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SHARD: Safety and Human Performance Analysis
for Requirements in Detection

Ken T. Mori and Steven Peters

Abstract—Automated driving requires reliable perception of the
environment to ensure the safety of the driving task. One common
perception task is 3D object detection, which aims at perceiving
location and attributes of dynamic objects. This task is typically
evaluated on different benchmark datasets, which each propose
different metrics. However, these different metrics generally lack
consistency and bear no relation to safety. Most notably, there is
a lack of consistent definitions of pass/fail criteria for any given
detection metric. In this work, the issue is addressed by systemat-
ically considering safety and human performance across different
aspects of the object detection task. This approach yields inter-
pretable detection metrics as well as thresholds for pass/fail cri-
teria. Furthermore, a validation approach leveraging a prediction
network is introduced and successfully applied to the requirements.
A comparison of existing detectors shows that current perception
algorithms exhibit failures for a majority of objects on the nuScenes
dataset. Therefore, the results indicate the necessity of explicit
safety consideration in the development of perception algorithms
for the automated driving task.

Index Terms—Environment perception, object detection,
requirements, testing.

I. INTRODUCTION

R ECENTLY, there has been considerable interest in the field
of automated driving (AD) [41]. However, the introduction

of AD requires a safety assurance which demonstrates a positive
balance of risk [24]. This safety assurance of AD is commonly
considered in terms of safety outcomes of driving such as the
frequency of accidents [40], [67].

While this approach is applicable to test the entire AD
system, it is not applicable to all components of a modular
architecture. However, testing an AD system with respect to
its internal structure is beneficial to understand performance
bounds [89]. This is in line with the demands of the safety of the
intended functionality (SOTIF) to test a perception subsystem
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separately [37]. We assume the simple and common system
architecture of a functional decomposition into Sense-Plan-Act,
where the sense module includes the task of perception [2].
The interface between perception and planning is commonly
represented as an object list [36]. The corresponding perception
task of classifying and localizing objects is object detection, for
which deep neural network (DNN) have emerged as successful
solution [27].

Both the training and testing of detectors is typically per-
formed on datasets [4]. These evaluate detectors in an offline
and open-loop setting separately from the driving function.
Typical benchmark datasets for 3D object detection in automo-
tive context include [12], [29], [87]. Such datasets generally
define the perception task as well as their own metrics for the
evaluation. In doing so, datasets have previously driven research
in the field of computer vision including the task of object
detection [52].

However, common detection evaluation metrics neglect the
aspect of safety for the driving task [95]. This raises the concern
that perception systems may be underspecified with regard to
safety [21]. While proposals such as [69], [95] have been made to
incorporate safety, the metrics remain inconsistent and have not
been widely adopted. In addition, human performance on these
metrics is currently largely unknown [74] and not considered.
Finally, previous efforts have focused on the definition of metrics
without defining clear requirements in the form of pass/fail
criteria.

Therefore, the objective of this work is to incorporate safety
into 3D object detection metrics. Specifically, we present
three contributions. Firstly, we propose and apply a principled
methodology to elicit detection requirements. Secondly, we
provide a validation methodology and validation results for these
requirements. Finally, the proposed requirements are applied to
baseline object detectors to evaluate their performance.

The methodology reconsiders the entire object detection
pipeline by decomposing it into interpretable aspects. For each
aspect of tracking, association, localization and velocity, human
detection performance is estimated. The human errors are paired
with conservative estimates to include safety. This yields quan-
titative requirements for each aspect, which are substantiated
by an argumentation. The validation applies a recent validation
methodology which leverages a DNN prediction component.
Requirements are considered valid if they do not affect the pre-
diction component trained on human behavior. This successfully
reconciles the requirements with context-aware DNN, ensuring
interpretability, simplicity and validity.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0654-0684
https://orcid.org/0000-0003-3131-1664
mailto:ken.mori@penalty -@M tu-darmstadt.de
mailto:ken.mori@penalty -@M tu-darmstadt.de
mailto:steven.peters@tu-darmstadt.de
https://doi.org/10.1109/TIV.2023.3320395


MORI AND PETERS: SHARD: SAFETY AND HUMAN PERFORMANCE ANALYSIS 3011

II. RELATED WORK

This section first focuses on the aspect of safety and reliabil-
ity as defined in literature. Subsequently, prevalent perception
metrics on benchmark datasets and recent safety aware metrics
are discussed.

A. Reliability and Safety

Generally, the concept of reliability deals with the concept
of failures, while safety deals with the consequences. Safety is
the capacity of the system to not endanger persons for specified
time and conditions. Reliability is the ability or probability of a
system to perform its functions as specified by the requirements
without failure [94]. The probability expressed as failure rate
can be used for the estimation of the reliability [38]. A risk
is understood as the severity of a failure multiplied with its
probability expressed as a failure rate [84].

