODD), or the validation
of machine learning-based components (lacking the ability for
a logical decomposition into distinct influencing factors or
root causes) arise. They state that to achieve a positive risk
balance, approaches covering the whole system development
cycle (from design to validation and verification) need to be
employed, but most methods can only be applied to support
some individual stages. Burton et al. [32] outline that for
a consistent safety assurance case, various gaps (semantic,
responsibility, and liability gaps) in the system specification
need to be addressed. They state that this multidisciplinary
issue can be solved by continually minimizing the semantic
gap, but they do not provide a framework to express these
gaps that allow a technical exploitation along a system’s
lifecycle or facilitates an accessible knowledge exchange (i.e.,
transdisciplinary communication [33]) among participants.

. . . in criticality analysis: Neurohr et al. [9] and
Koopmann et al. [34] investigate how critical constellations
can be systematically identified using causal methods.
Neurohr et al. propose to use causal models to analyze the
resulting parameter space efficiently:

“From a formal point of view, we can imagine a
causal relation as a network of phenomena where
each connection between phenomena represents a
plausible cause-and-effect relationship. Note that
one causal relation might explain several criticality
phenomena at the same time, leading to a conden-
sation of artifacts” [9, p. 7].

This condensation and a subsequent evaluation can be
employed via the use of causal methods, which is in line with
the findings of Zhang et al.:

“an unknown critical scenario can be attributed to
either an unknown scenario factor or an unknown
combination of known scenario factors (. . . )” [29,
p. 6]

Therefore, results can be interpreted as relevant test constel-
lations entailed by an associated ODD. A conceptual process
flow to systematically derive and interpret criticality phenom-
ena from a causal model is provided by Koopmann et al. These



1818 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

contributions remain short of a practical, automotive-specific
example.

. . . in summary: To advance automotive system safety and
scenario-based testing, the development of new methods is cru-
cial. These methods need to (jointly) tackle challenges such as
uncertainty modeling, scalability of scenario generation, risk
assessment, and safety validation of machine learning mod-
els. By addressing these aspects, new methods can enhance
the effectiveness, efficiency, and comprehensiveness of safety
testing, ensuring the reliable operation of autonomous vehicles
in diverse real-world scenarios.

6) Approach: In the context of safety assessment and
scenario-based testing, a causal model-based workflow is an
emerging application [9], [11]. In this article, a causal model
is used to represent influences associated with the intended
functionality of an AEBS. Model inference is then used as
a way to investigate the resulting test space. In doing so,
we show how a causal model can support scenario-based test-
ing, either by delivering relevant parameter instantiations or by
providing a causal rationale for prioritizing test configurations.
Prioritization is important when planning a test campaign with
limited resources (e.g., time or test infrastructure); with the
help of the causal model one can focus on so-called corner
or edge cases [11], [35] as candidates for unknown critical
situations [12].

B. Theoretical Background

A BN consists of a graphical structure in the form of a
Directed Acyclic Graph (DAG) and probability distributions
associated with the random variables of the model (i.e., the
nodes in the graph). In most graph-based notations, an undi-
rected edge indicates the association between variables, while
a directed edge indicates the direction of causal influence.
In causal models, a directed relationship is interpreted as a
causal mechanism, stating that the dependence of two random
variables is attributed to this mechanism rather than on an
unknown common cause linking them [10], [36].

BNs formalize how to factorize an underlying joint prob-
ability distribution P(X) of a modeled parameter space. The
key assumption is that only the direct causes of a random
variable xi (i.e., the parent nodes pai in the graph) contribute
to its local conditional probability distribution. Hence, P(X)

can be given as follows:

P(X) =
∏

i

P(xi |pai ) (1)

Another way to link causal relationships between random
variables with their respective probabilistic statements is to
use Structural Causal Models (SCMs) [10], [36], [37]. The
dependencies between random variables are then formalized
by so-called structural equations; the conditional probability
distribution P(xi ) of a random variable xi is given by the
assignment-like outcome of a functional description of the
interaction of the causal parents of xi . A SCM therefore
specifies each causal mechanism that generates an effect based
on its causes and entails a joint probability distribution over
all variables in the model. Bareinboim et al. [37] define an
SCM as:

Fig. 1. Representations of a causal model.

Definition 1 (Structural Causal Model (SCM) [37]): A
SCM is a 4-tuple M = ⟨U, V, F, P(u)⟩ where

1) U is a set of background variables (also called exoge-
nous) that are determined by factors outside the model.

2) V = {V1, . . . , Vn} is a set of endogenous variables that
are determined by variables in the model, viz. variables
in U ∪ V.

3) F is set of functions { f1, . . . , fn} such that each fi is a
mapping from (the respective domains of) Ui∪P Ai to Vi ,
where Ui ⊆ U and P Ai ⊆ V \ Vi and the entire set of F
forms a mapping form U to V. In other words, fi assigns
a value to the corresponding Vi ∈ V, vi ← fi (pai , ui ),
for i = 1, . . . n.

4) P(u) is a probability function defined over the domain of
U.

In general, a causal model consists of a graphical repre-
sentation (i.e., causal graph), some unconditional probability
distributions (i.e., the probabilistic statements assigned to the
parentless or exogenous nodes), and a set of causal mech-
anisms (e.g., via Conditional Probability Tables (CPTs) in
discrete BNs or structural equations in SCMs).

A causal graph can be built based on domain knowledge
or algorithmically from observational data (i.e., causal dis-
covery [38], [39]). Approaches for parametrizing a causal
model (i.e., determining the unconditional probability distri-
butions and causal mechanisms) can also be divided into
knowledge [40] and data-driven [25], [41]. In practice,
parametrization is done using both approaches simultaneously
or iteratively, depending on the availability of data or domain
experts for parts of the model.