Within the context of automated driving, accidents have been
used for the risk assessment of automated driving functions [97].
An alternative is to use criticality metrics as surrogate metrics
to quantify the risk of actors [101]. Specifically for the context
of perception, the SOTIF considers performance limitations of
the systems which may lead to hazardous behavior. The SOTIF
explicitly lists examples for perception limitations such as incor-
rect classification, incorrect measurements, incorrect tracking
or misdetection [37]. However, no metrics for quantifying these
aspects are provided.

B. Benchmark Dataset Evaluation Metrics

Perception evaluation is typically performed on benchmark
datasets, which aim to produce a ranking between different
methods. The object detection and the tracking task have distinct
metrics over which a brief overview is provided.

The first step in computing a metric is to associate the
estimation with the ground truth based on a distance metric.
Positive and negative samples are defined based on arbitrary
thresholds [36]. The common object detection metric based on
this concept is average precision (AP) [65], first introduced by
the Pascal Visual Object Classes (VOC) challenge. The AP is
obtained by using a detectors ranked output and averaging pre-
cisions over multiple recall levels [25]. Common modifications
such as mean average precision (mAP) include averaging over
different matching thresholds and classes [20], [53].

The multiple object tracking accuracy (MOTA) metric [7] is
the most commonly applied metric for tracking [57]. In addition
to false positive (FP) and false negative (FN) samples considered
in detection, mismatches are also included in a sum which is then
divided by the number of ground truth (GT) objects [7]. Similar
to detection, the MOTA can be modified by integrating over
multiple recall values or scaling with the recall [57]. The higher
order tracking accuracy (HOTA) metric proposes to provide and
re-weight different interpretable components for tracking [56].

True positive (TP) accuracy such as localization accu-
racy can be indirectly integrated by averaging over different
matching thresholds. However, more direct consideration is
given by metrics such as multiple object tracking precision

(MOTP), which assesses the localization precision of matched
objects [7].

Automotive datasets for 3D object detection and tracking
are heavily influenced by these prevalent metrics originating
from 2D computer vision. AP has become the de facto standard
adopted directly by KITTI [29] and A3D [68]. Variants of AP
have been proposed by modifying the matching procedure [12],
[87] or emphasizing object orientation [59], [87]. As with the
detection task, variants of MOTA metrics are adopted to the
automotive domain with only slight modifications [12], [15].
One notable exception is nuScenes [12], which incorporates true
positive (TP) metrics into a weighted average named nuScenes
detection score as its main metric.

Overall, typical perception metrics emphasize the average
performance on a single measure without consideration of
safety [95], [102].

C. Safety Aware Metrics

While not typically included in benchmarks, other metrics
considering the driving task and its safety have been proposed.
While they are not within the scope of this work, several works
such as [6], [71], [76], [91], [95] attempt to focus the perception
evaluation on objects relevant for collision avoidance.

Other works attempt to consider safety aspects by using
heuristics. Examples include weighting a safety metric with the
perception time [95]. Other options include directly evaluating
the time until the first detection or between two detections of the
same object [12]. Other works additionally consider safety by in-
cluding a time to collision (TTC) either to weight objects [103] or
for visual comparison [58]. The question of metric thresholds is
addressed in the context of associating detected and GT objects.
Different thresholds on egocentric distance [5] or longitudinal
and lateral distance to the ego [23] have been proposed. However,
even if thresholds are provided, they remain arbitrary.

Attempts to avoid heuristics are made by directly consider-
ing the downstream task of planning. The Planning Kullback-
Leibler divergence (PKL) metric is proposed to consider the
effect of detection errors on a planner to judge their severity [69].
It has since been adopted by the popular nuScenes detection
benchmark [64]. Similar concepts have also been applied to
study the sensitivity of a specific planner to perturbed perception
results [33], [113]. Alternatively, this process can be used to
derive acceptable perception perturbations for a single sce-
nario [70]. However, this approach is limited by the availability
of the planner [103]. Furthermore, it suffers from ambiguities
and challenges present in the planning task [31]. In addition,
the validity is limited to the specific implementation of the plan-
ner [70]. While safety is considered in these metrics, no generally
applicable pass/fail criteria for perception are identified.

III. METHOD

First, the objectives and general assumptions are discussed.
Next, perception requirements are elicited for tracking and lo-
calization as well as velocity estimation which are relevant to
collision avoidance.
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A. Method Overview

In this section, a brief overview over the method is provided.
Before the actual methodology, general considerations such as
the objectives and the principles applied are presented. This is
followed by the method proposed in this work. First, differ-
ent aspects related to the tracking of objects are incorporated.
Secondly, the association procedure between GT objects and
detections is considered in detail. Finally, the requirements
for the collision relevant attributes of an object are derived.
Hereby, different attributes such as localization and velocity are
considered separately.

B. General Considerations

This work assumes an offline evaluation of a 3D object list
with bounding boxes. Detection confidence is not required, as
failures are determined for a single object list. If confidence
scores are present, the confidence threshold is optimized with
regard to the final metric as in [65], [69].