Note that causal mechanisms are independent of each other
(i.e., autonomous [10, Section 1.4.1]) and no assumption about
the influence of exogenous nodes U (noise) is made. This
allows the definition of each functional relation specific to
the underlying context (e.g., with exogenous additive noise).
In practice, purely additive noise models are common but not
mandatory and enable the identification of an SCM from data
(see also [36, Section 7.1]).

Figure 1 gives a simple example of a causal graph and a
corresponding SCM. In this figure and throughout the rest of
this article, causal graphs are oriented downward, as this has
been shown to enhance comprehensibility [42].

Causal models not only define probabilistic statements and
causal interactions (i.e., encode knowledge about a system)
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Fig. 2. Setting of the running example.

but also allow to answer probabilistic and causal queries
(i.e., generate knowledge about a system). The latter (i.e.,
inference) can be divided into three categories: associational,
interventional, and counterfactual [10]. While associational
queries target observations (e.g., P(x j |xi )), interventional
inference allows estimating the consequences of hypothetical
actions—again based on observational data [10, p. 32]. These
interventions are mathematically formalized as do(xi ) and
interpreted graphically as the removal of all ingoing edges
of a node xi . In the case of an SCM, this changes the
original structural equation xi := fi (pai , ui ) to xi := do(xi ).
Counterfactual reasoning allows answering questions such
as “what if” and “why”. The computation of counterfactual
queries typically requires a modification of the causal model
concerning the query of interest. Although [10] describes a
three-step process for computing counterfactuals, in practice,
there are many difficulties (e.g., checking the identifiability of
a causal query [43]).

The primary use of an SCMs is to make inferences about the
effect of an intervention on a modeled system by quantifying
the causal relationships between the variables of the model.
This differentiates these models from other methods (e.g.,
formal methods) by their ability to combine different levels
of abstraction and different types of relationships. From a
practical perspective, observational data and expert knowledge
can be combined and used to ask and answer causal questions.

III. USE CASE

This section takes a closer look at the running example—a
simplified AEBS. It specifies the intent and elements of the
system and describes a simulation setting for data generation
and evaluation.

A. Background

The goal of modern ADAS is to support a human driver
in potentially critical situations. A prime example of a tem-
porarily acting safety system is given by an AEBS—a type of
Forward Vehicle Collision Mitigation Systems (FVCMS). The
intended functionality of a FVCMS is specified by ISO 22839:

“FVCMS mitigate rear-end collisions. By reducing
the collision energy, FVCMS reduce the degree of
property damage, personal injury, or the likelihood
of fatality” [44, p.1].

Therefore, FVCMS must detect [44, sec. 6.1.1] and evaluate
objects (i.e., motor vehicles for use on public roads [44,

sec. 6.3.1]), process and interpret this data, and activate
target functions (e.g., longitudinal vehicle control) if required.
An AEBS provides different countermeasures to reduce the
severity of an imminent collision. First, a collision warning is
issued as soon as a predefined threshold for a proxy measure
of the situation criticality such as Time To Collision (TTC) is
violated. In this stage, braking as a protective measure is not
yet necessary. If no manual action is taken, speed reduction
braking is triggered. The intention is to provide an assisted
speed reduction and to enable manual emergency braking or
an emergency lane change. If a rear-end collision [44, sec.
6.3.2] is unavoidable (e.g., TTC reaches or exceeds a critical
threshold), emergency braking is automatically initiated with
a minimum specified deceleration [44, sec. 6.1.1]. In the case
of an emergency brake, it is not guaranteed that a collision
can be avoided completely. Instead, the goal of an AEBS is
to reduce the kinetic energy of an equipped vehicle as much
as possible and thus minimize potential harm.

AEBS are complex, highly specialized multi-component
systems. Since the aim of this article is to show how causal
models can be used to investigate parameters for an ADAS
evaluation, considering real-life systems is out of scope. This
is due to limited resources (e.g., the availability of a test
infrastructure or a team of test drivers). Therefore, the focus
is on a highly simplified example, which is intended to serve
as a proof of concept.

B. Elements

Regardless of a specific scenario or technical implementa-
tion of an AEBS, a few generally applicable test parameters
can be determined. These include the velocity of the AEBS
equipped vehicle (i.e., ego vehicle) vego, the velocity of a
target vehicle (i.e., agent vehicle) vagent ahead, the available
ideal deceleration capability of the ego car aideal , the distance
between ego and agent vehicle x , and a fixed Pre-collision
Urgency Parameter (PUP). For the running example, T T C is
used as PUP due to its widespread use in practice [45]. Based
on the relative velocity between ego and agent vehicle vrel ,
the TTC can be calculated as:

T T C = −
x

vrel
= −

x
vagent − vego

(2)

Figure 2 visualizes these parameters together with the sce-
nario constellation of the running example. The experimental
setup can be interpreted as a typical car follows leading
vehicle scenario with two participants. The above parameters
form the physical base for any emergency braking problem,
are independent of each other, and causally contribute to the
same effect of interest—whether or not a collision occurred
(i.e., iscol ). A corresponding causal graph can be found in
Figure 3. Note that the node T T C refers to a constant value
specified at the time of system development (i.e., the PUP
threshold), not the value calculated continuously throughout
scenario execution.

The causal relations depicted in Figure 3 can be modeled by
the equations of motion. This is utilized later on when creating
a dataset for the parametrization of the model.
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Fig. 3. Baseline causal graph for the running example.

As mentioned above, most ADAS are susceptible to environ-
mental influences via their sensors and actuators. An example
of this is given by the actuators of an AEBS: the effective
deceleration during braking aego is a function of the ideal max-
imum possible deceleration aideal and the friction coefficient
µ between tires and the road surface. The latter depends on the
composition of the tire material and whether the road is dry,
wet, or icy. Similar considerations can be made for sensor
systems and their corresponding algorithms for processing
perceptual signals. Object recognition in an AEBS can be
realized by a camera system (which continuously monitors the
environment in the forward direction) and a neural network
for object classification (which processes each camera frame
independently). The camera image serves as a direct input to
the object classifier. Thus the quality of object recognition is
coupled with the quality of the input image. In consequence,
the object classifier is subject to environmental factors such as
rain, fog, or illumination (i.e., day and night).

In other words, environmental influences link a SUT to an
ODD, which makes them relevant for the evaluation of trigger-
ing conditions to achieve the SOTIF. While the system itself
may be functionally safe (i.e., error-free behavior spanning
from data processing to braking), the intended functionality
may be compromised in case of heavy rain (e.g., when braking
is impossible due to aquaplaning or when visibility is too
poor for object detection). Therefore, to ensure the intended
functionality of the exemplary AEBS, environmental effects
need to be considered. All of these complex interactions work
through causal mechanisms that can be modeled by causal
models (e.g., causal BNs or SCMs).

C. Simulation

As no suitable observational dataset is available, we gen-
erate artificial data for the parametrization of the proposed
causal model as well as to evaluate inference results derived
from it, the open-source high fidelity simulator CARLA1

is used. CARLA allows the implementation of a custom
AEBS, enables the simulation of environmental influences, and
supports scenario-based simulation.

In our custom implementation, emergency braking is auto-
matically initiated when two separate trigger conditions are
met at once. The first is the violation of a predefined PUP
threshold. Due to its simple implementation and robust results,
TTC is used. The second condition is the detection and correct

1https://carla.org/

classification of an object in front of the ego car as a vehicle.
To simplify the check for fulfilled trigger conditions, the TTC
is translated into a minimum distance xt tc to allow a direct
comparison with the distance at the first valid recognition of
the agent vehicle x f irst :

xt tc = |vrel · TTC| = |(vagent − vego) · TTC| (3)

The data processing pipeline of an AEBS can be partitioned
into sense, process, plan, and act according to the typical
decomposition of vehicle control architecture [46]. Figure 4
graphically summarizes explanations of our AEBS implemen-
tation presented below:
• Sense: Instead of modeling a LIDAR or RADAR for

distance measurement, the distance data provided by
CARLA is used. Therefore, x is ideal and a calculated
TTC is free of jitter. As input to the object classifier, the
frames provided by the built-in CARLA RGB camera are
used.

• Process: Each CARLA RGB camera frame is passed to
an off-the-shelf YoloV3 [47] image classifier pretrained
on real-life traffic images. Due to its usage in a simulated
environment, the classification quality decreases, yet is
still sufficient to serve as a proof-of-concept.

• Plan: Agent and ego vehicles are controlled by CARLA,
which provides the capability to follow a given lane.
As this is the only vehicle control requirement for our
AEBS apart from emergency braking, no further custom
vehicle control modules are needed. To allow the eval-
uation of braking conditions (i.e., checking the current
TTC and ongoing object classification) a custom module
is used.

• Act: Once all trigger conditions are met, the braking sig-
nal is set, manually overriding automatic vehicle control.

IV. BUILDING AND EMPLOYING THE CAUSAL MODEL

This section describes how different knowledge sources
can be used to build a causal model (RQ1) and links it
to scenario-based testing (RQ3). Since no real-life dataset
is available for the running example, the causal graph is
built based on the considerations in the previous chapter.
Parametrization is done with the help of literature, domain
expert knowledge, and data generated from a custom, causal
mechanisms-based Python script and CARLA simulations
(RQ2).

A. Building the Causal Graph

As discussed in Section III-B, a causal model used for the
assessment of the SOTIF is required to address elements of an
associated ODD. In the case of the outlined AEBS, the relevant
environmental conditions are the intensity of rain Irain , the
intensity of fog I f og , the road surface friction coefficient µ,
and whether it is day or night isday (for the sake of simplicity,
we refrain from modeling illumination conditions in more
detail, neglecting lighting angles, lens effects, blooming, and
others).

Rain, illumination, and fog directly affect the image quality
captured by the AEBS camera and thus the capability of an
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Fig. 4. Data processing pipeline of the running example.

image classifier to recognize objects. A causal expectation is
that the distance between the ego and the agent vehicle at the
time of the first valid object recognition x f irst decreases as
the environmental conditions become worse. The assumption
made throughout this article is that only the environment has
an impact on the quality of object recognition. To reduce
complexity, hardware influences such as lens effects, de-
calibration, signal degradation due to image compression,
or ML specifics like the quality of the data used for training
are ignored.

Friction is modeled to be influenced by rain. As rain inten-
sity increases, friction is expected to decrease. In consequence,
the ideal deceleration aideal decreases to a real deceleration
aego.

In general, attention must be paid when building a model
to facilitate a comprehensible, traceable, and justifiable spec-
ification of causal relations (expressed via the causal graph
and the associated causal mechanisms). For the present work,
the simplified assumptions about the problem domain, relevant
variables, and their relations were based on expert judgment.
If a causal model is to be employed in practice, thorough docu-
mentation of the development process, including participating
experts, data, algorithms, and assumptions, is required. Only
the engineering history in conjunction with the actual model
enables sufficient transparency and therefore accountability for
derived results.

The resulting full causal graph for the exemplary AEBS is
shown in Figure 5. To illustrate the ability of causal models to
combine different levels of abstraction or domains, the graph
is divided into two clusters (i.e., submodels). The ML-cluster
includes influences directly related to the neural network
used for object recognition. The physics cluster addresses the

Fig. 5. Full causal graph of the running example.

driving infrastructure (i.e., via road surface friction) and the
physical motion of the vehicles.

Table I summarizes the random variables of the model (i.e.,
the nodes in the causal graph) and gives a brief description of
their intent.

B. Building the Unconditional Probability Distributions

For the specification of realistic distributions for the exoge-
nous nodes (i.e., isday , I f og , Irain , TTC, aideal , vego, and
vagent ), expert knowledge, normative requirements for emer-
gency braking [44], typical values from literature [48], [49],
and empirical data are combined. This mixture of methods is
valid as the exogenous random variables of the causal model
are independent of each other.