Following ideas from localization recall precision (LRP) [65]
and nuScenes TP metrics [12], each failure is designed to be in-
terpretable. To allow interpretability, each attribute is considered
separately. The objective is to identify metrics with thresholds
defining pass/fail criteria for each attribute. All errors and cor-
responding requirements indicate standard L1 distances for the
physical attributes in one-dimensional metric space. For brevity,
only attributes which are directly relevant to collision avoidance
are presented. More specifically, the attributes considered are
localization and velocity.

To incorporate safety, conservative estimates are applied in
this work. As noted by [5], the direction of an error may not be
symmetrical regarding the safety consequences. For instance,
overestimation of the distance to an object is more dangerous
than underestimation. To account for this fact, this work only
allows errors in direction of the conservative estimate which is
also defined for each criterion.

The human baseline has previously been considered for driv-
ing performance [67] and as reference to plausibilize perception
metrics [69]. In this work, we leverage the human performance
to distinguish acceptable from unacceptable errors and thus
define pass/fail criteria. In order to guarantee a positive risk
balance, the human performance may be overestimated, but
never underestimated. Therefore, the more accurate estimate
and representation are selected if different values are available
in literature. While both random and systematic errors may
contribute, this work chooses the maximum of the two instead
of a sum. This underestimates the human error and thus provides
a conservative overestimation of the human performance.

C. Tracking

This section specifically considers aspects regarding tracked
objects list and temporal aspects.

1) Identifier Switches: One attribute commonly evaluated in
tracking metrics such as [7], [82] is the identifier switch, where
a wrong identifier is assigned to a correct detection [108].

For human perception, it has been shown that large changes
can go unnoticed if an interruption occurs. This phenomenon
was demonstrated for saccades, blank images, mud splashes
and cuts or pans in motion pictures [78]. Change blindness
even occurs in real-world settings when the subject is paying
attention [79]. These findings indicate that unique identification
is not performed by humans and thus not required for the task
of driving. Therefore, this work will not evaluate identifier
switches.

2) Tracking Accuracy: The popular MOTA metric neglects
the order and temporal distribution of failures [7]. However,
this aspect is relevant to the task of driving since it affects
the available reaction time [95]. Temporal requirements can be
considered explicitly by re-weighting performance [44], [95],
by direct evaluation [12] or implicitly by considering the com-
pleteness of a track [50].

Human performance for perception times is directly acces-
sible by measuring event-related potentials during perceptual
tasks. For the presence of natural and artificial object categories,
perception times of approximately 150 ms are obtained [90],
[93]. Changes in geometric constellations are detected at ap-
proximately 200 ms [45]. Motion detection yields perception
times of 160–200 ms in various studies depending on the type
of motion [46].

Overall, converging evidence from human perception shows
the possibility of object or motion detection starting from
150 ms. This work therefore neglects false negatives within the
first 150 ms after initiating a track and false positives within
150 ms of terminating a track. Perception errors within a track
are considered fully regardless of duration, since no contrary ev-
idence from human perception is found. The number of objects
humans can simultaneously track is limited to single digits [1],
[72]. However, this aspect is neglected in this work, since it is
unclear which objects a human tracks in a given traffic situation.

D. Association

Evaluating perceived object detection requires an association
with the GT to define FP and FN [36]. Given a pairwise matching,
any ground truth object with a matched perceived object is
considered a TP while a ground truth object without a matched
perceived object is considered a false negative. Similarly, a per-
ceived object without matched ground truth object is considered
a false positive [12], [29].

1) Association and Classification: The most common evalu-
ation procedures perform association for each class [53]. How-
ever, the requirement of obstacle detection supports a class-
agnostic detection [39], which also aligns with human perceptual
mechanisms [96]. Additionally, unknown classes and fuzzy
borders between classes may occur [14]. The concept of class-
neutral objectness receives additional support from its successful
application by object detectors [75], [80], [105], [111], [112].
Therefore, this work performs association irrespective of class.

2) Reference Point: While object centers have been used as
reference points for object location [12], other reference points
are possible. Consider the following scenario in Fig. 1, where
the difference between using the closest points and the center
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Fig. 1. Difference between using closest point (green) and center point (yel-
low/red) as reference.

points of two objects is visualized. Yellow and red indicate the
center points for two possible lengths of the front vehicle. The
relevant attribute for safety is the minimum distance to the other
vehicle [113] shown in green. This corresponds to the available
space for an emergency brake. Notably, the relevant distance
between the closest points is independent of the object size.

Since the size estimation can prove difficult [99], any depen-
dency between location and size is undesired. Sensor data does
not include center points of objects, but only the surfaces [17],
[73], [99]. Therefore, centers of object faces [112] or closest
corners [110] are better suited for object localization. Overall,
closets points simplify detection and correspond to the available
space. Therefore, the point of the object closest to the ego vehicle
is used as reference point in this work.

3) Association Procedure: Human perception displays be-
havior indicating an object-centric visual working memory [55]
with features bound together by a location map [96]. While erro-
neous recombination of features occur [11], [92], these binding
problems are limited to specific preconditions such as very brief
presentations [104]. This object-centric approach using pairwise
association with distance metrics is also common practice on
benchmark datasets [12], [29], [87] and therefore adopted for
this work.

The two common distance metrics are intersection over union
(IoU) [29] and the distance between center points [12]. Since IoU
couples localization, size and orientation of the object [12], it
does not fulfil the requirement of interpretability. Additionally,
all objects without overlap receive an equal IoU of zero [114]. In
these cases, differences in performance cannot be distinguished.
This effect is particularly pronounced for small objects [12],
[107]. Therefore, a point distance is used in this work. However,
as elaborated in the previous section, the closest point is used
as reference instead of the center. From this point, the closest
distance to the perceived object dM is evaluated as shown in
Fig. 2.

Different association methods such as greedy matching [12]
and bipartite matching with the Hungarian algorithm [87] are
available. Since the outcome is similar for both strategies, the
greedy matching is applied for simplicity.

4) Association Threshold: In addition to the metric, it is also
common to set a maximum threshold for association. This border
between existence or matching and localization is generally
fuzzy [36]. However, it corresponds to existing object detec-
tion pipelines [115]. Since it also increases interpretability, we
propose to follow the approach of distinguishing matching and
localization failures.

For simplicity, a circular distance threshold is applied as visu-
alized in Fig. 2. The threshold is set in accordance with the most

Fig. 2. Association based on circular distance threshold rM around the closest
point of GT. Green objects are potential matching candidates while red objects
are beyond the matching threshold.

lenient localization accuracy criterion to allow distinguishing as-
sociation and localization errors. As shown later in section III-E,
this is the accuracy of the distance d between the GT object and
the ego vehicle. Here, only the final result for the corresponding
distance errorΔd ≤ 0.15 · d is applied. The process of obtaining
this requirement is elaborated in Section III-E1. In addition,
a minimum permissible offset is proposed to counteract the
otherwise unreasonably small thresholds at small distances. The
radius is chosen to be 2 m in accordance with previous work [12],
[28]. This leads to a radius of rM = max(0.15 · d, 2 m) with
d being the distance of the GT object to the ego vehicle. A
perceived object is considered matched with the GT object if
the matching distance dM < rM. Note that the exact distinction
between matching and localization failures is inconsequential
in this work, since both are equally considered in the final
evaluation.

E. Localization

This section substantiates the localization requirements ap-
plied for the association. Distance to the ego vehicle and angular
positions are considered separately due to correspondence with
human perception literature.

1) Distance: As argued in previous sections, the closest point
distances are most relevant for the safety of the driving task.
Distance estimation errors generally include random and sys-
tematic errors which depend on the distance [22]. However, the
relative error is > 15% for interobject distances [49] as well as
for egocentric distance estimation in open terrain [22] or in a road
environment [86]. At distances below 20 m, the context of the
car may introduce additional bias with errors of approximately
40% [62]. For the task of direct depth labeling on monocular
images, relative errors lie above 20% [106].

The conservative estimate to ensure safety prohibits overes-
timating the distance while underestimation is permissible. In
accordance with human perception, the maximum permissible
underestimation is defined as:

Δd = dGT − dPRED ≤ 0.15 · d (1)

Note that the permissible error is always larger than zero if a
distance of zero corresponding to an accident is avoided.
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Fig. 3. Angular position referencing ego heading and conservative estimates.

2) Angular Position: One option is to consider the lateral
distances of objects [77], [83]. However, human performance
depends on the visual angle [49] which motivates evaluating
angles in this work. Human estimation accuracy is consistent
across viewing conditions such as fixed gaze, fixed head or
free head [51]. For simplicity, this work therefore chooses the
heading of the car as reference. The object point with smallest
angle is used as conservative reference point which may differ
from the point with closest distance. This corresponds to the
intuitive notion that an object in front of the ego is more critical
than further to the side. While systematic and random errors
depending on the experimental setup exist, multiple studies show
random errors of > 5◦ across a range of visual angles in both
horizontal and vertical direction [34], [51].

For simplicity, a constant permissible error of 5◦ is chosen
across the whole value range of visual angles for both azimuth
and elevation. Conservative estimates demand that the smallest
angle between object and ego heading in front or back may
be underestimated, but never overestimated. A visualization is
provided in Fig. 3.

F. Velocity

In this work, relative velocities are evaluated since they are
more informative than absolute velocities regarding potential
collisions. Angular and radial velocity correspond to the distinct
aspects of possibility and timing of collisions and are therefore
evaluated separately.