The variable isday is defined to be Bernoulli distributed,
with one state each for day and night. The probability of
P(day) = 0.5319 is based on the average time between
sunrise and sunset in the city of Berlin (Germany) over the
course of one year [50].

The remaining distributions are truncated. This is due to
the fact that the support of most variables can be logically
constrained to a real-life justified range of values. Above
that, with truncation, simple sampling from these distributions
does not lead to invalid values (e.g. vego = −50.00 m s−1),
which simplifies the implementation of a data generator. The
variables I f og and Irain are modeled as truncated Pareto
distributions oriented on literature (e.g., [51]). The actual
values (i.e., 0 % to 100 %) are based on the corresponding
simulation parameters of CARLA. In real life, aideal depends
on multiple factors such as the type of vehicle (e.g., pickup
or small car), its age (e.g., via brake wear), or the road
surface. Due to the lack of real-life data, aideal is estimated
to be a truncated normal distribution with a mean value of
-5.0 m s−2—in line with the required minimum deceleration
given by ISO 22839. The mean value of 5.0 s for the PUP
TTC is taken from the same standard [44]. The distributions
of vego and vagent are oriented on a traffic study by the
German road authority [52]. However, the lower truncation of
the distributions differs between ego and agent vehicle. This
is because the assumption made for the running example is
that the ego vehicle is always moving, while the agent vehicle
can be stationary to account not only for moving traffic but
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TABLE I
RANDOM VARIABLES OF THE RUNNING EXAMPLE

TABLE II
EXOGENOUS NODES OF THE RUNNING EXAMPLE

also for approaching a stationary agent vehicle (e.g., the end
of a traffic jam).

Table II summarizes the resulting distributions together with
the knowledge bases used to define them.

C. Defining Causal Mechanisms

Causal mechanisms specify how a conditional distribution is
entailed by the distributions of its parent nodes. In the context
of this article, they are either defined as deterministic relations
via expert knowledge (i.e., for µ, aego, and xt tc) or learned by
algorithms from artificially generated data (i.e., for x f irst and
iscol ).

According to [49], a typical friction coefficient µideal on a
dry road (i.e., for Irain = 0.00%) is 0.70. Rain decreases
friction down to 0.28 in the worst case (i.e., for Irain =

100.00%). We assume that this influence is nonlinear and
includes saturation effects. Accordingly, this mechanism was
modeled using a sinusoidal interpolation between the two
given extreme values.

The causal mechanism for the real deceleration aego con-
siders both the ideal friction µideal and real friction µ. It is
modeled by a linear interpolation starting from the ideal
deceleration aideal as follows:

aego = aideal ·
µ

µideal
(4)

The causal mechanism for xt tc is only dependent on its
parental nodes following Equation 3. The causal mechanism
found in the ML-cluster of the full causal graph is more
complex: x f irst is the result of the impaired perception of a
scene and its effects on object classification. The correspond-
ing mechanism converts adverse weather conditions (i.e., rain,
fog, illumination) and their effects on an ML algorithm, into
a metric for triggering a vehicle safety function. This process

can be defined as a structural equation:

x f irst := q f (isday, I f og, Irain)+ ux f irst (5)

The term ux f irst is used to adjust for noise in the data, and
therefore equation 5 is exemplary modeled as an additive noise
model (see also Section II-B). The exact functional relation-
ship between isday , I f og , and Irain might not be specifiable
a priori and, in this case, is learned from data. In general,
a definition of a structural equation (and in consequence the
graphical structure) may in real life be justified from known
technical or physical specifications, or, as in this example,
defined via expert judgment. It should be noted that each
mechanism affects the overall model performance and the
reliability and validity of predictions. In practice, an expert-
based definition of causal relations and the treatment of noise
terms requires special attention when building the causal
model. For the running example, the causal mechanism of
x f irst is expected to be expressible by a simple regression
model (i.e., third-order polynomial). Due to a lack of real-life
data, data generated from a controlled experiment run with
the CARLA simulator is used to fit this causal mechanism.
The experimental setup follows Figure 2 with a stationary
agent vehicle. A scene catalog is created by a variation of the
environmental parameters such as rain intensity, fog intensity,
and isday as well as the distance between the ego and agent
vehicle. For each combination of parameters, a single RGB
camera frame is captured and processed by the pre-trained
YoloV3 network used for our custom AEBS (see steps sense
and process in Section III-C). If the agent vehicle is correctly
detected and classified, the current recognition confidence
(i.e., the output of the classifier) along with the configuration
of this scenario constellation (i.e., isday , I f og , Irain , and
x) is logged. From this log data, the functional relationship
from Equation 5, and thus the causal mechanism for x f irst ,
is estimated by a 3rd-order polynomial regression on x f irst .
The mean ratio of log data and prediction is 1.0004, indicating
a good approximation on average.

Figure 6 shows the intuition of the experiment for three
exemplary environmental configurations, based on an existing
CARLA preset called WeatherId.2 Figure 7 shows the original
data as well as the results of the fitted regressions—split into
day and night to allow visual access to the 4-dimensional data.

The causal mechanism of the main node of interest iscol
can also be formulated ad hoc as a structural equation:

iscol := f (x f irst , aego, xt tc)+ uiscol (6)

Again, in the absence of real-life data, artificial data is
created to determine the functional relationship in this equation
(this time between x f irst , aego, and xt tc). Here, it is sufficient
to run a causal mechanism-based data generator written in
Python. The corresponding code can be accessed in our
GitHub repository.3 In this script, two moving vehicles are
considered. To reduce the overall complexity, it is assumed
that the ego and agent vehicles each move at a constant,
initial velocity. Once all triggering conditions of the AEBS

2https://carla.readthedocs.io/en/stable/carla_settings
3https://github.com/othr-las3/aebs-simulator
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Fig. 6. Experimental setting of the data generation process for the causal mechanism of x f irst .

Fig. 7. Regression results for x f irst .