1) Radial Velocity: The radial velocity is considered as a
TTC since humans estimate TTC directly based on the expansion
rate of the image τ rather than by estimating speed [109]. For in-
terceptive movements, humans can achieve high temporal preci-
sion by making continuous adjustments to the movement and the
estimate. Thus, the accuracy increases as the distance decreases
over time [8], [9]. However, this accuracy does not transfer
to the driving task where collisions are avoided. For vehicle
following scenarios, the TTC is typically underestimated by 30%
or more for various settings [13], [43]. The standard deviation is
substantial at more than 10% across different TTC values [35].
The inverse TTC given by 1/TTC = iTTC = v/d is applied to
avoid unbounded values for the TTC if the velocity approaches
zero. If accidents are avoided, the distance never reaches zero
and the inverse time to collision (iTTC) thus remains bounded.
In the following, the radial velocity is positive when an object
is moving towards the vehicle. For evaluation, the ground truth

distance is used to disentangle velocity and distance estimation.
Converting the TTC data from literature [13], [35] to iTTC yields
at least 10% relative error across different experimental settings.

Conservative estimates demand that the radial velocity to-
wards the vehicle and therefore also the iTTC must never be
underestimated. It should be noted that this requirement ap-
plies for positive and negative radial velocities. As the velocity
approaches zero, humans show a perception threshold under
naturalistic conditions such as braking given by iTTClow =
0.2 1

s [60]. This threshold value is added to the permissible error
leading to an overall permissible error of:

ΔiTTC = 10% · iTTC + iTTClow (2)

2) Angular Velocity: Generally, performance differences re-
garding angular velocity estimation can be observed depending
on various factors such as luminance [88] or velocity [10].
However, the error lies above a threshold of 5% across different
settings [10], [18], [32], [88].

When considering relative velocities, a low tangential velocity
is required for a collision. This means that low angular velocities
may lead to a collision when closing in on an object, while high
angular velocities mean the object will pass. Therefore, under-
estimation of the absolute angular velocity is permissible, while
an overestimation is not. As the angular velocity approaches
zero, humans exhibit a motion detection threshold which lies
above Θ̇low = 0.03◦/s for different settings [63], [81]. Adding
this threshold to the permissible error leads to:

ΔΘ̇ = 5% · Θ̇ + Θ̇low (3)

IV. VALIDATION

In the previous section, quantitative requirements are devel-
oped for different aspects of the driving task. While the require-
ments are all based on an argumentation, further validation is
required.

To provide this validation, we apply the methodology and the
implementation of SURE-Val [85]. This approach is based on
a motion prediction network pre-trained on human trajectories,
which is applied to two types of input. By contrasting the un-
modified GT input with a perturbed object list as input, the effect
of the perturbations is visible. Note that despite the similarities,
the objective is not to directly use a downstream task as done
by PKL [69]. Rather, the prediction network acts as a proxy
for human behavior. If the perturbation of the object list has a
discernible change in prediction performance, the corresponding
requirement is considered invalid. Following SURE-Val [85],
the change in prediction performance is assessed by calculating
the p-values of testing for equality of distributions with the
Cramer-von Mises [3] test. Small values indicate that the input
perturbation leads to a change in prediction performance and is
therefore not valid.

Originally, the SURE-VAl methodology is intended to eval-
uate the relevance of objects. In this work, it is modified by
perturbing the object list with location offsets instead of remov-
ing objects. For any given localization requirement, the position
of all objects in the object list is modified in accordance with the
permissible error. Localization requirements are emphasized in
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Fig. 4. Boxplot of log-scaled p-values for comparing prediction error distri-
butions of inputs with errors in different directions.

this work because the manipulation of locations is comparatively
simple. In this case, a change in prediction performance indicates
that the perturbation is invalid. Since the perturbation is chosen
according to a localization requirement, the corresponding re-
quirement is also invalid. While results are not shown for brevity,
the validation method is verified by analyzing the impact of
halving and doubling the distance. In these cases, the validation
method successfully identifies the verification inputs as invalid.

The remainder of this section separately validates different
aspects proposed in this work. First, the distinction of radial dis-
tance and azimuth is evaluated. This is followed by considering
the direction and the magnitude of the errors. The discussion of
the validation is postponed for the later discussion following the
results.

A. Types of Error

The first question is what influence the type of the location
error exhibits. For this purpose, the effect of perturbing object
distances and azimuth angles are compared. The comparison
shows results for the largest nuScenes distance threshold of
4 m in Fig. 4. This value is either added or subtracted from
the distance or it is added to increase or decrease the azimuth
angle. It is observed that the results for the p-value clearly differ
for distance errors and angular errors. This indicates that the
effect of same error magnitude differs depending on the type of
error.

B. Direction of Error

The next question is if positive or negative errors exhibit
different influences on the results. For this purpose, we again
compare the results in Fig. 4. The sign makes a difference
both for the distance and the azimuth angle. Therefore, these
results indicate that different error directions require separate
consideration. This observation occurs despite the fact that

Fig. 5. Boxplot of log-scaled p-values for comparing prediction error distri-
butions of inputs with different error scalings.

the evaluation metric average distance error (ADE) does not
consider the direction of the error. Overestimating the distance
shows similar p-values as the regular input. Therefore, it appears
that conservative estimates as proposed in this work are not
supported.

C. Error Scale and Magnitude

Another question is whether fixed errors or errors scaled by
the distance to the ego are more appropriate. For this purpose,
both variants are compared with thresholds constructed to yield
an equal average error. For the distance error of 15%, the
average distance error is 5.29 m. For the azimuth error of 5◦,
the average location error is 3.07 m. Results of the comparison
are depicted in Fig. 5. For the distance errors, similar p-values
to the regular input are observed. An exception is subtracting a
constant distance, which shows lower values. This indicates that
the proposed criteria are supported, while subtracting constant
distance errors is invalid. All angular errors show lower p-values
than for regular inputs, indicating they are not valid. However,
the constant location errors in angular direction show p-values
orders of magnitude lower than the angular errors which effec-
tively scale with distance. This indicates that distance scaled
angular errors affect the prediction component less. While the
angular error threshold is invalid, the results therefore favor
angular errors which scale with distance.

V. RESULTS

The previous sections define and validate different require-
ments for different aspects of the detection task. Quantitative
pass/fail criteria are developed for each aspect such as track-
ing, association, localization and velocity. In this section, the
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Fig. 6. Frequency and optimum of failures of the CenterPoint detector nor-
malized with the number of GT objects. Unlike metrics based on recall and
precision, lower is better.

proposed detection requirements are applied to a set of base-
line detectors to evaluate their performance on an exemplary
dataset. The evaluation is performed by counting the frequency
of failures. While the number of failures is normalized with
the number of GT objects for interpretability, no weighting of
different failures is performed.

A. Implementation

Since labeled data is required to evaluate object detection,
the validation split of the nuScenes dataset [12] is selected. For
nuScenes, different detection baselines are readily available.
All baselines are applied as implemented by the mmDetec-
tion3D [61] framework using pre-trained weights and default
settings. Exemplary results for the popular lidar based detectors
PointPillars [48] and CenterPoint [112] as well as for the camera
based detector FCOS3D [98] are shown. Class-specific distance
based filtering as in the nuScenes detection evaluation [64] is
applied to objects prior to evaluation.

B. Prevalence of Failure Types

While this section is presented only for the CenterPoint [112]
detection baseline, the general trends discussed here are similar
for different detectors.

The first noteworthy result is that conservativity is only given
for approximately half of the objects. To avoid skewing results,
the following evaluation results therefore focus exclusively on
accuracy. Fig. 6 shows different types of failures for the de-
tector. Even for the optimal confidence threshold, an average
of 0.72 collision relevant failures per GT box is observed. It is
observed that the collision relevant failures are dominated by the
association failures with 0.49 failures per GT box. Velocity and
localization failures show 0.31 and 0.01 failures per GT box,
respectively.

C. Different Detectors

While the previous section focused on general results that are
similar for different detectors, this section emphasizes differ-
ences between detectors. For this purpose, two lidar and one

Fig. 7. Frequency of and optimum of matching and velocity failures for
different detectors normalized with the number of GT objects.

camera baseline are compared in Fig. 7. Only matching and
velocity failures are evaluated since they are shown to be the
dominant failure types.

Different detectors display different optimal confidence
thresholds. While the qualitative distribution is similar, the exact
number of failures and their distribution over confidence scores
differ depending on the detector.

D. Ideal Fusion and Uncorrelated Fusion

One common assumption is that fusing multiple detectors and
sensor modalities improves accuracy. To test this hypothesis,
fusion is evaluated regarding the matching and localization
failures as in the previous section.

To estimate the upper bounds of performance achievable
with fusion, an ideal detector is constructed. False negatives
are only counted if the object is missing in both modalities,
while false positives are only counted if they are present in both
modalities. Since this fusion procedure assumes GT knowledge,
it overestimates practically achievable fusion performance. An-
other reference is obtained by calculating failure rates assuming
that two modalities or detectors have no correlation. In this
uncorrelated case, the failure likelihood is obtained by simply
multiplying the failure likelihoods of the two detectors.

A comparison of ideal and uncorrelated fusion along with the
baseline results is presented in Fig. 8. The ideal fusion improves
the baselines especially regarding matching. However, it fails to
achieve large gains for matching or velocity if three detectors are
fused. In these cases, the failure rates remain substantially higher
than for the case where no correlation of failures is present.

VI. DISCUSSION

In this section, a discussion of the perception criteria proposed
in this work is presented. Finally, the detection and fusion
performance as well as their implications are discussed.
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Fig. 8. Frequency of matching and velocity failures normalized the number of
GT objects. Optimum thresholds of three detectors are compared with an ideal
fusion and a hypothetical uncorrelated fusion.

A. Comparison With Existing Metrics

Contrary to the common tracking task, the unique identifica-
tion of objects is not supported by human perception literature.
This is in agreement with the typical 3D perception pipeline
which primarily considers detection in the track by detection
paradigm [66].