(see Section III-C) are fulfilled, emergency braking for the
ego vehicle is activated, constantly decreasing its velocity.
Each data point is generated according to the following
procedure:

1) Sample an initial distance xini t between the ego and agent
vehicle.

2) Sample one value from each exogenous node distribution.
3) Compute the values of x f irst , aego, and xt tc based on the

respective causal mechanisms.
4) Run a virtual simulation and check whether or not a

collision (i.e., the distance between vehicles is lower than
0.00 m) occurs within a predefined duration of 100 s and
a time resolution of 0.1 s.

5) Log the initial conditions (e.g., x f irst , aego, xt tc, and
iscol ) and the outcome of a testrun (i.e, iscol ) as a data
point.

In the above-outlined data generation process, xini t is mod-
eled as a truncated uniform distribution. A constraint for it is
that the initial distance must be large enough so that no trigger
condition for emergency braking is met with the initial values,
but narrow enough so that emergency braking can be activated
on average over the duration of a simulation run. The lower
limit of the initial clearance can be given by:

xini t_min = min(xt tc_max , x f irst_max ) (7)

Therefore, the upper limit for the proxy metric xt tc is
given by the maximum relative speed and the maximum TTC,
whereas the upper limit for the triggering condition x f irst can
be taken from the fitted polynomial of its causal mechanism.
As Figure 7 shows, the ideal environmental configuration θ

is achieved at day with no rain and no fog. This means that
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xt tc_max and x f irst_max can be computed as:

xt tc_max = (vego_max − vagent_min) · T T Cmax

x f irst_max = arg max
θ

fx f irst (θ) (8)

For the running example, the lower bound for xini t is
calculated to be 380.00 m. The upper limit is empirically
determined to be 500.00 m.

D. Implementing the Causal Model

In Section II-B, SCMs and BNs were introduced as
established mathematical frameworks for causal models.
Implementations of SCMs often resort to Probabilistic Pro-
gramming Languages (PPLs) like pyro4 or pymc,5 which
allow a direct representation of structural equations. A major
advantage over using discrete BNs is that the estimation of
continuous conditional distributions is framed as an optimiza-
tion problem. Most available PPL libraries do not support
causal inference out of the box but can be adjusted in
principle. To work with (discrete) BNs, established libraries
include open-source packages like pgmpy6 and pyAgrum7 and
commercial software suits like BayesServer8 that either take
CPTs as inputs or can be used to learn probability distributions
or a causal structure algorithmically from data. With regard
to causal inference, working with discrete BNs is the most
common approach. Therefore, to allow low-effort replication
of reported results, we use BNs implemented in pyAgrum
version 1.4.1.

The parametrization outlined in the previous
Sections IV-B and IV-C is based on continuously-valued
data for most nodes in the model (i.e., all nodes apart
from the boolean random variables isday and iscol have
a continuous value range). To estimate the corresponding
CPTs, this continuous data needs to be discretized. The
specification of the limits, bin sizes, and the discretization
strategy (e.g., equal counts or equal ranges) directly affects
the quality of the model. On the one hand, a fine-grained
approach increases the overall expressiveness of the model
but leads to extreme runtime and memory overhead each time
probabilistic inference is run. On the other hand, a coarse
granularity may oversimplify causal mechanisms, resulting
in a loss of insight. An empirically found discretization into
11 equal-width bins yields the best results for the running
example. Figure 8 shows the resulting prior probability
distributions of the inferable model.

E. Inference of the Causal Model

As stated in Section II-B, counterfactual reasoning faces
many challenges in practice. As a result, not every available
package supports it. Therefore, in this section, the focus is on
associational and interventional inference.

4https://github.com/pyro-ppl/pyro
5https://github.com/pymc-devs/pymc
6https://github.com/pgmpy/pgmpy
7https://agrum.gitlab.io/
8https://www.bayesserver.com/

Note that due to the discretization, point estimates (e.g.,
vego = 25.5 m s−1) are not possible. Moreover, in the queries
below, the indices max or min refer to the respective discretiza-
tion interval and its values (i.e., B1 or B11, respectively). In the
case of vego, the minimum value vego,min = B1 covers veloc-
ities in the range of 16.63 m s−1 to 20.20 m s−1, followed by
B2, which covers the interval of 20.20 m s−1 to 23.74 m s−1.
The maximum value vego,max = B11 is defined for the range
of 52.02 m s−1 to 55.56 m s−1.

In the following, two distinct usages of causal model
inference are presented—predictive and diagnostic queries.
The distinction is made in terms of the actual use case and
purely semantically. In this article, collision is the main effect
of interest. Predictive queries therefore focus on the change of
the probability distribution for the node iscol based on fixed
causes (i.e., outcome prediction). Diagnostic queries consider
a known state of iscol and investigate individual parameter
configurations that contribute to the effect of interest (i.e.,
cause investigation).

1) Predictive Queries: With respect to the AEBS under
investigation, some basic associative questions of interest
arise. These can be formulated in natural language and as
probabilistic queries. For example:

Q1 What is the prior (i.e., unconditional) probability for a
collision? P(iscol = Y es)

Q2 What is the probability of a collision under ideal envi-
ronmental conditions?
P(iscol = Y es|isday = Y es, Irain = Irain,min, I f og =

I f og,min)

Q3 What is the probability of a collision under the worst
environmental conditions?
P(iscol = Y es|isday = No, Irain = Irain,max , I f og =

I f og,max )

Q4 What is the probability of a collision at the maximum
relative velocity?
P(iscol = Y es|vego = vego,max , vagent = vagent,min)

Apart from that, interventional questions are also of partic-
ular interest. For example:

Q5 What is the estimated effect on a collision if braking capa-
bility is maximized? P(iscol = Y es|do(aego = aego,max ))

Q6 What is the estimated effect on a collision if the road
surface allows ideal friction independent of rainfall?
P(iscol = Y es|do(µ = µmax ))

Q7 What is the estimated effect on a collision if the vehicle
has bad tires? P(iscol = Y es|do(µ = µmin))

Q8 What is the estimated effect on a collision if object
recognition is optimized? P(iscol = Y es|do(x f irst =

x f irst,max ))

Q9 What is the estimated effect on a collision if object recog-
nition is ideal and vehicle traction is poor? P(iscol =

Y es|do(x f irst = x f irst,max , aego = aego,min))

Table III summarizes the queries above and presents their
results. Note that only the shortened conditional statement
isday = Y es, Irain,min, I f og,min instead of the entire query
P(iscol = Y es|isday = Y es, Irain = Irain,min, I f og =

I f og,min) is given due to space restrictions. To put the indi-
vidual results in perspective, the ratio between the respective
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Fig. 8. Fully parametrized and inferable causal model of the running example.

TABLE III
RESULTS OF PREDICTIVE QUERIES

posterior and prior probabilities of a collision is included.
Ratios below 1.00 indicate a decreasing collision probability
(i.e., a collision becomes less likely), while ratios above
1.00 indicate an increasing collision probability (i.e., a col-
lision becomes more likely) with a given observation or
intervention.

Inference results directly yield practical interpretation. For
example, the result of query Q4 states that the likelihood of a
collision increases by a factor of 16.95 at a maximum relative
speed. Likewise, the result of Q2 indicates that a collision
is 2.7 times less likely under optimal weather conditions
than under the general, unconditional estimate. In particular,

the results of the interventional queries Q5 through Q9 may
be important during product development or causal model
verification. The causal assumption that poor traction (e.g., due
to wrong or old tires) leads to an increased braking distance
and thus to a higher collision probability, is confirmed by the
results of Q6 and Q7. Similarly, Q8 suggests that improving
image processing alone might not be sufficient to significantly
improve the overall AEBS performance.

2) Diagnostic Queries: In the running example, diagnostic
queries amount to the computation of posterior distributions
for different nodes based on a (non-)observed collision. The
queries can be written as P(xi |iscol = Y es) or P(xi |iscol =

No), respectively, with xi referencing the individual nodes
in the causal model. Figure 9 shows the change in posterior
distributions depending on whether a crash was observed
(central bar) or not (right bar). For each node xi , the prior
unconditional distribution P(xi ) (left bar) is added as a refer-
ence.

The results support the causal expectations. For example,
if an accident is observed, the probabilities for lower velocities
of the agent vehicle increase, while the distribution of vego
shifts toward higher velocities. This is consistent with the
general assumption that a higher vrel increases the overall
probability of an accident.

Moreover, diagnostic queries can be used to find the most
likely explanation (i.e., the most likely parameter configura-
tion) for a given outcome. For example, when considering
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Fig. 9. Probability distributions given a collision (blue), no collision (red), or no condition (yellow).

the influences in the ML-cluster (see Fig. 5), the following
questions might be of interest:
Q10 What is the most likely observed configuration of envi-

ronmental factors (i.e., isday , Irain , and I f og) for optimal
object recognition? arg maxθ1 P(x f irst = x f irst,max |θ1)

Q11 What is the most likely observed configuration of
environmental factors (i.e., isday , Irain , and I f og) for
unsuccessful object recognition? arg maxθ2 P(x f irst =

x f irst,min|θ2)

The computation of these queries is based on [25, p. 26].
Their results support the naive causal expectations. A success-
ful object recognition can be explained by the configuration
θ1 = {isday = Y es, I f og = I f og,min, Irain = Irain,min}.
Likewise, in case of unsuccessful object recognition, the
most likely explanation is θ2 = {isday = No, I f og =

I f og,max , Irain = Irain,max }.

F. Checking Plausibility

A common problem in model-based approaches is the
fidelity gap between a model and the real world. While in some
cases an abstraction of complex processes and interactions
is beneficial (e.g., in terms of runtime or communication),
it usually affects model validity. In this section, the plausibility
of inference results of the causal model is assessed with
individual CARLA simulations according to Section III-C. The
goal is to build confidence in inference results and thus in the
validity of the whole model-based approach.

The exemplary scenario setting is based on the test of
functional ability provided by [44]. Accordingly, the scenario

storyline is that an (ego) vehicle approaches a slower (agent)
vehicle on a highway. The ego vehicle is configured to drive at
a velocity of 40.0 m s−1; the agent vehicle is set at 18.0 m s−1.
For the causal model, these values translate into bin B7 for
vego with a range of 37.88 m s−1 to 41.42 m s−1 and bin B4
for vagent with a range of 15.16 m s−1 to 20.21 m s−1.

Concerning the configuration above, the following causal
queries of interest are evaluated:

Q12 What is the probability of a collision with no rain
in the daytime? P(iscol = Y es|vego = B7, vagent =

B4, Irain = Irain,min, isday = Y es) = 12.72%
Q13 What is the probability of a collision for heavy rain

in the daytime? P(iscol = Y es|vego = B7, vagent =

B4, Irain = Irain,max , isday = Y es) = 92.67%

While the query results are added directly to the listing
above (Q12 and Q13), the CARLA simulation results are
shown in Figure 10. There, the velocity of the ego vehicle
vego, the velocity of the agent vehicle vagent , the bumper-to-
bumper distance x , and the deceleration of the first-person
vehicle aego are plotted over the simulation time. The time
at which AEBS activation is triggered by a violation of a
minimum TTC associated with a successful object recognition
is highlighted.

The model estimates of Q12 and Q13 show that, compared
to an average weather condition (i.e., in terms of the database
and the assumptions made in Section IV-B), heavy rain signif-
icantly increases the probability of a collision in the highway
scenario above.
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Fig. 10. Simulation results for selected queries.

When the simulation results are analyzed, the same tendency
for these configurations (i.e, Q12 and Q13) can be seen. Note
that the causal mechanisms derived during model construction
do not exactly match with the CARLA implementation, but the
principal effects of rain hold true. While for perfect weather
conditions (Q12) an accident is avoided (i.e., Figure 10 left),
the decreased friction and therefore impaired braking capabil-
ity of the AEBS (i.e., Figure 10 right) result in a collision.