The temporal requirements are comparatively strict, demand-
ing detection within 150 ms. This indicates that annotation
frequencies such as in the nuScenes dataset with 500 ms between
frames [12] are insufficient. Additionally, the typical lidar and
radar scan rates are approximately 100 ms [29], [87]. Common
strategies as aggregating information from multiple time frames
for detection [16], [47], [99] or tracking [19], [66], [100] may
not be applicable for sudden object appearances. This may
strengthen the case for using sensors with faster frame rates.

Matching and localization are distinguished for interpretabil-
ity and consistency with existing pipelines. However, the mis-
takes are considered equally critical, thus diminishing the impor-
tance of the distinction. It is shown that the majority of failures
originates from matching failures. This indicates that even if no
fine-grained localization is required, determining the existence
of objects remains challenging. Perception results may benefit
from explicit labeling of groups as in the Microsoft COCO
dataset [52] since matching errors constitute a common failure.

Classification is less relevant compared to common percep-
tion metrics such as mAP, which consider it a prerequisite for
matching. It should be noted that classification may be required
by the downstream task depending on the implementation. How-
ever, we show that even when neglecting classification require-
ments, perception errors remain common. While this question
requires further attention, a possible reason is the fact that current
detectors are designed for standard evaluation pipelines.

The requirements of this work differ from common metrics,
since they do not provide a weighting of different error types.
Since no averaging between different attributes is performed,
the requirements are more sensitive to individual attribute errors.
Velocity failures are present for approximately half of the GT
boxes for which collision relevant failures occur. This indicates
that existing metrics may insufficiently consider attributes other
than localization. At the same time, the proposed distance errors
are more lenient than for common detection metrics.

B. Perception Criteria

This work successfully defines pass/fail criteria for different
aspects of the object detection task. The criteria are firmly
grounded in human performance and allow fair comparison
regardless of the sensor modality. Each failure is interpretable
and can be treated independently from other failure types.

The validation procedure from SURE-Val [85] is applied to
the perception criteria. Results show that for instance the largest
distance threshold of 4 m as used by nuScenes [12] is invalid.
In addition, the validation falsifies the common assumption that
different directions of location errors should be treated equally.
Furthermore, fixed error thresholds obtain lower p-values than
errors which scale with distance for equal error budget. This
indicates that fixed error thresholds for localization are invalid,
favouring scaling with the distance. The validation also justifies
treating positive and negative errors differently. The distance
error threshold of 15% proposed in this work is supported by
the validation, since the p-values are in a similar range as for un-
modified inputs. While the nuScenes thresholds are valid when
applied to distance, the requirements proposed in this work are
favoured since they are more permissive. However, the angular
threshold of 5◦ is falsified by the validation. This indicates that
requirements for the azimuth angle are more restrictive than the
distance requirements. One potential reason is that humans do
not utilize visual angles but instead rely upon distance estimation
to the lane or the planned trajectory. While the validation con-
firms distinguishing positive and negative errors, conservativity
if not confirmed. Since the validation metric uses a symmetric
distance metric, safety outcomes are not considered. In addition,
the dataset may not include critical driving situation where any
of the participants is close to an accident.

Overall, the validation results show the deficiency of current
perception metrics and largely support the results of this work.
Importantly, the approach of obtaining interpretable analytic
criteria from human perception is shown to be feasible. However,
the exact threshold for the angular error and the conservative
estimates are not confirmed.

C. Validation Method

The validation procedure is verified and successfully applied
to the perception criteria proposed in this work. It is shown that
reconciling the interpretability and simplicity of analytic criteria
with the context-awareness of neural networks is possible.

The validation results largely support the assumptions of
this work while falsifying the assumptions of common dataset
metrics. It is shown that the type and the direction of a location
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error influence the prediction result. Furthermore, errors which
scale with the distance of an object are favored. While the
distance threshold is supported, this is not the case for the
angular threshold. Contrary to the assumptions of this work,
both conservative and non-conservative errors are supported.

Nevertheless, there are limitations to its application. Firstly,
the validation procedure is currently only applicable to location
errors. For velocity errors, it is currently unclear how to appro-
priately modify the prediction input to consistently manipulate
velocity and location over time. Other attributes such as size or
orientation are not used as input by the implemented prediction
network. Accordingly, their errors cannot influence the predic-
tion result. In addition, the current symmetric distance metric
used for validation does not consider safety outcomes. How-
ever, evaluating safety outcomes may be required to adequately
consider the effects of conservative estimates.

D. Detection Performance

Overall, the analyzed detection architectures show high num-
bers of failures with FCOS3D at 0.82, PointPillars at 0.76 and
CenterPoint at 0.72 collision relevant failures per GT box on
average. Note that this work analyzes the failure likelihood,
meaning that lower scores are better with the ideal score being
zero. The prevalence of matching failures occurs despite the fact
that the location thresholds are more lenient than for standard
AP. In addition, half of the estimates are not conservative for
each attribute, which may pose safety risks. This means cur-
rent perception algorithms frequently fail to meet requirements,
providing clear evidence that safety is insufficiently considered.
Future algorithm evaluation and development should explicitly
consider safety requirements.