V. CHALLENGES OF THE CAUSAL MODEL APPROACH

The proposed approach is subject to some challenges. In this
section, these challenges are briefly discussed with regard to
the running example.

A. Challenges Related to the Sources of Knowledge

Possible Sources: The most critical part of the approach is
that of building the causal model. This includes the specifica-
tion of parameters that need to be considered, the definition
of their interactions, and the parametrization of the resulting
graph. For this, at least one thing is required: datasets or
domain experts. Human expertise is often available, but may
still pose a challenge—a structured approach is necessary to
elicit the available knowledge and form a consensus when
opinions differ. Datasets are easier to manage, but often com-
prehensive matching and publicly available real-life datasets
are not accessible, as is the case for the running example in
this article.

Source Mixture: In the course of this article, we com-
bined both potential sources: data, and domain knowledge.
This includes published theoretical considerations on parame-
ter thresholds, various weather databases, and artificial data
generated based on the CARLA simulator and the causal
mechanisms of the model. On the one hand, this enables
rapid prototyping of the causal model and adjustment of its
level of detail at will. On the other hand, this aggravates the
challenge of ensuring quality aspects such as adaptation to
the use case or appropriate model complexity. Depending on
the actual structure of the causal graph and the intended use
of the model itself, mixing different knowledge bases might
not be justified–for example, when specific hardware aspects
of a sensing system of an SUT are modeled. Depending on

the granularity or the level of detail, a resulting (part of
the) causal model might be implicitly vendor-specific. When
using algorithms to learn either the structure or the causal
mechanisms of a model, the usual quality aspects regarding
data (e.g., accuracy, representativeness, completeness, or diver-
sity) need to be addressed. This may also justify or reject
individual, local assumptions of the model (e.g., structure
or the influence of noise) and, in consequence, affect the
robustness and generalizability of model insights.

B. Challenges Related to the Model Development Lifecycle

1) Intended Use Case: Causal models follow a particu-
lar development lifecycle [54, Ch. 10]. In the context of
system safety, the predominant guiding rule is the intended
use case [11]. It structures which sources of knowledge are
relevant and have implications on the actual modeling process
and subsequent use of the model.

2) Subgraphs: In the running example of this article, the
identification of different subgraphs proved valuable. More-
over, it enabled the usage of independent data for model
parametrization. In larger graphs, extending nodes and mech-
anisms by specifying attributes, metadata, or clusters helps
to structure model development. This can improve the devel-
opment process itself. We can take as an example a graph
that is divided into a sense and a processing cluster. Sep-
arating the domains allows to parallelize data collection or
generation, expert elicitation (including team staffing), and
model validation or verification. Note that the individual
subgraphs still need to be developed in accordance with the
predefined intended use and that the combination of those
subgraphs to a main graph of interest needs to be handled
with care. In practice, the latter requires joint meetings of the
experts involved in model construction to reach a consensus.
Aggregating opinions, data, or even partial models can be
improved by resorting to specialized tools and methods [40].

3) Validation: Once a causal model has been developed,
validation and verification are required. In the validation
phase, the model and its underlying assumptions are chal-
lenged—the model is checked to see whether it matches
its use case. This works through typical methods such as a
model walk-through, stakeholder interviews, or a review of
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intermediate development products (e.g., submodels). Causal
models, as used in the present work, are an abstraction of
real ADAS or ADS and their expected interaction with a test
environment. They can therefore be considered as “virtual
proving grounds” for which the known problems (e.g., face
validity, credibility, fidelity) apply [55] and which need to
be accounted for during model construction. Even if the
validation phase shows a good match with the use case,
it cannot be guaranteed that all causally relevant influencing
factors have been considered.

4) Verification: While validation activities of other disci-
plines such as software development can be well transferred
to causal models, verification - checking the accuracy of
the realization - poses particular challenges. Data may be
inappropriate for parameterizing or learning a causal model.
For example, data may have been collected only during the
day, but the assumptions and use case of the model require
nighttime scenarios to be considered. In the case of missing
or sparse data, probability distributions cannot be determined
without bias - human experts are required to “fill in the gaps” -
which is subject to subjective judgement [56]. The robustness
of model estimates needs to be challenged. This may be done
via a sensitivity analysis [24, Sec. 5.7].

5) Special Case Structure: Verification and validation also
involve structural considerations. In causal models, the direc-
tion of an edge is of great importance as it specifies the inputs
and outputs of causal mechanisms. Here, neither algorithms
that restrict themselves to learning based on the correlation
between variables, expert judgment, nor group consensus
guarantee correct (i.e., causal) direction. While the orientation
of an edge might be trivial for most cases (e.g., those supported
by mathematical equations), it can be unclear for complex
parameter configurations (e.g., cognitive processes of a human
driver and their impact on the probability of traffic jam).

6) Documentation: For proper validation, integration, and
consequent productive use, continuous documentation of the
model development process needs to be available. This enables
practitioners to support claims for or against the use of a model
on an objective basis. Documentation throughout the develop-
ment lifecycle includes structured management of data, expert
opinions, and secondary information. Moreover, a process for
defining and managing consistent, computer-processable meta-
attributes for model parameters, mechanisms, (sub)models,
and development decisions is required. Adequate consideration
of both areas is a prerequisite for credible causal model
development.

C. Challenges Related to Scenario-Based Testing

1) Basis: The aim of scenario-based testing with regard to
ISO 21448 is to uncover and subsequently manage unknown
hazardous situations. Note that the overall scenario content
(e.g., the storyline) is often predefined. A challenge arises for
the appropriate parametrization of a scenario.

2) Prevalent Approach: In a data-driven approach, parame-
terization is done by defining a proxy metric for the criticality
(and thus test relevance) of a scenario [7], [13], [14]. Based
on the chosen metric (e.g., TTC), datasets, simulation results,

and real-world situations can be evaluated. Once a predefined
threshold is reached, the current constellation of parameters is
considered a valuable scenario. By varying either the proxy
metric or the variety of traffic situations offered, a catalog of
scenarios can be created. This converts previously unknown
hazard scenarios into known ones that can be used as a test
database.

3) Model-Based Approach: The workflow in this article can
be interpreted as a model-driven approach to scenario-based
testing [11]. By constructing a causal model of the SUT,
a parameter space of relevant influences on system safety
is implicitly defined. Therefore, model insights can be used
to parameterize existing scenarios, as done in Section IV-F.
However, a causal model-based approach can only be used to
find and prioritize valuable test parameters and their combi-
nations if these are part of the model. The process outlined
in [11] suggests using secondary sources of information
(e.g., an hazard analysis and risk assessment) in addition to
domain experts and data; yet, it does not guarantee model
completeness. Moreover, a structured, algorithmic approach
to identifying test cases remains to be explored. Similarly,
metrics that consider SUT agnostic variables to define a robust-
ness index [57] would be helpful to compare model insights
with real-world data and simulation. Note that the proposed
method supports scenario-based testing in a structured way
by building a “virtual proving ground” based on existing
knowledge. A subsequent evaluation of the SUT based on
the generated insights of the causal model (e.g., potential
triggering condition and its mitigation) is still necessary [12,
Clause 12].

D. Implications With Regard to Safety

Causal models based on SCMs or BNs are suit-
able to encode knowledge from different sources across
problem-relevant domains into a single, inferable model [11].
This is a desired property in the context of ISO 21448, as it
is a prerequisite to combine the capabilities and test-relevant
properties of a SUT with an ODD and/or a scenario. It allows
addressing safety from various perspectives. Firstly, the model
itself may contain variables that are indicators for the perfor-
mance of the SUT or for criticality phenomena [9]. Queries
can then be structured to estimate the magnitude and direction
of causal effects on these variables, which consequently may
be used to derive safety principles [34] or guide engineering
efforts (as shown throughout this work). Secondly, causal
models describe known relevant variables and their inter-
actions in a qualitative and quantitative manner. Moreover,
exogenous (i.e. unknown, confounding influences) can be
included and considered during model inference. A set of
causal models, therefore, is implicitly able to document known
testing constellations (e.g., scenarios) and allows supporting
the SOTIF activities related to the investigation of hazards
implied by the four scenario categories of ISO 21448 [12,
Sec. 4.2.2]. This includes investigating potential triggering
conditions in a structured manner. Thirdly, the development
process of a causal model itself enables a rapid feedback loop
across stakeholders. Having experts from various departments
(e.g., functional safety experts, sensor experts, physicists,
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etc.) simultaneously develop a causal model in an iterative
process [40] encourages discussions that incorporate differing
points of view. From the authors perspective, this is different
from current practices which are often requirements driven and
staged (i.e., centralized responsibilities for different aspects
of product development) and lack short feedback loops as
well as a shared view on potential emerging insufficiencies.
As a consequence, safety-critical constellations are expected
to be discovered early on if causal models are used as an
accompanying methodology throughout the common V-model
development lifecycle.

VI. CONCLUSION

Due to the rapid development of ADAS and ADS, new
challenges for ensuring their safety emerge. Causal models
propose one way to address these challenges. Their value
comes from their versatility and their ability to include data
and expert knowledge to form a probabilistic model of a SUT.

Even systems with a low level of driving automation such
as AEBS are based on a complex interaction of hardware
and software. In this article, such a reasonably simple sys-
tem is considered as an example (see Section I) for the
combination of causal models and scenario-based testing of
ADAS and ADS. A causal model is created by generating
artificial datasets based on physical considerations, literature,
and normative specifications (addressing RQ1). In the context
of early-on product development as well as scenario-based
testing according to ISO 21448, engineering questions are
derived. By converting these questions from natural language
into executable probabilistic queries, causally justified insights
about the system are generated (addressing RQ2). Those
insights are then used to parameterize an existing scenario
template. A subsequent simulation of selected test cases in
CARLA verified the derived causal insights (addressing RQ3).

While this article gives a proof-of-concept, additional
efforts are required to set up a systematic development
and test lifecycle for causal models to enable end-to-end
use in an industrial setting. Future research within the
“HolmeS3” project will address process and tooling require-
ments and establish a fundamental development infrastructure.
The intended development activity includes three clusters:
application, methodology, and evaluation. In the applica-
tion cluster, the focus is on providing tools for expert and
data-based model creation as well as model inference. This
is accompanied by a methodology cluster that structures the
overall model-to-test lifecycle covering processes for conduct-
ing expert elicitation, incorporation and processing of data, and
general quality aspects of causal models. Finally, the evalua-
tion cluster aims at the definition, execution, and management
of model and scenario databases. Moreover, additional work
is required to investigate the appropriateness of the proposed
method for complex, real-life systems. Of particular interest is
the robustness of model assumptions and the fidelity of model
insights compared to an actual verification (e.g., via simulation
or a test drive).

The present article shows that a causal model-based
approach offers great potential for supporting the development
cycle and safety assessment of modern vehicles, but caution

is warranted. In other words: a model-based approach is good
but only as good as the model itself.

ACRONYMS

ADS Automated Driving Systems; ADAS Advanced Driver
Assistance Systems; AEBS Advanced Emergency Braking
System; BN Bayesian Network; FVCMS Forward Vehicle
Collision Mitigation Systems; TTC Time To Collision; ACE
Average Causal Effect; CPT Conditional Probability Table;
DAG Directed Acyclic Graph; DDT Dynamic Driving Task;
ML Machine Learning; ODD Operational Design Domain;
PUP Pre-collision Urgency Parameter; PPL Probabilistic
Programming Language; SOTIF Safety Of The Intended
Functionality; SUT System Under Test; SCM Structural
Causal Model
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