Performances on mAP are 32% for FCOS3D, 34% for Point-
Pillars and 56% for CenterPoint [61]. While the ranking remains
the same when using the metrics in this work, the discrepancy
between methods is different. The performance gap between
PointPillars and CenterPoint is smaller in this work than based
on mAP when assuming linear scaling. This may indicate that
the discrepancy on standard metrics results of the capability of
CenterPoint for fine-grained localization. Conversely, the wider
gap between PointPillars and FCOS3D in this work may be
attributed to the fact that classification is not considered. The
superior ability of camera images to capture semantic informa-
tion [26], [54] may improve AP without significantly affecting
the results in this work.

Another aspect visible from the results is that the optimum
occurs at different confidence scores for each detector. This in
agreement with previous observations in literature that confi-
dence scores are insufficiently calibrated [42], [102]. However,
the defined evaluation procedure does not require confidence
scores. Developing detectors which leverage this fact as well
as other specifics of the evaluation procedure is left for future
work.

E. Fusion Performance

The investigation reveals that an ideal fusion with access to
GT information for the fusion procedure shows large potential
for improving the baselines. However, even this ideal fusion

has higher failure likelihoods than the uncorrelated case at
failure likelihoods of approximately 10% and below. In this
case, common causes [84] such as occlusion or small size may
cause correlation among errors, regardless of the modality or
architecture. Additionally, the correlation may be even stronger
under challenging conditions such as adverse weather. Overall,
the naive assumption of non-existent correlation between sensor
modalities is likely insufficient. This also agrees with prior
work showing that different architectures and modalities exhibit
strong correlation in a more theoretical setting [30].

It also appears that the ideal fusion performance does not
differ if two detectors are combined for two different modalities
or for the same modality. However, only limited conclusions can
be drawn from the limited number of detectors studied. Further
investigation into reduction of correlations as well as including
other sensor types such as FMCW lidar, high-resolution radar
or thermal cameras is warranted.

F. Transfer of Results

In this section, the transfer of the methods and results obtained
in this work to other tasks and domains is discussed.

The first question is whether the methodology is also applica-
ble to other perceptual tasks such as semantic segmentation.
Generally, the proposed methodology is limited to tasks for
which a human perceptual equivalent exists. Human perception
was shown to be object-centric in this work. Further study
may be required to identify other representations in human
perception. However, since it is unknown if any equivalent to
semantic segmentation exists, the method of this work may be
inapplicable. The validation method is however applicable if
any such requirements are identified in the future. Applying
the validation method in this case requires a motion prediction
network which ingests semantic segmentation.

Another question is the transfer of the results to other do-
mains and datasets. Regarding the perception requirements, no
assumptions regarding domain or sensor setup are incorporated.
We therefore believe that the requirements apply generally for
3D object detection. The validity of the requirements is at present
only confirmed on the nuScenes dataset. However, the validation
only utilizes object list data of surrounding traffic participants.
Therefore, characteristics of the dataset are only weakly ex-
pressed. A transfer of the requirements and their validity to other
datasets thus seems plausible.

For the detection performance, the transfer is more difficult to
ascertain. It should be noted that object detection performance
always differs between different datasets. Reasons include the
differences in sensor setup as well as potentially different
difficulties of the perception task. Nevertheless, CenterPoint
reports an AP of 58% on nuScenes and 72% on Waymo [112].
We consider it unlikely that all of the failures observed in this
work are accounted for by the specifics of the dataset. Therefore,
we believe that the general results of high failure rates and
correlation of sensors transfer to other datasets.

However, while a transfer may be plausible, explicit testing on
other datasets is required. While further research in this direction
is required, this is left for future work.
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VII. CONCLUSION AND OUTLOOK

Within this work, new perception metrics as well as thresholds
to define interpretable pass/fail criteria are developed. Human
performance as well as conservative estimates are considered to
develop interpretable analytic perception requirements linked
to safety. A validation method based on a motion prediction
network is introduced and applied. Results show lack of validity
of current metrics while supporting the propositions put forth in
this work.

The assessment of existing detectors shows that the require-
ments are not met for the majority of objects in a contemporary
dataset. Despite localization criteria which are more lenient than
common AP matching thresholds, matching failures dominate
the results. The differences between different detectors as well as
different modalities are moderate when using the metrics devel-
oped in this work. This indicates that fine-grained localization
may be over-emphasized in current metrics. This shows the need
for explicit consideration of safety in evaluating and developing
perception algorithms.

Further investigation effort is required to understand the ef-
fects of dataset, modality, architecture and optimization goal on
the failure rates. Regarding fusion of different detectors, prelim-
inary results indicate substantial correlation between detectors
and modalities. This indicates that multi-modal fusion may be
insufficient to alleviate the failures that occur in contemporary
object detection pipelines and requires further research.

Finally, the authors hope that these requirements can serve as
basis for future algorithm evaluation and development.
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